CN102016137B - 用流体动力法在同轴层流中形成聚合物(水凝胶)纤维 - Google Patents

用流体动力法在同轴层流中形成聚合物(水凝胶)纤维 Download PDF

Info

Publication number
CN102016137B
CN102016137B CN200980115470.XA CN200980115470A CN102016137B CN 102016137 B CN102016137 B CN 102016137B CN 200980115470 A CN200980115470 A CN 200980115470A CN 102016137 B CN102016137 B CN 102016137B
Authority
CN
China
Prior art keywords
fluid
layer
fiber
cell
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980115470.XA
Other languages
English (en)
Other versions
CN102016137A (zh
Inventor
雅姬·Y·邢
胡敏
邓任生
卡尔·舒马赫
栗泽元一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agency for Science Technology and Research Singapore
Original Assignee
Agency for Science Technology and Research Singapore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency for Science Technology and Research Singapore filed Critical Agency for Science Technology and Research Singapore
Publication of CN102016137A publication Critical patent/CN102016137A/zh
Application granted granted Critical
Publication of CN102016137B publication Critical patent/CN102016137B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/38Formation of filaments, threads, or the like during polymerisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Artificial Filaments (AREA)
  • Materials For Medical Uses (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

通过流体动力法纺丝形成聚合物(水凝胶)纤维。迫使多路流体流经导管并形成三层或以上的同轴流层,并通过调节所述多路流体流经导管的流量来控制所述同轴流层的管形中间层的截面大小。所述中间层包含可交联的聚合物前体。其他所述流层包含交联剂。通过选择所述聚合物前体、交联剂和流体以基本上防止所述聚合物前体从所述中间层中扩散出去,但允许所述部分交联剂从所述其他流层扩散到所述中间层中以使所述聚合物前体在所述中间层内交联从而形成聚合物纤维中的管形聚合物层。所述聚合物层与所述中间层具有大体上对应的截面面积。

