CN102005303B - SiO2修饰的ZnO纳米多孔薄膜复合电极的制备方法 - Google Patents

SiO2修饰的ZnO纳米多孔薄膜复合电极的制备方法 Download PDF

Info

Publication number
CN102005303B
CN102005303B CN 201010575239 CN201010575239A CN102005303B CN 102005303 B CN102005303 B CN 102005303B CN 201010575239 CN201010575239 CN 201010575239 CN 201010575239 A CN201010575239 A CN 201010575239A CN 102005303 B CN102005303 B CN 102005303B
Authority
CN
China
Prior art keywords
zno nano
zno
combination electrode
thin film
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010575239
Other languages
English (en)
Other versions
CN102005303A (zh
Inventor
张跃
秦子
黄运华
廖庆亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN 201010575239 priority Critical patent/CN102005303B/zh
Publication of CN102005303A publication Critical patent/CN102005303A/zh
Application granted granted Critical
Publication of CN102005303B publication Critical patent/CN102005303B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

本发明属于纳米材料技术领域,涉及一种SiO2修饰的ZnO纳米多孔薄膜复合电极的制备方法。其特征在于:利用ZnO纳米颗粒多孔薄膜作为复合电极基础层;通过选取旋转涂覆氧化硅溶胶保护层来提高氧化锌纳米颗粒多孔薄膜电极在酸性染料中的耐腐蚀性能,用于染料敏化太阳能电池的稳定性。本发明通过对溶胶涂覆层数、烧结次数、浓度的调整可合理控制氧化硅薄膜涂层的厚度,获得耐腐蚀能力强且性能优异的复合电极。本发明可针对不同的敏化条件调整工艺参数来获得在敏化过程中耐酸性强、电极性能最优的SiO2-ZnO纳米颗粒多孔薄膜复合电极。其生产工艺具有效率高、成本低、适合于未来大规模生产等许多优点。

