CN101988196A - 深反应离子刻蚀方法及其气体流量控制装置 - Google Patents

深反应离子刻蚀方法及其气体流量控制装置 Download PDF

Info

Publication number
CN101988196A
CN101988196A CN2009100560680A CN200910056068A CN101988196A CN 101988196 A CN101988196 A CN 101988196A CN 2009100560680 A CN2009100560680 A CN 2009100560680A CN 200910056068 A CN200910056068 A CN 200910056068A CN 101988196 A CN101988196 A CN 101988196A
Authority
CN
China
Prior art keywords
gas
gas flow
ion etching
reaction ion
deep reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009100560680A
Other languages
English (en)
Other versions
CN101988196B (zh
Inventor
尹志尧
吴万俊
刘鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medium and Micro Semiconductor Equipment (Shanghai) Co., Ltd.
Original Assignee
Advanced Micro Fabrication Equipment Inc Shanghai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Fabrication Equipment Inc Shanghai filed Critical Advanced Micro Fabrication Equipment Inc Shanghai
Priority to CN 200910056068 priority Critical patent/CN101988196B/zh
Publication of CN101988196A publication Critical patent/CN101988196A/zh
Application granted granted Critical
Publication of CN101988196B publication Critical patent/CN101988196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

一种深反应离子刻蚀方法,属于半导体制造技术领域。该方法包括交替进行的刻蚀步骤和聚合物沉积步骤,所述刻蚀步骤所采用的第一工艺条件与聚合物沉积步骤所采用的第二工艺条件之间的转换通过渐变转换方式实现。使用该发明的深反应离子刻蚀方法刻蚀的深通孔的侧壁具有良好的光滑度,并且刻蚀效率高。