Description

用流体动力法在同轴层流中形成聚合物(水凝胶)纤维
相关申请的引用 
本申请要求于2008年2月29日提交的美国临时申请第61/064,369号的优先权,其全部内容以引用的方式并入本文。 
技术领域
本发明总体上涉及制备聚合物纤维,尤其涉及在多相层流中形成聚合物纤维。 
背景技术
聚合物纤维(例如水凝胶纤维)在多种应用中(例如细胞移植或组织工程)被用作载体或支架。在某些应用中,例如在血管和肾组织工程的领域,希望在纤维中种植细胞。然而,在有效地形成具有可变的截面形状和尺寸的聚合物纤维或者在控制纤维中的细胞种植方面依然面临挑战。可以使用挤出方法形成具有种植了细胞的聚合物纤维,但是在常规的挤出方法中不便于改变纤维的截面形状和尺寸,或者不便于控制细胞在纤维中分布。 
发明内容
形成纤维的方便方法是利用三层或更多层的流体流(fluid flow)的层流来成形和聚合中间层或内层以形成聚合物纤维层。可以通过改变流体流各层的输入流量来方便地调节纤维层的截面(包括形状和尺寸)。可以通过在前体流体中包含细胞来方便地和有选择性地将细胞引入到纤维中。 
因此,根据本发明的一个方面,本发明提供了一种通过流体动力法纺丝(hydrodynamic spinning)来形成聚合物纤维的方法,其包括:迫使多路流体流经导管以形成三层或以上的同轴流层,并通过调节所述多路流体流经导管的流量来控制所述同轴流层的管形中间层的截面。所述中间层包含可交联的聚合物前体。其它所述流层包含交联剂(cross-linking agent)。通过选择所述聚合物前体、所述交联剂和所述流体以基本上防止所述聚合物前体从所述中间层中扩散出去,但允许部分交联剂从所述其它流层扩散到所述中间层中以使所述聚合物前体在所述中间层内交联从而形成聚合物纤维中的管形聚合物层。所述管形聚合物层与所述中间层具有大体上对应的截面。 
可以调节通过导管的流量来改变管形中间层的截面,例如,当迫使流体通过导管时。可以通过调节流量的比值来调整流量。其它流层可包含管形外层。其它流层可包含内层,并且所述聚合物纤维可以是管形的。所述管形聚合物纤维可具有大约20μm或更大的内径,和大约60μm或更大的外径。大体上为圆柱形的内层可包含聚合物前体,并且所述聚合物纤维可大体上为圆柱形。所述圆柱形聚合物纤维可具有大约20μm或更大的直径。所述中间层可包括多个中间层,并且所述聚合物纤维可包含多个聚合物层。所述交联剂可包括固化剂(cross-linker),并且所述聚合物层可包含通过用固化剂交联聚合物前体所形成的聚合物。交联剂可包括交联引发剂。交联剂可包括交联催化剂。所述聚合物纤维可以固化。在聚合物纤维被排出导管以后可以将其浸入液体浴中。可以把细胞分散在层流中以使聚合物纤维包含细胞。可以把细胞分散在层流的多个层中以使聚合物纤维中的多个层包含细胞。可以把细胞分散在层流中使得聚合物纤维的不同层包含不同类型的细胞,或者使聚合物纤维的不同层包含不同浓度的细胞。一种或多种流体可包含细胞培养基。一种或多种流体包含磷酸盐缓冲盐水。所述聚合物前体可包括明胶-羟基苯基丙酸、海藻酸钙或聚砜。所述交联剂可包含过氧化氢。流体流的中间层可包含辣根过氧化物酶。所述方法可包括在中间层引发交联。 
在结合附图参阅了本发明的具体实施方式的以下描述的基础上,本发明的其他方面和特征对本领域的技术人员将变得清晰。 
附图说明
附图仅是以实施例的方式说明本发明的实施方式。 
图1为图示本发明的示例性实施方式的具有喷丝头的纺丝装置100的示意图; 
图2为图1所示的喷丝头沿线A-A的截面图; 
图3为图2所示的喷丝头沿线B-B的截面图; 
图4为图3所示的喷丝头在运行期间的截面图; 
图5为图4所示的同轴层流的截面图; 
图6、7、8和9为可选择的具有不同数目的嵌套的管形入口的喷丝头的部分截面图; 
图10为显示使用图7、8和9的喷丝头能够形成的代表性的聚合物纤维截面构造的表; 
图11A为在实施例中使用的纺丝装置的示意图; 
图11B、11C和11D为显示在实施例中使用的不同的流体层模式的示意图; 
图12、13、14、15、16、17、18和19为样品纤维的图像;以及 
图20和21为在某些样品纤维的制备中发生的化学反应的图。 
具体实施方式
本发明的一个示例性实施方式涉及通过流体动力法纺丝来形成聚合物纤维的方法。迫使多路流体流经导管并形成包含大体上平行的三层或更多层的流体流的层流。所述流体流的层大体上是同轴的。选择导管中流体流的各自流量(例如通过调节输入流体流量)来限定流体流的管形中间层的截面,特别是截面的尺寸。可以预先调节流量,或者在形成聚合物纤维的同时通过调节输入流量来动态地调节。所述中间层包含聚合物前体。流体流的一个或多个其他层包含交联剂,该交联剂可以是固化剂、交联引发剂或交联催化剂。选择所述聚合物前体、交联剂和流体以基本上防止聚合物前体从中间层上扩散出去,并且使部分交联剂从其他层扩散到中间层中。然后聚合物前体的交联可以在交联剂存在下在中间层发生从而形成管形聚合物层。所述聚合物层具有与流体流的中间层的截面大体上对应的截面。在层流中,该聚合物层可形成聚合物纤维或者多层纤维中的层。可以通过在流体流中选择性地分散细胞来方便地把细胞引入到纤维层中。 
以下将进一步描述,通过在层流中具有三层或更多层的流体流,可以由该方法方便地形成实心或空心纤维。空心纤维可具有大约20μm或更大的内径和大约60μm或更大的外径。实心纤维可具有大于大约20μm的直径。 
通过在层流中具有三层或更多层的流体流,还可以方便地形成具有多层的纤维。方便地,不同的纤维层可具有不同的物理、化学或生物性能。 
在图1、2和3中示意性地说明了示例性的纺丝挤出装置100。 
装置100包括喷丝头102,该喷丝头102具有入口部分104、连接部分106和限定导管110的聚合部分108。 
入口部分104包括三个大体上同轴的嵌套的管形入口112、114、116,为了向导管110中注入各自的流体,每一个入口与一个流体源(参看下文)流体连通。 
连接部分106把来自入口112、114、116的流体引入导管110以在导管 110中形成层流。如图3所示,连接部分106可大体上为圆柱形,或大体上为漏斗形(参看下文)。 
聚合部分108足够长以使聚合物前体通过交联的聚合。 
导管110可具有大体上圆形的截面,例如,其直径大约为0.8mm和长度大约为15mm。该直径和长度可以依据具体的应用而改变。然而,可以理解,导管110的尺寸和形状应该对于在具体应用中使用的具体流体和流量的范围使得层流从其中流过。例如,对于给定的流体和流体流量,导管110的直径应该使得导管110中的流体流的雷诺数(Re)比形成层流的阈值小。 
可以单独地设置入口部分104、连接部分106和聚合部分108,或将它们集成成单一体。 
包含液体浴120的容器118可以与导管110相邻设置以把从导管110纺丝形成的聚合物纤维浸入液体浴120中。液体浴120可包含用于固化纤维或降低纤维表面张力的流体。例如,所述液体浴可包含磷酸盐缓冲盐水(PBS)溶液。 
可以提供两种以上的流体源,例如流体源122、124、126。 