Description

SiO2修饰的ZnO纳米多孔薄膜复合电极的制备方法
技术领域
本发明属于纳米材料技术领域,特别是提供了一种采用氧化硅修饰层来防止氧化锌纳米颗粒多孔薄膜电极在进行染料敏化过程中被腐蚀损伤的方法,涉及一种染料敏化太阳能电池复合电阳极的制备方法。
背景技术
开发廉价、清洁、环境友好和可再生的新能源已经成为当前研究领域的一个热点。太阳能是资源最丰富的可再生能源,作为一种可永续利用的清洁能源,有着巨大的开发应用潜力。目前,硅太阳能电池已广泛用于航天、通讯、交通等领域。尽管该种电池的转化效率高,但其制造工艺复杂、材料要求苛刻而且价格昂贵。而染料敏化太阳能电池以其较高的转换率、成本低、制作工艺简单等优点,成为了近年来研究的一大热门领域。ZnO具有合适的禁带宽度、大的比表面积对光腐蚀稳定性以及良好的电子传输性,而被应用作为太能染料敏化电池的光阳极材料。尽管目前基于ZnO纳米材料的染料敏化太阳能电池的转化效率仍低于基于TiO2颗粒的太能电池。但是ZnO中电子的迁移率高,可减少电子在传播过程中的损失,有极大提高电池光能量转化效率的潜能。同时,ZnO纳米材料的制备方法简单多样,可通过控合成反应获得大面积、形貌多样的ZnO纳米结构(如:纳米颗粒、棒、线、阵列、四针、带、环、梳等)。这形貌结构不仅有利于对光阳极的结构进行优化,并且有望进一步降低电池成本。(Z.Qin,Q.L.Liao,Y.H.Huang,L.D.Tang,X.H.Zhang,Y.Zhang,Mater.Chem.Phys.123(2010)811;N.Ye,J.J.Qi,Z.Qi,X.M.Zhang,Y.Yang,J.Liu,Y.Zhang,J.Power Sources 195(2010)5806)
目前,对基于ZnO纳米颗粒薄膜的染料敏化太阳能电池来说,其转化效率依然低于TiO2纳米晶染料敏化太阳能电池。其主要的制约因素在于染料的能级与ZnO材料的能级匹配情况以及它们之间的吸附结合能力。目前商业化使用的染料大多为钌的多吡啶有机金属配合物(如:N3、N719等),是性能优越的一类光敏化染料。然而,这类的染料在溶液中成酸性,不仅会对ZnO纳米材料的表面造成腐蚀损伤和颗粒团聚。在团聚过程中会产生大量的Zn2+/dye配合物,它们严重阻碍电子的注入效率。因此,基于ZnO纳米颗粒多孔薄膜电极的染料敏化太阳能电池的转化效率的继续提高受到了一定的限制。(M.Law,L.E.Greene,A.Radenovic,T.Kuykendall,J.Liphardt,P.D.Yang,J.Phys.Chem.B 110(2006)22652;S.H.Kang,J.Y.Kim,Y.Kim,H.S.Kim,Y.E.Sung,J.Phys.Chem.C 111(2007)9614;X.J.Wang,M.K.Lei,T.Yang,L.J.Yuan,J.Mater.Res.18(2003)2401.)。
发明内容
本发明目的在于提供一种采用氧化硅修饰层来提高氧化锌纳米颗粒多孔薄膜电极在染料浸泡中抗腐蚀损伤能力的方法,制备出一种适用于染料敏化太阳能电池高稳定性的SiO2-ZnO纳米颗粒多孔薄膜复合电极。该方法制备的复合电极抗染料腐蚀性强,且其生产工艺具有效率高、成本低、适合于未来大规模生产等许多优点。
本发明提出了一种在染料敏化过程中耐腐蚀性强SiO2-ZnO纳米颗粒多孔薄膜复合电极的制备方法。采用刮涂法方法在导电基底上制备了多孔的ZnO纳米颗粒薄膜;利用旋转涂覆法在ZnO纳米颗粒薄膜表面复合一层SiO2薄膜。可针对不同的敏化条件调整工艺参数来获得在敏化过程中耐酸性强、电极性能优良的SiO2-ZnO纳米颗粒多孔薄膜复合电极。具体工艺步骤如下:
1.将ZnO粉末充分研磨30分钟至1小时后,选择在400~600摄氏度下热处理半小时以上,最后自然冷却至室温。
2.将步骤1所述处理过的ZnO粉末与乙基纤维素、松油醇以2∶1∶8~1∶1∶5的质量比混合于无水乙醇中制备成浆料。在超声波震荡器中搅拌分散处理0.5~1小时。随后放在加热炉上加热,并不断搅拌20~30分钟,直至形成粘度适当的稠状ZnO纳米浆料。
3.将ZnO纳米浆料在导电基底上均匀铺展,静置均化15分钟,然后在400~800℃下煅烧0.5~1小时,即可获得ZnO纳米颗粒多孔薄膜电极。可以选择重复本步操作多次,可得到所需厚度的ZnO纳米颗粒多孔薄膜电极。
4.将氧化硅水溶胶中的氧化硅含量调节在10~26wt%的范围,超声处理15分钟后,获得粘稠度适当的胶状溶液。取0.1毫升的经超声处理后的胶状溶液滴于已制得的ZnO纳米颗粒多孔薄膜表面。将旋转速度设置为低速1000转/分、高速3000转/分。静置10分钟后,分别在低速档旋转5~10秒,在高速档旋转10~20秒,便可获得均匀的胶体涂层电极。根据不同敏化条件的参数要求,可选择多次涂覆。