Description

深反应离子刻蚀方法及其气体流量控制装置
技术领域
本发明属于半导体制造技术领域,具体涉及反应离子刻蚀(Reactive Icon Etching,RIE)技术,尤其涉及一种深反应离子刻蚀(De-coupled RIE,DRIE)方法及其气体流量控制装置。
背景技术
半导体制造技术领域中,在MEMS(Micro-Electro-Mechanical Systems,微机电系统)和3D封装技术等领域,通常需要对硅等材料进行深通孔刻蚀。例如,在体硅刻蚀技术中,深硅通孔(Through-Silicon-Via,TSV)的深度达到几百微米、其深宽比大于10,通常采用深反应离子刻蚀方法来刻蚀体硅形成。
图1所示为现有技术深反应离子刻蚀方法示意图。现有技术中,TSV的深反应离子刻蚀通常采用美国专利US5501893提出的Bosch工艺进行。如图1所示,其中,12为衬底硅,11为掩膜层,13为聚合物层;掩膜层11通常为SiO2或者Si3N4,主要在刻蚀过程起掩膜作用。具体深反应离子刻蚀方法包括以下步骤:(1)刻蚀步骤,通常用Ar、O2、SF6的混合气体进行等离子体刻蚀,;(2)聚合物沉积步骤,通常用Ar和C4F8的混合气体在孔洞内侧面形成氟碳聚合物层,其厚度一般在纳米级,有时也称作该聚合物层为钝化层,为使孔洞底部基本不形成氟碳聚合物层,该步骤中一般采用相对较低较的RF(Radio Frequency,射频)频率;(3)刻蚀步骤和聚合物沉积步骤交替进行,直到通孔刻蚀完成,在刻蚀步骤中,由于孔洞的内表面、尤其是孔洞内侧面沉积聚合物,垂直等离子刻蚀时,入射的离子不会对其内侧面聚合物造成破坏侧壁得以被保护,而垂直方向入射的离子会将孔洞底部的聚合物破坏使刻蚀反应得以向下继续,从而保证了整个孔洞刻蚀过程的各向异性。特别是在刻蚀过程中,采用电容耦合等离子体源(Capacitive Coupled Plasma,CCP)技术,可以加快在垂直方向的刻蚀速度,各向异性特性更好。因此通过以上所述深反应离子刻蚀技术刻蚀TSV时,具有刻蚀速度快(一般能达到5-8μm/min以上)、侧壁垂直度范围在90±3度内、掩膜层与孔洞之间的底切(undercut)小于0.1μm的特点。
图2所示为现有技术的气体流量控制装置的示意图。如图2所示,该气流控制装置用于图1所示深反应离子刻蚀。101为反应离子刻蚀的腔室,其中形成等离子体,目标刻蚀的晶圆置于腔室101中,102为通Ar气体的管路,103为通O2气体的管路,104为通SF6气体的管路,105为通C4F8气体的管路,107为MFC(Mass Flow Control,流量控制器),MFC 107和腔室101的之间的管路上,每个管路上分别设置一个气阀。首先MFC恒定设置每个管路流过的气体流量,MFC恒定打开,管路102中通入定量的Ar气体,管路103中通入定量的O2气体,管路104中通入定量SF6气体,管路105中通入定量的C4F8气体。刻蚀步骤和聚合沉积步骤的气体变化通过管路上的气阀实现。
图3所示为图1所示刻蚀步骤和聚合物沉积步骤两个过程的气体流量变换示意图。采用图1所示深反应离子刻蚀技术刻蚀TSV时,均在同一刻蚀机台上完成,刻蚀步骤和聚合物沉积步骤是两个不同的过程,刻蚀步骤采用的第一种工艺条件和聚合物沉积步骤采用的第二种工艺条件也在刻蚀过程中交替变换。气流流量是工艺条件中的一个因素(还包括气压、射频功率等因素)。如图3所示,15为刻蚀步骤的气体流量,16为聚合物沉积步骤的气体流量。例如,刻蚀步骤的气体流量参数可设置为:O2 100sccm,Ar 1000sccm,SF6 100sccm,总共气体流量为1200sccm,O2、Ar与SF6的气体流量是同步瞬间关断与开启的;聚合物沉积步骤的气体流量参数可设置为:Ar 1000sccm,C4F8 500sccm,总共气体流量为1500sccm,Ar与C4F8的气体流量是同步瞬间关断与开启的。为实现图3所示的气体流量变换控制,结合图2所示,通过图2所示的气体流量控制装置,MFC 107预先设定好每个管路通过的气体流量参数,每个管路的气体流量与开启通过管路上的阀门分别控制实现。例如在T1时刻,管路102、105上的阀门都关闭,腔室101中停止通入聚合物沉积步骤的其它气体,沉积步骤停止;在T2时刻,管路102、103,104上的阀门都开启,腔室101中通入刻蚀步骤的气体(Ar、O2和SF6);在T 3时刻,管路102、103,104上的阀门都关闭,腔室101中停止供应刻蚀步骤的气体。以上步骤交替进行,实现图3所示的方波气体流量图形。同时需要指出的是,其它工艺条件因素(如气压、射频功率)是和气体流量同步瞬间转换的。