流体源中的一种,例如流体源124,提供包含聚合物前体的第一(前体)流体。所述聚合物前体可包括大分子,该大分子具有低的扩散通过层流中不同流体层之间的界面的趋势。所述的聚合物前体还可以是可交联的,通过固化剂来形成聚合物。可以包括多于一种的聚合物前体。还可以包括能够共聚的不同的单体。例如,聚合物前体还可以包括明胶-羟基苯基丙酸(Gtn-HPA)、海藻酸钙或聚砜。在不同的应用中也可以使用其他的前体例如纤维蛋白原(fibrinogen)、透明质酸、明胶-酪胺、甲壳质、N-异丙基丙烯酰胺等。当本文中的项目列举在最后一个项目前使用“或”时,可以包括或使用项目中的任一个;还可以包括或使用任何两个以上项目的组合,只要该组合是可能的并且组合的项目不是固有的不相容或排斥。 
另一个流体源,例如流体源122或126,提供包含交联剂的交联剂流体。所述交联剂可为固化剂、交联引发剂或交联催化剂。当将聚合物前体和固化剂注入导管110并使其接触时,可以选择固化剂来交联聚合物前体以形成聚合物纤维。或者,当在前体流体中存在交联引发剂时,可选择交联引发剂来引发聚合物前体的交联。可以使用催化剂来催化交联和聚合反应,以使所述反应可以在所述流体流排出导管110并失去其截面形状之前以足够的速率进 行。所述交联剂可包括具有较高的扩散通过层流中不同流体层之间的界面的趋势的较小分子。例如,所述交联剂可包括过氧化氢(H2O2)、辣根过氧化物酶(HRP)、氯化钙、凝血酶、水、酶等。 
可以提供另外的流体源(例如流体源126)来提供皮层(成形)流体,或另外的聚合物前体流体。另外的聚合物前体流体可包含聚合物前体,并且与另一个前体流体可具有相同或不同的成分。 
每种流体可包含合适的溶剂。例如,可使用PBS作为溶剂。也可以使用水(例如去离子水)作为溶剂。 
如图1所示,每个流体源122、124、126与各自的入口112、114、116相连。然而根据应用,一个流体源可以与三个入口112、114、116中的两个相连,这将在下面变得清晰。在某些应用中,两种流体源例如流体源122和124可能就足够了,并且可以省略流体源126。 
可以提供调节器控制器130来控制流量调节器132、134、136。每个流量调节器132、134、136与入口112、114、116相连用于调节流经入口112、114、116的流体的流量。为了调节形成的纤维的尺寸和形状,可以调节控制器130来控制流量调节器132、134、136以调节在入口112、114、116的不同流量的比值,这将在下面进一步描述。所述调节器132、134、136可以是能够被控制来改变通过入口112、114、116的流体流动速率的任何合适的器件或结构。例如,可以使用阀门或流体泵作为流动调节器。 
非必需地,可以设置光源(未示出)用于照射聚合部分108以光引发流体流中的交联。 
非必需地,可以设置加热器(未示出),例如在聚合部分108的壁中引入加热器,用于热引发流体流中的交联。 
如果交联是通过化学引发,例如使用酶或其他的化学试剂,则光源和加热器都可以被省略。 
装置100的组件可以由任何合适的材料制成。 
在某些应用中,装置100可以按照以下方式运行。如图1所示,流体源122、124、126分别与进口112、114、116相连。 
根据所需的纤维结构,可以通过不同的入口112、114、116选择性地向喷丝头102中注入不同的流体。为了说明目的,首先假定形成管形的聚合物纤维。在此种情况下,流体源122可以向入口122提供包含交联剂的流体, 流体源124可以向入口114提供包含聚合物前体的前体流体,以及流体源126可以向入口116提供皮层流体。 
来自流体源122、124、126的流体以各自的流量经入口112、114、116和连接部分106被分别注入导管110中。各个流体流通过连接部分106被导入导管110中。由控制器130通过流量调节器132、134、136来控制流量。选择在入口112、114、116的流量以及由此选择在导管110中的流量以使不同的流体在导管110中形成层流400,如图4中的虚线和箭头所示,不同的层流层(例如流体层402、404、406)具有所需的厚度以使产生的纤维具有所需的截面形状和大小。 
除非另有说明,所述流量是指通过导管110的流量,所述输入流量是指在入口112、114、116处的流量。流量是指在单位时间内流经导管110的流体流的总量。该量可以按照例如体积、重量或摩尔量来测量。在稳定的状态下,对于给定液体的输入流量与该种液体通过导管110的流量是相同的。此外,通过导管110的一种流体流的流量可取决于通过相应入口的该种流体的输入流量以及其他流体流的输入流量。导管110中的不同流体流的体积比是由不同流体流的流量的相对比值决定的。当体积比发生变化时,在导管110中的不同流体流层的大小和形状也发生变化。因此,通过调节输入流体流量,可以(动态地)调整流体流层的大小和形状。 
本领域的技术人员可以理解,对于给定的实施方式,可以根据理论计算评价流量(或输入流量)与流动层尺寸之间的关系。在下面实施例Ⅰ中给出了根据流量来计算近似的流动直径的示例性公式。 
在层流中,相邻的流体层(例如层402、404)虽然物理接触,但是以各自的流量流动。虽然在两个相邻层之间在界面区域会发生一些横向扩散,但是在导管110中每种流体层的总的尺寸能够大体上保持不变。因此,来自于流体源122并通过入口112被注入的流体形成了流体流的大体上圆柱形的内层402。来自于流体源124并通过入口114被注入的流体形成了流体流的大体上管形的中间层404,该流体流的中间层404将流体流的内层402包围。来自于流体源126并通过入口116被注入的流体形成了流体流的大体上管形的外层406,该流体流的外层406将流体流的中间层404包围。流体流的层402、404、406形成了层流400。 
本领域的技术人员可以理解,当两个相邻层以彼此大体平行地流动时,可以保持在层流中在两个相邻的流动层之间的界面区域。在导管110中层流400的流体层402、404、406的截面图示意性地示于图5中。在此情况下,在流体层402和406中的流动速度可相同或不同。
应选择流体、聚合物前体和交联剂使得,当层流400流经导管110时,基本上防止在流体流的中间层404中的聚合物前体分子从中间层扩散出去,但是允许交联剂分子从流体流的内层402扩散到流体流的中间层404。因此,通过交联聚合物前体的聚合将在中间层404中发生,而内层402或外层406中几乎不发生聚合反应。结果,通过聚合反应形成的聚合物层(纤维)具有与中间层404的截面大体上对应的截面。如果交联剂的横向扩散速率太低,在导管110中不能足够快地形成聚合物层。如果聚合物前体的横向扩散速率太高,大量的聚合会在中间层404的外部发生,将难以控制形成的聚合物层的截面。 
当交联剂与中间层404中的聚合物前体接触或接近时会发生交联反应。可以使用任何合适的技术来加速或引发反应。 
例如,通过合适的引发方法可以引发流体流的中间层404的交联反应,例如化学引发、光引发或热引发。例如可以通过在中间层404或在相邻层中包含化学试剂(例如合适的酶)来实现化学引发。可以通过使用激光或紫外光照射导管110中的流体来实现光引发。可以通过加热或冷却导管110中的流体来实现热引发,例如使用加热器(未示出)。 
当聚合物前体分子通过固化剂分子发生交联时,在流体流的中间层404形成了聚合物,例如水凝胶。因为中间层404具有大体上管形截面,所述聚合物形成了大体上管形的聚合物纤维408,其具有大体上与流体流的中间层404的截面大体上对应的截面轮廓。在此情况下,形成了管形聚合物纤维408。纤维408的内径与流体流的内层402的直径(或流体流的中间层404的内径)相似。纤维408的外径与流体流的中间层404的外径(或流体流的外层406的内径)相似。 