6.将步骤4所述旋涂好的电极放入箱式炉中,在400~800℃区间热处理0.5~1小时,可制得SiO2-ZnO纳米颗粒多孔薄膜复合电极。
与现有技术相比,本发明所制备的基于ZnO纳米颗粒的染料敏化太阳能电池电极的制备方法有以下优点:
1.旋涂法制备的SiO2保护层,提高了ZnO纳米颗粒多孔薄膜电极在酸性染料中浸泡时的抗酸腐蚀性,有效抑制了ZnO颗粒之间的团聚及影响电子注入效率的Zn2+/dye配合物的产生。
2.采用旋涂溶胶法工艺简单,可获得表面均匀的SiO2薄膜涂层。
3.通过对溶胶涂覆层数、烧结次数、浓度的调整可合理控制SiO2薄膜涂层的厚度,获得耐腐蚀能力强且性能优异的复合电极。
4.利用该SiO2-ZnO纳米颗粒多孔薄膜复合电极组装的染料敏化太阳能电池的敏化性能得到了提高。
附图说明
图1为本发明采用刮涂法制备的ZnO纳米颗粒多孔薄膜表面形貌扫描电镜照片。所得薄膜孔隙多、颗粒大小均匀。
图2为本发明采用旋转涂覆法制备的SiO2修饰的ZnO纳米颗粒多孔薄膜复合电极侧面形貌电镜照片。
图3为本发明制备的SiO2修饰的ZnO纳米颗粒多孔薄膜复合电极的EDS能谱分析。
图4为本发明利用制备的SiO2-ZnO纳米棒阵列复合电极在经过不同敏化时间后的电池性能曲线。该性能曲线说明了本发明获得的复合电极具有着非常优异的耐腐蚀损伤性能。
具体实施方式
下面结合实例对本发明的技术方案进行进一步说明:
实例1
1.将ZnO粉末充分研磨45分钟,然后在500摄氏度下热处理45分钟,最后自然冷却至室温。
2.将上述处理过的ZnO粉末(4g)、松油醇(18mL)、乙基纤维素(2.0g)、酒精(50mL)混合制备成浆料。先超声波震荡搅拌处理30分钟。随后放在加热炉上加热,并不断搅拌20~30分钟,直至形成粘稠状浆料。
3.将ZnO纳米浆料均匀涂覆在FTO导电玻璃上,干燥后在450℃的箱式炉中烧结1小时,自然冷却后取出,即可得到厚度约为10微米的ZnO纳米颗粒多孔薄膜电极。
4.取浓度约为11~13wt%的氧化硅溶胶,超声处理15分钟后,获得粘稠度适当的胶状溶液。用滴管吸取上述氧化铝溶胶分别滴于已制得的ZnO纳米颗粒多孔薄膜电极表面。随后在1000转/分的低速档旋转10秒,在3000转/分高速档旋转15秒。可在ZnO纳米颗粒多孔薄膜上获得表面均一的胶体层的复合电极。
5.将上述旋涂好的复合电极放入箱式炉中,在500℃下退火处理45分钟,冷却后即获得SiO2-ZnO纳米颗粒多孔薄膜复合电极。
实例2
1.将ZnO粉末充分研磨50分钟,然后在450摄氏度下热处理30分钟,最后自然冷却至室温。
2.将上述处理过的ZnO粉末(2g)、松油醇(9mL)、乙基纤维素(1.0g)、酒精(50mL)混合制备成浆料。先超声波震荡搅拌处理30分钟。随后放在加热炉上加热,并不断搅拌20~30分钟,直至形成粘稠状浆料。
3.将ZnO纳米浆料均匀涂覆在铝片上,干燥后在450℃的箱式炉中烧结1小时,自然冷却后取出,即可得到厚度约为10微米的ZnO纳米颗粒多孔薄膜电极。
4.取浓度约为11~13wt%的氧化硅溶胶,超声处理15分钟后,获得粘稠度适当的胶状溶液。用滴管吸取上述氧化铝溶胶分别滴于已制得的ZnO纳米颗粒多孔薄膜电极表面。随后在1000转/分的低速档旋转10秒,在3000转/分高速档旋转15秒。可在ZnO纳米颗粒多孔薄膜上获得表面均一的胶体层的复合电极。
5.将上述旋涂好的复合电极放入箱式炉中,在500℃下退火处理45分钟,冷却后即获得SiO2-ZnO纳米颗粒多孔薄膜复合电极。
实例3
1.将ZnO粉末充分研磨40分钟,然后在450摄氏度下热处理30分钟,最后自然冷却至室温。
2.将上述处理过的ZnO粉末(2g)、松油醇(9mL)、乙基纤维素(1.5g)、酒精(100mL)混合制备成浆料。先超声波震荡搅拌处理30分钟。随后放在加热炉上加热,并不断搅拌20~30分钟,直至形成粘稠状浆料。
3.将ZnO纳米浆料均匀涂覆在不锈钢片上,干燥后在450℃的箱式炉中烧结1小时,自然冷却后取出。重复涂覆2次,即可得到厚度约为30微米的ZnO纳米颗粒多孔薄膜电极。
4.取浓度约为11~13wt%的氧化硅溶胶,超声处理15分钟后,获得粘稠度适当的胶状溶液。用滴管吸取上述氧化铝溶胶分别滴于已制得的ZnO纳米颗粒多孔薄膜电极表面。随后在1000转/分的低速档旋转10秒,在3000转/分高速档旋转15秒。可在ZnO纳米颗粒多孔薄膜上获得表面均一的胶体层的复合电极。
5.将上述旋涂好的复合电极放入箱式炉中,在600℃下退火处理45分钟,冷却后即获得SiO2-ZnO纳米颗粒多孔薄膜复合电极。