当纤维408从喷丝头102的导管110中露出时,其可以通过空气或在液体中(例如图1所示的液体浴120)固化。纤维408可具有多孔结构。 
流体流的未聚合层,此情况下的层402和406,会以流体的形式排出导管110,并且可以被液体浴120接受。 
可以理解,如果流体源122和126都提供交联剂流体,可以获得相似的纤维408. 
或者,如果流体源122和124都提供前体流体而流体源126提供交联剂流体,会形成两层圆柱形聚合物纤维,其具有与中间层404的外径(或者外层406的内径)大体上对应的直径。如果流体源122和124提供含有不同的其他成分(例如不同的细胞负载或不同浓度的某种成分)的不同前体流体,该纤维的两层将具有不同的成分或结构。例如,根据不同的前体流体,该两种纤维层会可以具有不同的细胞负载或不同的物理或化学性能。 
在进一步的可选择方式中,可以关闭入口中的一个,并且由通过两个开放的入口注入的两种输入流体可形成两层的层流。 
通过调节入口112、114、116的流量,在不改变喷丝头102的物理尺寸的情况下,可以方便地改变所产生的纤维的截面形状和尺寸。因为在单纤维的纺丝过程中可以改变不同流体的流量,因此单纤维可具有不同的直径。 
可以在微米水平上方便地改变所述纤维的直径。例如,管形纤维可具有大约20μm或更大的内径,以及大约60μm或更大的外径。圆柱形纤维可具有大约20μm或更大的直径。 
通过将细胞分散在形成聚合物纤维的相应流体中,还可以方便地在所产生的纤维中引入细胞。例如,细胞可以被包含在前体流体、交联剂流体或皮层流体中。在形成并固化纤维以后,细胞被固定在纤维中。根据细胞最初被分散在何种流体流中,所述细胞可以固定在整个纤维中,或者集中在纤维的内表面或外表面区域上。 
为了保持细胞的活力并使其生长,在其中分散有细胞的流体中还可以包含细胞培养基。例如,前体流体中可包含细胞培养基。 
可以对这里公开的示例性实施方式进行修改。例如,可以修改喷丝头以包括比图2和3所示的更多的嵌套管形入口。例如,可以嵌套更多的入口来形成多层纤维。一些可能的替代入口部分示于图6、7、8、9中,其分别具有2、3、4、5个嵌套管形入口,并具有大体上漏斗形状的连接部分。可以理解,可以使用两个入口构造(如图6所示)来形成圆柱形或管形纤维,当使用具有三个以上嵌套的入口时,可以方便地形成多层纤维。此外,当具有多于两个嵌套的入口时,可以更方便地调节流体流的层的尺寸和形状以及由此调节所产生的纤维的尺寸和形状。在多层纤维中,这些层中的一层或多层可包含细胞。不同的纤维层可包含不同类型的细胞或不同浓度的细胞。为了说明,图 10示出了一些示例性的纤维截面图,其中每行左栏中的数字表示挤出头的嵌套入口的数目。 
通过修改导管和入口的截面形状可以获得具有不同截面形状的纤维。例如,导管或入口的截面图可以大体上为圆形、椭圆形、长方形、正方形或三角形。 
纤维中的聚合物可以是任何合适的聚合物。例如,对于生物或组织工程应用,所述聚合物可以是与应用中涉及的其他细胞或组织生物相容的。最初可以以凝胶的形式形成所述聚合物。 
可以使用多种合适的水凝胶前体作为聚合物前体。所述的水凝胶前体可以通过任何合适的交联方法进行交联。例如,合适的水凝胶前体的交联可以通过化学引发,其可涉及自由基聚合、化学反应、辐射或酶。水凝胶前体的交联还可以是物理引发的,其可涉及离子相互作用、结晶、两亲型嵌段和接枝共聚物、氢键、蛋白质相互作用、或者温度或pH的变化。 
其他的材料和试剂也可以方便地与细胞一起被引入到纤维中。例如,在流体流中还可以包含其他的生物组分并将其引入到纤维中,例如生长因子、细胞外基质(ECM)材料、药物、蛋白质或营养物。 
可以通过混合两种以上的聚合物材料来形成水凝胶纤维,例如海藻酸盐和Gtn-HPA的混合物。在形成纤维以后,可以选择性地除去混合纤维中的聚合物材料中的一种,由此提高最终纤维的空隙率。 
为了将细胞固定在管形纤维的腔的内表面上,可以向同样包含细胞的内流体流中加入稀释的固化剂溶液。可以周期性地压缩形成的空心纤维以把细胞封闭在纤维的内壁上。在某些应用中,如果不周期性地压缩纤维,腔中的细胞就不会被封闭并且会被流体冲走。 
根据这里公开的示例形成的管形水凝胶纤维可用于多种应用中。在组织工程中,管形纤维可以用作管形支架,例如用于提供以下功能的重建组织:输尿管、膀胱、尿道、动脉、外周神经、肝脏、肾或肺。 
例如,变窄的冠状动脉会导致冠状动脉血流量度的下降并引起心肌梗塞。这种冠状动脉变窄的可能临床疗法是冠状动脉搭桥术(CABG),其中或者通过患者的内乳动脉或者通过隐静脉以分流阻塞的动脉。负载有合适的细胞的管形纤维可以用于此目的。在单个的挤出过程中可以很方便地制备负载有细胞的纤维。 
聚合物纤维可以应用在人造血管移植、神经导管、肾小管以及三维(3D)细胞培养结构的制备中。可以用细胞种植所述的纤维来形成种植了细胞的水凝胶管形支架和种植了细胞的水凝胶单丝。 
所述聚合物纤维还可以被用作血管构建、神经导管、肾组织、或其他类型的人造组织或支架。 
因为能够在形成复合的纤维层的同时在空心纤维的内表面的层上均匀地包埋细胞,因此该复合纤维可以在形成生物反应器、生物人造器官和水处理滤芯等方面得到应用。 
因为能够通过改变流量来动态地修改纤维的形状,因此该过程可被称作“流体动力法成形”过程,并且挤出过程也可被称作“流体动力法共挤出”。 
实施例 
除非另有说明,实施例中所使用的材料按以下方式获得。 
明胶(8-14kDa)、辣根过氧化物酶和H2O2(31%)分别从WakoTM(大阪,日本)、Tokyo Kasei Kogyo Co.(东京,日本)和MGC Pure ChemicalsTM(新加波)购得。 
4’,6-二脒基-2-苯基吲哚(DAPI)从Invitrogen Corp.(CA,美国)获得。 
ArtisanTM苏木精和曙红(H&E)染色试剂盒从DakoTM(CA,美国)购得。用于普通细胞标记的PKH2绿色荧光细胞连接体试剂盒(PKH2-GL)和用于普通细胞标记的PKH26红色荧光细胞连接体试剂盒(PKH26-GL)从Sigma-AldrichTM(新加坡)获得。 
用于哺乳动物细胞死/活细胞活性/细胞毒性分析试剂盒(包含钙黄绿素和EthD-1)从Invitrogen Corp.(CA,美国)购得。 
使用的所有化学试剂没有经进一步纯化。 
实施例Ⅰ 
如图11A所示意地显示的,使用具有三孔入口部分的喷丝头来形成流体动力法纺丝体系。所述喷丝头的入口部分包括同轴嵌套在夹具孔中的三个圆柱形不锈钢管。在喷丝头的入口部分的法兰中形成了五个孔眼,其中一个孔眼位于中央,四个孔眼位于入口部分的外围。喷丝头具有单个输出孔。流体导管从入口孔眼延伸到出口孔。 
将两根钝尖的针(18G和25G)插进入口孔眼中并延伸到各个钢管之间的空隙中,各个钢管形成三个同心的孔。
夹具使嵌套的钢管保持在适当的位置并将三个同心的孔连接到各自的流动通道。通过每个流动通道的流体的流量使用可程序控制的控制器控制,并且在运行中可以改变。 
出口孔具有1.7mm的内径。 
喷丝头将所述针夹在其位置上,并将三个同心的环形物/孔各自连接到可程序控制的注射泵。连接漏斗同轴地连接到喷丝头的孔上,通过该漏斗来自三个同心孔的液体首先被合并然后被排放到液体浴中。漏斗的直线部分为具有0.78mm的内径和15mm的长度的玻璃毛细管。所述漏斗将入口部分(同心孔)连接到导管部分。 
当不同的溶液被泵入通过三个(内,中间和外)入口(孔)时,低雷诺数的流体在连接漏斗中合并并且形成三层的同轴层流。 
来自于三个同心孔的液体被注入到导管部分,形成的纤维被排放到液体浴中。 
在纺丝过程中,皮层流体通过内孔或外孔或通过两者被注入到聚合导管中。包含水凝胶前体的溶液通过中间孔被注入到导管中。固化剂溶液通过内孔和外孔中的任一个或通过两者被包含在皮层流体中。 
流体输入方案的代表性组合示于图11B、11C和11D中。 
基于喷丝头的尺寸和流量,预测了流动剖面和纤维的尺寸。假定导管的直径为DR,按下式计算层流中的中间管形层的内径(DI)和外径(Do): 
D I = 1 - Q 2 + Q 3 Q 1 + Q 2 + Q 3 × D R - - - ( 1 )
D o = 1 - Q 3 Q 1 + Q 2 + Q 3 × D R - - - ( 2 )
其中,Q1、Q2和Q3各自表示通过入口部分的内孔、中间孔和外孔的输入流量。通过预先设定驱动流体流的注射泵来控制流量。 
与固化剂小分子相比,在多层同轴层流中水凝胶前体的横向扩散的扩展可以忽略不计。另外,交联在不同流动层的界面开始,这进一步降低了水凝胶前体横向扩散进入内层和外层的可能性。 
因此,聚合物管形纤维的直径大约与中间流体层的直径是一致的。 
液体浴使用1×PBS溶液。 
实施例Ⅱ 
使用实施例Ⅰ的喷丝头形成聚合物纤维。使用的聚合物前体包括Gtn-HPA、海藻酸钙和聚砜。使用的交联方法为酶促氧化反应、离子相互作用或相转化。 
通过碳二亚胺/活性酯介导的常规偶联反应(参看下面的实施例Ⅵ)合成Gtn-HPA轭合物。使用H2O2和辣根过氧化物酶(HRP)通过HPA部分的酶促氧化反应使它们发生交联。酚的氧化偶联在酚之间的C-C和C-O位置进行。 
制备了纯Gtn-HPA纤维、种植了细胞的单层纤维以及种植了细胞的两层纤维。对于种植了细胞的样品,在前体溶液中培养细胞。发现在纤维形成过程中没有对细胞造成损害。在这个实施例中,通过改变H2O2和HRP的浓度可以方便地控制水凝胶的刚度和胶凝时间。 
实施例ⅡA(纯Gtn-HPA纤维) 
将Gtn-HPA粉末以12.5mg/ml-50mg/ml的浓度溶解在PBS中。然后将HRP加入到Gtn-HPA溶液中,得到浓度为6.25单位/毫升的HRP。接下来,用去离子(DI)水稀释高浓度的H2O2溶液(31wt%,MGC Pure Chemicals Pte.Ltd.,新加坡)得到H2O2浓度为0.5wt%的稀释的H2O2溶液。 
分别将DI水、Gtn-HPA/HRP溶液和稀释的H2O2溶液装入三个注射泵中,并泵入挤出头的入口孔。根据如何向入口孔提供所述溶液,制备了管形和圆柱形的水凝胶纤维。 
在不改变喷丝头的尺寸的情况下,通过改变输入流量的比值来获得不同直径的管形水凝胶。 
管形和圆柱形纤维样品的典型图像示于图12、13、14和15中。当将Gtn-HPA纤维沉浸在水中时拍摄了图12和14中的光学图像。图13和15显示了样品Gtn-HPA纤维的冷冻切片图像。首先通过组织包埋培养基(Tissue-TekTM)将所述纤维固定,然后通过恒冷切片机(LEICA CM3050S)进行切片。将冷冻切片用苏木精/曙红进行染色。 
图12显示了纯Gtn-HPA水凝胶形成的实心纤维样品的光线图像。如图13所示所述实心纤维是多孔的,其是在冻干并切割纤维样品以后的获得的扫描电镜图像(SEM)。所示的纤维样品是在5μl/min的内水凝胶前体 (Gtn-HPA+HRP)流量、20μl/min的中间H2O2流量和75μl/min的外1×PBS流量条件下形成的。所述的Gtn-HPA实心纤维在DI水中是透明的并大体上具有均匀直径。 
图14显示了纯Gtn-HPA水凝胶形成的空心纤维样品的光学图像。在图像中可以看到所述纤维的腔和壁。所示的纤维样品是在15μl/min的内H2O2流量、35μl/min的中间水凝胶前体(Gtn-HPA+HRP)流量和50μl/min的外DI水流量的条件下形成的。在中间的前体流动中,Gtn-HPA的浓度为25mg/ml,以及HRP的浓度为6.25单位/毫升。所述内H2O2流动包含0.5wt%的H2O2。所述内流动和中间流动是以1×PBS为基础的。从图15中可以看出,纤维样品的截面大体上为环形。 
发现Gtn-HPA水凝胶纤维样品是机械坚固的并具有弹性,可以对20μm直径的纤维样品进行处理而不会发生断裂。 
实施例ⅡB(种植了细胞的纤维) 
对于种植了细胞的单层纤维的共挤出,将分离的Madin-Darby狗肾(MDCK)细胞的悬浮液以105细胞/毫升~107细胞/毫升的浓度与Gtn-HPA/HRP溶液进行均匀混合。在将所述溶液装入注射泵之前将细胞加入到Gtn-HPA/HRP溶液中。也可以通过另外的注射泵在入口部分将所述分离的细胞加入到Gtn-HPA/HRP溶液中。通过这种泵,可以刚好在溶液被送入三孔喷丝头之前将细胞悬浮液注入到到Gtn-HPA/HRP溶液中。 
在该实施例中,成形流体和使用的液体浴为1×PBS或细胞培养基DMEM(Dulbecco’s modified Eagle’s medium)以在等渗条件下保持细胞活力。 
图16、17、18和19显示了种植了细胞的单层Gtn-HPA水凝胶纤维的代表性图像。 
图16和17显示了实心的纤维样品。所述纤维样品是在7.5μl/min的内水凝胶前体(Gtn-HPA+HRP+MDCK细胞)流量、17.5μl/min的中间H2O2流量和75μl/min的外1×PBS流量的条件下形成的。在将所述前体溶液装入注射泵之前,将MDCK细胞悬浮液加入到Gtn-HPA+HRP溶液中并与其均匀混合。光学显微图像(图16)和冷冻切片图像(图17)显示了MDCK细胞在水凝胶纤维中是均匀分布的。 
图18和19显示管形纤维样品。除了加入浓度为106细胞/毫升的MDCK细胞以外,使用的流体与图12、13、14和15中所示的样品使用的流体相似。 通过用DAPI染色样品得到图17和19的冷冻切片图像。这些纤维样品是通过变换以上所述的内流动和中间流动获得的。特别地,这些空心纤维样品是在2.5μl/min的内H2O2流量、7.5μl/min的中间水凝胶前体(Gtn-HPA+HRP+MDCK细胞)流量和90μl/min的外1×PBS流量的条件下形成的。通过生物组织学来辨别纤维样品中不同的层。 
实施例ⅡC(种植了细胞的两层纤维) 
对于种植了细胞的两层纤维的挤出,将高浓度的H2O2溶液以0.01wt%-0.25wt%的浓度直接加入到部分Gtn-HPA溶液(没有首先用DI水稀释)中。因为MDCK细胞只有在低于大约0.25wt%的H2O2中才能耐受更长一段时间,因此要降低H2O2浓度。将含有H2O2的Gtn-HPA溶液供给入口部分的内孔。将在实施例ⅡB中制备的含有HPR的Gtn-HPA溶液供给中间孔。当将所述两种溶液注入喷丝头的导管中时,因为H2O2和HRP都横向扩散到其他层,因此在两个层流层之间的界面区域发生Gtn-HPA水凝胶的交联。 
根据要把细胞种植在哪个层中,可以将细胞颗粒分散到内Gtn-HPA流动,或者分散到中间的Gtn-HPA流动,或者分散到两者中。 
形成了具有种植了细胞的两层水凝胶纤维。用光学图像和冷冻切片图像证实了纤维样品的双层结构。象在内Gtn-HPA流动中的前体聚合物一样,这些圆柱形(实心)纤维样品也在纺丝过程中发生交联。 