Claims (4)

1.一种SiO2修饰的ZnO纳米多孔薄膜复合电极的制备方法,其特征在于,制备工艺步骤为:
a.将ZnO粉末充分研磨后,放入加热炉中,在400~600摄氏度下处理0.5~1小时;
b.将上述处理过的ZnO粉末与乙基纤维素、松油醇以2∶1∶8~1∶1∶5的质量比混合溶于无水乙醇中制备成ZnO初级浆料;
c.将ZnO初级浆料在导电基底上均匀铺展,静置均化15分钟,然后在400~800℃下煅烧0.5~1小时,即可获得ZnO纳米颗粒多孔薄膜电极;
d.吸取氧化硅溶胶滴于上述制得的ZnO纳米颗粒多孔薄膜表面,静置10秒钟后旋转涂覆,直到获得所需的均匀涂层的参数要求的复合电极;
e.将上述旋涂好的复合电极进行热处理后,即制得的SiO2-ZnO纳米颗粒多孔薄膜复合电极。
2.如权利要求1所述的SiO2修饰的ZnO纳米多孔薄膜复合电极的制备方法,其特征在于:氧化硅溶胶中氧化硅的含量为10~26wt%。
3.如权利要求1所述的SiO2修饰的ZnO纳米多孔薄膜复合电极的制备方法,其特征在于:旋转涂覆中的旋涂匀胶的工艺为在低速1000转/分下旋转5~10秒、在高速3000转/分下旋转10~20秒。
4.如权利要求1所述的SiO2修饰的ZnO纳米多孔薄膜复合电极的制备方法,其特征在于:步骤e.旋涂好的复合电极热处理温度在400~800°C区间,热处理时间为0.5~1小时。
CN 201010575239 2010-12-01 2010-12-01 SiO2修饰的ZnO纳米多孔薄膜复合电极的制备方法 Expired - Fee Related CN102005303B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010575239 CN102005303B (zh) 2010-12-01 2010-12-01 SiO2修饰的ZnO纳米多孔薄膜复合电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010575239 CN102005303B (zh) 2010-12-01 2010-12-01 SiO2修饰的ZnO纳米多孔薄膜复合电极的制备方法

Publications (2)

Publication Number Publication Date
CN102005303A CN102005303A (zh) 2011-04-06
CN102005303B true CN102005303B (zh) 2012-08-22

Family

ID=43812572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010575239 Expired - Fee Related CN102005303B (zh) 2010-12-01 2010-12-01 SiO2修饰的ZnO纳米多孔薄膜复合电极的制备方法

Country Status (1)