在同样的水凝胶纤维中还固定了MDCK细胞和人微血管内皮(HME)细胞,HME细胞排列在外围以及MDCK细胞占据核心。这些纤维样品是在15μl/min的内水凝胶前体(Gtn-HPA+H2O2+MDCK细胞)流量、12.5μl/min的中间水凝胶前体(Gtn-HPA+HRP+HME细胞)流量和72.5μl/min的外1×PBS皮层流量的条件下形成的。在这种情况下,含有Gtn-HPA+H2O2+MDCK细胞的溶液取代了在空心纤维挤出的先前实施例中的1×PBS稀释的H2O2溶液的功能。当与来自中间孔的含有Gtn-HPA+HRP+HME细胞的溶液合并时,通过H2O2和HRP的横向扩散在流动界面发生了双层Gtn-HPA水凝胶纤维的交联。 
在某些实验中,为了区别不同类型的细胞,分别用荧光细胞连接体(PKH2-GL和RKH26-GL)标记HME细胞和MDCK细胞,其中荧光细胞连接体将报道分子引入到细胞膜上。观察到了这些标记的细胞保持了它们的生物和增殖活性。因此,很容易进行细胞跟踪。 
实施例Ⅲ 
为了评价细胞活力,将种植了细胞的水凝胶纤维样品在DMEM中培养。经过四天的培养以后,发现在纤维的表面形成了单层的MDCK细胞。纤维内的细胞也长大了。在水凝胶纤维中(或在其表面)的细胞的形态不仅取决于水凝胶的组成,还取决于所涉及的细胞的类型。在纤维的表面还观察了其他类型的种植的细胞的附着和生长。 
还在纯Gtn-HPA实心纤维样品的腔中培养细胞。实验用纤维样品的腔的直径小于大约100μm。观察到了在腔中的细胞生长。 
为了评价固定过程对细胞活力的影响,从液体浴中收集种植了细胞的水凝胶纤维样品并将其分成两部分。将一部分用活/死分析进行分析,而将另一部分在细胞培养基中进行培养。包埋在Gtn-HPA空心纤维的基质中的细胞的活/死分析显示在原位交联过程中大于95%的细胞存活下来。这证实了Gtn-HPA水凝胶的酶促交联是温和的化学反应并且没有细胞毒性。 
发现在单层的Gtn-HPA纤维中MDCK细胞增殖良好,经过4天的培养以后在水凝胶的表面形成了单层。种植了NIH/3T3的单层Gtn-HPA纤维在DMEM中经过10天的培养以后,观察到了相似的结果。对于种植了HME细胞和人近端肾小管(HPT)细胞的空心Gtn-HPA纤维,经过8天分别在上皮生长培养基(EGM)和补加有0.5%(v/v)的青霉素/链霉素(100单位/毫升)的肾上皮生长培养基(REGM)中培养以后,也观察到了细胞的增殖和单层的形成。 
在水凝胶纤维中(或在其表面)的细胞的形态取决于所固定的细胞的类型。发现在这些体系中在明胶中RGD序列的存在以及水凝胶的空隙率能够促进哺乳动物细胞的附着和增殖。 
实施例Ⅳ海藻酸盐和海藻酸盐/Gtn-HPA纤维 
使用实施例Ⅰ的装置制备纯海藻酸盐空心纤维和混合的海藻酸盐/Gtn-HPA实心纤维。对于纯海藻酸盐空心纤维的挤出,使用粉末形式的海藻酸钠(海藻酸,钠盐,Sigma-AldrichTM,新加坡)。将不同重量百分数的海藻酸盐溶解在两种不同的培养基(DI水和DMEM)中。通过加压灭菌(在121℃进行20分钟)或者通过γ辐射实现海藻酸盐杀菌。在装入注射泵之前,将海藻酸盐溶液过滤以除去随时间形成的黄色沉淀。使用氯化钙(CaCl2)作为海藻酸盐的胶凝剂。制备不同浓度的CaCl2(50mM,100mM和200mM)的DI水溶液。 
为了纺丝形成海藻酸盐/Gtn-HPA纤维混合实心纤维,首先将上述的海藻酸盐溶液与Gtn-HPA/HRP溶液混合。单独地,用CaCl2溶液稀释H2O2溶液。然后,将所述两种溶液各自装入注射泵中,并泵入三孔喷丝头。 
通过显微图像证实了制备的纤维的空心结构。 
实施例Ⅴ聚砜/Gtn-HPA/细胞纤维(复合空心纤维) 
使用实施例Ⅰ的装置制备聚砜空心纤维,其内表面覆盖负载了细胞的Gtn-HPA水凝胶。首先,将聚砜(Sigma-Aldrich,新加坡)以5wt%~20wt%的浓度溶解在N-甲基-2-吡咯烷酮(NMP)(Sigma-Aldrich,新加坡)。然后将该聚砜溶液装入到连接在喷丝头的外孔的注射泵中。接下来,将分离的人近端肾小管细胞(HPTC)颗粒的悬浮液以105细胞/毫升~107细胞/毫升的浓度与Gtn-HPA/HRP溶液进行均匀混合。将Gtn-HPA/HRP/细胞的混合物装入到连接在喷丝头的中间孔的第二个注射泵中。将稀释的H2O2溶液装入到连接在喷丝头的内孔的第三个注射泵中。与先前的实施例不同,本实施例中形成的纤维在到达液体浴(1×PBS)之前是暴露在空气中。立即清洗形成的复合纤维并将其浸泡在大量的1×PBS溶液中以除去纤维中残留的NMP溶剂。将其切成合适的长度以后,将清洗后的复合聚砜纤维在REGM中进行培养。经过10天培养后,观察到HPTC细胞完全附着到纤维的表面。 
实施例ⅥGtn-HPA轭合物的合成 
如图20所示,通过碳二亚胺/活性酯介导的常规偶联反应来合成Gtn-HPA轭合物。 
将3,4-HPA(3.32g,20mmol)、N-羟基丁二酰亚胺(NHS;3.2g,27.8mmol)和1-乙基-3-(3-二甲氨基丙基)碳二亚胺(EDC;3.82g,20mmol)溶解在250ml水和二甲基甲酰胺(3∶2体积混合物)中。在室温和4.7的pH下进行反应5小时。反应完成后,向反应混合物中加入溶于150ml水中的10g明胶,在室温和4.7的pH下搅拌过夜。然后依次用100mM的NaCl溶液、25%乙醇和水对反应混合物各自深度透析一天,并冻干。通过常规的2,4,6-三硝基苯磺酸(TNBS)方法测定由HPA引入的明胶的氨基的百分数(即,共轭度)为90%。产物为7.0g。 
如图21所示,使用HPR和H2O2通过HPA部分的酶促氧化反应交联Gtn-HPA轭合物。 
实施例Ⅶ水凝胶纤维的表征 
使用装配有DP70数字彩色相机的倒置式奥林巴斯IX71光学显微镜来研究引入了或未引入细胞的水凝胶纤维的表面形态和冷冻切片。 
还使用这种倒置式显微镜体系完成了双层实心纤维的荧光图像以及固定的细胞的活/死分析。 
还使用加速电压为8.0kV和工作距离为8.0mm的场发射SEM(JEOLJSM-7400F)表征了纯Gtn-HPA水凝胶纤维的形态。在将纤维装入SEM室进行成像之前,首先将纯水凝胶纤维的样品在足够的去离子(DI)水中冲洗以除去PBS残留物,接着在-80℃下在35-mm的陪替氏培养皿(petri dish)中冷冻12小时。接下来,将冷冻的样品在冻干机(Labconco Freezone 12L)中脱水24小时。为了揭示水凝胶纤维中的多孔结构,在液氮中将干燥的样品折断为短的片段。然后使用导电胶带将这些片段固定在载物台上,并用铂溅射-涂布80秒。 
通过冷冻切片和DAPI染色来检查水凝胶纤维中的细胞分布。将水凝胶纤维切成短的片段,并在80℃下用组织包埋培养基Tissue-TekTM(SakuraFinetek,日本)固定12小时。然后通过恒冷切片机(LEICA CM3050S)将冷冻的纤维片断切成每个厚度为10μm,并转移到显微玻璃载玻片上用于DAPI染色。将在显微玻璃载玻片上的切割的样品用1×PBS溶液洗涤一次,并在室温下用70%乙醇固定细胞20分钟。在应用了PBS缓冲的DAPI溶液(10μg/ml)以后,将样品在室温下放置大约15分钟,并用1×PBS溶液洗涤。使用倒置式荧光显微镜(奥林巴斯IX71)在350nm的激发波长下观测细胞形态。 
本领域的技术人员可以通过本说明书以及附图理解上述没有明确提及的本发明的其它特征、利益及优势。 
虽然以上仅描述了本发明的示例性实施方式,但是本领域技术人员会很容易地理解,在不偏离本发明的新颖性教导和优点的情况下,对本发明进行各种修改都是可能的。 
正如权利要求所限定的,本发明包括在其范围内的所有这些修改。 

Claims (26)

1.一种通过流体动力法纺丝来形成聚合物纤维的方法,其包括:
迫使多路流体流经导管以形成三层或以上的同轴流层,并通过调节所述多路流体流经导管的流量来控制所述同轴流层的管形中间层的截面,所述中间层包含可交联的聚合物前体,其他所述流层包含交联剂;
其中,通过选择所述聚合物前体、所述交联剂和所述流体以基本上防止所述聚合物前体从所述中间层中扩散出去,但允许部分交联剂从所述其他流层扩散到所述中间层中以使所述聚合物前体在所述中间层内交联从而形成聚合物纤维中的管形聚合物层,所述管形聚合物层与所述中间层具有大体上对应的截面。
2.根据权利要求1所述的方法,其包括调节所述多路流体的流量来改变所述管形中间层的截面。
3.根据权利要求2所述的方法,其中,所述调节包括在所述迫使流体流经导管的过程中调节所述流量。
4.根据权利要求2所述的方法,其中,所述调节流量包括调节所述流量的比值。
5.根据权利要求1所述的方法,其中,所述其他流层包括管形外层。
6.根据权利要求1所述的方法,其中,所述其他流层包括内层,并且所述聚合物纤维是管形的。
7.根据权利要求6所述的方法,其中,所述聚合物纤维具有大约20μm或更大的内径和大约60μm或更大的外径。
8.根据权利要求1所述的方法,其中,所述流层的大体上圆柱形的内层包含所述的聚合物前体,并且所述聚合物纤维大体上为圆柱形。
9.根据权利要求8所述的方法,其中,所述圆柱形聚合物纤维具有大约20μm或更大的直径。
10.根据权利要求1所述的方法,其中,所述中间层包括多个中间层,并且所述聚合物纤维包含多个聚合物层。
11.根据权利要求1所述的方法,其中,所述交联剂包括固化剂,并且所述聚合物层包含通过用固化剂交联所述聚合物前体形成的聚合物。
12.根据权利要求1所述的方法,其中,所述交联剂包括交联引发剂。
13.根据权利要求1所述的方法,其中,所述交联剂包括交联催化剂。
14.根据权利要求1所述的方法,其包括固化所述聚合物纤维。
15.根据权利要求1所述的方法,其包括在所述聚合物纤维被排出所述导管以后,将所述聚合物纤维沉浸在液体浴中。
16.根据权利要求1所述的方法,其包括将细胞散布在所述流层中以使所述聚合物纤维的纤维壁包含该细胞。
17.根据权利要求16所述的方法,其包括将细胞散布在多个所述流层中以使所述聚合物纤维的多个层包含细胞。
18.根据权利要求17所述的方法,其中,在所述流层中分散所述细胞以使所述聚合物纤维的不同层包含不同类型的细胞。
19.根据权利要求17所述的方法,其中,在所述流层中散布所述细胞以使所述聚合物纤维的不同层包含不同浓度的细胞。
20.根据权利要求1所述的方法,其中,所述多路流体中的一路或多路包含细胞培养基。
21.根据权利要求1所述的方法,其中,所述多路流体中的一路或多路包含磷酸盐缓冲盐水。
22.根据权利要求1所述的方法,其中,所述聚合物前体包括明胶-羟基苯基丙酸、海藻酸钙、纤维蛋白原或聚砜。
23.根据权利要求1所述的方法,其中,所述交联剂包括过氧化氢、氯化钙或凝血酶。
24.根据权利要求23所述的方法,其中,所述中间层包含辣根过氧化物酶。
25.根据权利要求1所述的方法,其包括在所述中间层引发所述交联反应。
26.根据权利要求1-25中任一项所述的方法,其中,所述聚合物是水凝胶。
CN200980115470.XA 2008-02-29 2009-03-02 用流体动力法在同轴层流中形成聚合物(水凝胶)纤维 Expired - Fee Related CN102016137B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US6436908P 2008-02-29 2008-02-29
US61/064,369 2008-02-29
PCT/SG2009/000078 WO2009108138A1 (en) 2008-02-29 2009-03-02 Hydrodynamic spinning of polymer fiber in coaxial laminar flows