Country Link
CN (1) CN102005303B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480051A (zh) * 2011-08-31 2012-05-30 深圳光启高等理工研究院 一种超材料介质基板的制备方法
CN103035410B (zh) * 2011-10-08 2018-02-06 中国科学院上海硅酸盐研究所 染料敏化光电转换器件及其制造方法,以及金属氧化物浆料
CN103413755A (zh) * 2013-08-27 2013-11-27 北京世纪先承信息安全科技有限公司 硅基凝胶叠层热解反应法制备单晶SiC薄膜的方法
CN111492529B (zh) * 2017-11-28 2022-02-15 江苏经纬知识产权运营有限公司 一种复合导电浆料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162739A (zh) * 2007-11-13 2008-04-16 清华大学 染料敏化太阳能电池的ZnO电极及其制备方法
CN101354968A (zh) * 2008-09-16 2009-01-28 彩虹集团公司 一种染料敏化太阳能电池光阳极及其制备方法
CN101770869A (zh) * 2010-02-09 2010-07-07 新奥科技发展有限公司 一种用于制备染料敏化太阳能电池用二氧化钛薄膜的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162739A (zh) * 2007-11-13 2008-04-16 清华大学 染料敏化太阳能电池的ZnO电极及其制备方法
CN101354968A (zh) * 2008-09-16 2009-01-28 彩虹集团公司 一种染料敏化太阳能电池光阳极及其制备方法
CN101770869A (zh) * 2010-02-09 2010-07-07 新奥科技发展有限公司 一种用于制备染料敏化太阳能电池用二氧化钛薄膜的方法

Also Published As

Publication number Publication date
CN102005303A (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
CN101702377B (zh) 一种氧化锌/二氧化钛杂化电极及其制备方法
CN101800130B (zh) 氧化锌纳米结构染料敏化太阳能电池复合光阳极的制备方法
Li et al. ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells
CN103880091B (zh) 一种纳米六边形氧化铁的制备方法
CN104393103A (zh) 一种Cu2ZnSnS4半导体薄膜的制备方法及其应用
CN104952627B (zh) 量子点敏化太阳电池及其制备方法
CN105044180A (zh) 一种异质结光电极的制备方法和用途
CN101143357B (zh) 一种纳米晶薄膜及其低温制备方法
CN102005303B (zh) SiO2修饰的ZnO纳米多孔薄膜复合电极的制备方法
CN102208487B (zh) 铜铟硒纳米晶/硫化镉量子点/氧化锌纳米线阵列纳米结构异质结的制备方法
CN104021942A (zh) 一种提高氧化锌基染料敏化太阳能电池光电性能的方法
CN104810480A (zh) 一种用于钙钛矿电池的二氧化钛薄层的制备方法
CN105347392A (zh) 可控纳米晶态TiO2颗粒及其制备方法和用途
CN103700508A (zh) 染料敏化太阳电池用钙钛矿氧化物对电极材料
CN107799316A (zh) 一种PbS量子点敏化TiO2薄膜的制备方法及其应用
CN101465215B (zh) 纳米晶介孔TiO2厚膜材料的制备方法
CN109092369A (zh) 一种聚3-己基噻吩(P3HT)/金属修饰Sn3O4纳米复合光催化材料的制备方法
CN105244171B (zh) 一种原位合成ZnO纳米片光阳极膜及其制备方法
CN107705993B (zh) 染料敏化太阳电池氧化铜纳米棒阵列对电极及其制备方法
CN104022189A (zh) 一种制备ZnO/ZnS复合光电薄膜的方法
CN103236352A (zh) ZnO溶胶复合Sn掺杂ZnO厚膜的制备方法
CN105869897B (zh) 一种空心材料CeO2@TiO2的制备方法及其应用
CN102034612B (zh) 一种Al2O3-ZnO纳米棒阵列复合电极的制备方法
CN104112787B (zh) 一种硫化银/钙钛矿体异质结太阳能电池及其制备方法
CN102005304B (zh) 一种SiO2-ZnO纳米棒阵列复合电极的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120822

Termination date: 20151201

EXPY Termination of patent right or utility model