Publications (2)

Publication Number Publication Date
CN102016137A CN102016137A (zh) 2011-04-13
CN102016137B true CN102016137B (zh) 2012-11-14

Family

ID=41016359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980115470.XA Expired - Fee Related CN102016137B (zh) 2008-02-29 2009-03-02 用流体动力法在同轴层流中形成聚合物(水凝胶)纤维

Country Status (6)

Country Link
US (1) US8834780B2 (zh)
EP (1) EP2255030A4 (zh)
JP (1) JP2011514453A (zh)
CN (1) CN102016137B (zh)
SG (1) SG188832A1 (zh)
WO (1) WO2009108138A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510268A (ja) * 2008-12-02 2012-05-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 同軸上にカプセル化された細胞分散物及びマイクロ組織
US20130202672A1 (en) * 2010-02-19 2013-08-08 Singapore Agency For Science, Technology And Research Act Fiber-assembled tissue constructs
US9352283B2 (en) 2010-10-25 2016-05-31 Agency For Science, Technology And Research Tubular fiber membrane with nanoporous skin
DE102010055731A1 (de) * 2010-12-22 2012-06-28 Fresenius Medical Care Deutschland Gmbh Delaminationsfreie Membran
KR101907924B1 (ko) 2010-12-22 2018-10-15 프레제니우스 메디칼 케어 도이칠란드 게엠베하 층간박리가 없는 멤브레인
US8822824B2 (en) 2011-04-12 2014-09-02 Prestolite Wire Llc Methods of manufacturing wire, multi-layer wire pre-products and wires
US20120261160A1 (en) 2011-04-13 2012-10-18 Prestolite Wire Llc Methods of manufacturing wire, wire pre-products and wires
CN102505184B (zh) * 2011-10-20 2014-04-09 清华大学 一种组织工程纤维束结构体及其制备方法
US20160023392A1 (en) * 2012-02-13 2016-01-28 The University Of Akron Methods and apparatus for the production of multi-component fibers
US10544036B2 (en) * 2013-04-30 2020-01-28 The Governing Council Of The University Of Toronto Microfluidic devices and methods for the extrusion of tubular structures
EP3007882B1 (en) 2013-06-13 2019-11-20 Aspect Biosystems Ltd. System for additive manufacturing of three-dimensional structures and method for same
WO2015153370A2 (en) 2014-03-29 2015-10-08 Labib Mohamed E Blood processing cartridges and systems, and methods for extracorporeal blood therapies
DE102014209601A1 (de) * 2014-05-20 2015-11-26 Itv Denkendorf Produktservice Gmbh Kern-Mantel-Faden, Herstellungsverfahren für einen Kern-Mantel-Faden, medizinisches Produkt sowie medizinisches Kit
CN104383604B (zh) * 2014-10-29 2017-03-15 上海大学 一种血管化生命结构体一站式制备方法
JP6646298B2 (ja) * 2014-12-16 2020-02-14 国立大学法人 東京大学 ロープ状構造体の製造方法
WO2016172707A1 (en) * 2015-04-24 2016-10-27 The Board Of Trustees Of The University Of Illinois Methods of extruding multilayer fibers
US10426884B2 (en) 2015-06-26 2019-10-01 Novaflux Inc. Cartridges and systems for outside-in flow in membrane-based therapies
WO2017053805A1 (en) 2015-09-24 2017-03-30 Labib Mohamed E Cartridges for hollow fibre membrane-based therapies
DE102016102494A1 (de) * 2016-02-12 2017-08-17 Poromembrane Gmbh Filamentherstellvorrichtung
CN106400136B (zh) * 2016-11-25 2019-03-22 上海理工大学 一种芯鞘纳米纤维的三级同轴电纺制备方法及装置
US11724450B2 (en) 2017-03-15 2023-08-15 Aspect Biosystems Ltd. Systems and methods for printing a fiber structure
EP3385413A1 (en) 2017-04-07 2018-10-10 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Microfluidic processing of polymeric fibres
JP7132566B2 (ja) * 2017-09-04 2022-09-07 学校法人早稲田大学 チキソトロピー性を有するゲルを用いる多層3次元細胞培養足場システム
WO2021016597A1 (en) * 2019-07-24 2021-01-28 Shastri Parshuram Nirajan Mineral supplement including microbes to promote growth in agriculture
CN112853510B (zh) * 2019-11-28 2022-05-10 中国科学院大连化学物理研究所 一种基于微流控技术的内凹槽微丝的可控制备方法
CN113230461B (zh) * 2021-05-06 2022-02-15 东华大学 一种微纳米纤维-水凝胶组织工程输尿管及其制备方法
CN114983622A (zh) * 2022-06-01 2022-09-02 奥精医疗科技股份有限公司 一种神经导管的制备方法及神经导管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101068958A (zh) * 2004-08-17 2007-11-07 摩赛科系统公司 功能性多孔多层纤维及其制备
CN201024238Y (zh) * 2007-04-25 2008-02-20 广州美能材料科技有限公司 导管式中空纤维膜喷丝头

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2380052A1 (fr) * 1977-02-11 1978-09-08 Akzo Nv Membrane de dialyse pour l'hemodialyse
CA1340581C (en) * 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
JPH01221506A (ja) 1988-02-29 1989-09-05 Toa Nenryo Kogyo Kk 繊維状成形物
US5480598A (en) * 1991-05-21 1996-01-02 Brown Univ. Research Foundation Process of and apparatus for making hollow fibers
NL9102151A (nl) * 1991-12-20 1993-07-16 Delair Droogtech & Lucht Het spinnen van asymmetrische holle vezelmembranen met een dichte, niet-poreuze toplaag en een poreuze onderlaag, resp. met zowel een poreuze toplaag als een poreuze onderlaag.
JPH0938473A (ja) 1995-08-02 1997-02-10 Mitsubishi Rayon Co Ltd ポリスルホン系多孔質中空糸膜の製造方法
US6347930B1 (en) * 1997-09-11 2002-02-19 Hospal R & D Int. Device and method for manufacturing a segmented tubular capsule containing a biologically active medium
US7033603B2 (en) * 1999-08-06 2006-04-25 Board Of Regents The University Of Texas Drug releasing biodegradable fiber for delivery of therapeutics
US6705850B1 (en) 2000-03-06 2004-03-16 Tei Biosciences, Inc. Apparatus for biopolymer coagulation in a uniform flow
US20050069572A1 (en) 2002-10-09 2005-03-31 Jennifer Elisseeff Multi-layered polymerizing hydrogels for tissue regeneration
GB0304515D0 (en) * 2003-02-27 2003-04-02 Dakocytomation Denmark As Standard
ATE513071T1 (de) * 2005-07-08 2011-07-15 Univ Bath Anorganische poröse hohlfasern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101068958A (zh) * 2004-08-17 2007-11-07 摩赛科系统公司 功能性多孔多层纤维及其制备
CN201024238Y (zh) * 2007-04-25 2008-02-20 广州美能材料科技有限公司 导管式中空纤维膜喷丝头

Also Published As

Publication number Publication date
US8834780B2 (en) 2014-09-16
WO2009108138A1 (en) 2009-09-03
SG188832A1 (en) 2013-04-30
JP2011514453A (ja) 2011-05-06
US20110006453A1 (en) 2011-01-13
EP2255030A4 (en) 2011-04-13
CN102016137A (zh) 2011-04-13
EP2255030A1 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
CN102016137B (zh) 用流体动力法在同轴层流中形成聚合物(水凝胶)纤维
US9115340B2 (en) Microfluidic continuous flow device
Hu et al. Cell immobilization in gelatin–hydroxyphenylpropionic acid hydrogel fibers
US9242027B2 (en) Fabrication of a vascular system using sacrificial structures
CN102946915B (zh) 用于医疗移植物的细胞接种的方法、基底和系统
CN102688525B (zh) 一种生物大分子水凝胶及其制备方法
CN1378445B (zh) 药物释放生物可降解纤维植入物
CN102505184B (zh) 一种组织工程纤维束结构体及其制备方法
CN106714854A (zh) 用于生物医学应用的可控的自退火微凝胶颗粒
DE602004008453T2 (de) Künstliches immunorgan
CN101312756A (zh) 神经导管
WO2020032221A1 (ja) アルギン酸中空マイクロファイバ
CN112972760B (zh) 一种负载内皮细胞外基质的3d打印骨缺损修复支架及其制备方法
Zhou et al. 3D-bioprinted vascular scaffold with tunable mechanical properties for simulating and promoting neo-vascularization
CN107205809A (zh) 用于神经束再生的生物混合物
JP2021531003A (ja) スタック式再循環バイオリアクタ
Gao et al. Strategies for vascularized skin models in vitro
JP5939558B2 (ja) 非球形ハイドロゲル粒子の合成法及び非球形ハイドロゲル粒子
CN105802251B (zh) 一种自组装胶原模板组织工程材料及其制备方法与应用
Zhu et al. ECM-inspired peptide dendrimer microgels with human MSCs encapsulation for systemic lupus erythematosus treatment
Jocic et al. Fabrication of user-friendly and biomimetic 1, 1′-carbonyldiimidazole cross-linked gelatin/agar microfluidic devices
Zhong et al. A facile approach for engineering tissue constructs with vessel-like channels by cell-laden hydrogel fibers
CN113025570A (zh) 一种t细胞增殖方法及其用途
JP2017217323A (ja) 毛細血管網様の微小流路を有する微小流路構造体の製造方法
US20230374446A1 (en) Devices and methods of producing tubular systems for cell culture

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121114

Termination date: 20170302

CF01 Termination of patent right due to non-payment of annual fee