由以上所述可知,在刻蚀步骤中少量氧气的添加不能在侧壁形成足够的保护层所以刻蚀步骤会在侧壁形成凹坑,然后在下一个聚合物沉积步骤中被聚合物保护,每个刻蚀和沉积步骤交替的周期都会在侧壁形成一个凹坑,多个这种凹坑形成扇形侧壁,降低深通孔的侧壁的光滑度。以上的工艺条件转变过程具有不连续的特点,在两个步骤之间交替处存在反应气体切换和等离子功率等重新调节的过程,T1至T2时间段实际上是不进行任何作用的,这样降低了深反应离子刻蚀的效率。在电容耦合型(CCP)等离子反应腔中由于本身等离子电离率比较低,只有现有技术US5501893中所采用的电感耦合型反应腔的电离率的约1/100,为了获得合适的等离子密度就需要跟多的气体分子供应到反应腔中,所以采用电容耦合型的(CCP)的气压可以达到300-800mtorr,而电感耦合型的只有约10-50mtorr。在气体切换过程中由于CCP反应腔中气压高,在抽气能力一定情况下要比电感型反应腔多花约10多倍的时间将原有气体排空,将下一步骤用的气体送入并达到反应所需的气压。这一切换时间可以至少达到2秒以上,严重影响了整体的刻蚀速度。而且在刻蚀深度增加时会出现反应速度降低的的情况,这就需要随着刻蚀深度的增加调节刻蚀参数如气流大小,功率大小等,由于上述现有技术中的MFC是以预定气体流量参数设置的无法作相应的调节。综上所述现有技术需要有效的方案实现在刻蚀速率与侧壁光滑度方面的平衡,特别是应用在CCP反应腔上。
发明内容
本发明要解决的技术问题是,避免深反应离子刻蚀形成深通孔过程中通孔侧壁光滑度降低、刻蚀效率降低的问题。
为解决以上技术问题,本发明提供的深反应离子刻蚀方法包括多个交替进行刻蚀周期每个刻蚀周期包括一个刻蚀步骤和一个聚合物沉积步骤,刻蚀步骤中供应刻蚀气体与聚合物沉积步骤供应沉积气体之间存在重叠,其中重叠时间大于整个刻蚀周期的20%。其中刻蚀和聚合物沉积气体的供气量通过调节气体流量控制器(MFC)来实现两个气体的交替。本发明适用于电容耦合型等离子反应腔。
根据本发明提供的深反应离子刻蚀方法,其中,所述深反应离子刻蚀方法用于对体硅材料刻蚀形成深通孔。所述刻蚀步骤采用的气体包括SF6和O2,还可以包括Ar。所述刻蚀步骤气体流量的参数范围为300sccm-1600sccm,所述刻蚀步骤中的的功率的参数范围为900瓦-4500瓦,所述刻蚀步骤的气压的参数范围为300-800毫托。所述聚合物沉积步骤使用的气体包括C4F8,。所述沉积步骤的气体流量的参数范围为100-400sccm,所述沉积步骤的功率的参数范围为1000瓦-4500瓦,所述沉积步骤的气压的参数范围为300-800毫托。
根据本发明提供的深反应离子刻蚀方法,其中,所述深反应离子刻蚀方法用于对硅材料刻蚀形成深通孔。所刻蚀步骤使用的气体包括CF4、SF6、NF3中的一种,。所述聚合物沉积步骤使用的气体包括C4F8、CHF3、CH2F2中的一种,。
根据本发明提供的深反应离子刻蚀方法,其中,通过聚合物沉积步骤,在深通孔的底部和内侧面沉积形成氟碳聚合物钝化层。通过气体流量控制器实现气体流量参数的渐变转换。所述刻蚀步骤采用电容耦合等离子体源技术。所述渐变转换的过程的时间范围为1到60秒。
作为其中一种实施例,在从刻蚀步骤到聚合物沉积步骤中刻蚀气体逐渐减少沉积气体逐渐增加,其中减少和增加的反应气体可以线性增加或减少也可以是正弦或阶梯型等任何变换曲线。在刻蚀深度增加时增加反应气体的供应量以保证在较深位置的刻蚀速度。
本发明刻蚀方法的技术效果是,通过气体连续调节方式在刻蚀阶段供应聚合物沉积气体同时实现刻蚀和沉积步骤的切换,从而实现减小刻侧壁上的小突起的高度,侧壁上的“扇形”基本消失,使其侧壁具有良好的光滑度;同时,相比现有技术,在渐变转换过程中,仍然等效存在刻蚀效果和聚合物沉积效果,因此,可相对减少切换时间,提高深反应离子刻蚀效率。
附图说明
图1是现有技术深反应离子刻蚀方法示意图;
图2是现有技术的气体流量控制装置的示意图;
图3是图1所示刻蚀步骤和聚合物沉积步骤两个过程的气体流量变换示意图;
图4是本发明提供的气体流量控制装置示意图;
图5是该发明提供的深反应离子刻蚀方法流程示意图;
图6是第二工艺条件和第一工艺条之间的渐变转换方式的第六实施例示意图;
图7是第二工艺条件和第一工艺条之间的渐变转换方式的第七实施例示意图;
图8是第二工艺条件和第一工艺条之间的渐变转换方式的第九实施例示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步的详细描述。
图4所示为本发明提供的气体流量控制装置示意图。如图4所示,该气体流量装置包括腔室301、通Ar气体的管路302、通O2气体的管路303、通SF6气体的管路304、通C4F8气体的管路305、MFC和MFC控制模块310,该气体流量控制装置用于深反应离子刻蚀过程的气体流量控制,待刻蚀的晶圆置于腔室301中,管路中302、303、304、305中分别设置MFC312、313、314、315,MFC控制模块310可以同时控制MFC312、313、314、315,通过MFC控制模块对MFC的控制,可以实现对每个管路中流过的气体流量的实时控制,因此,每个管路中流过的气体流量、以及气体流量变化方式不受其它管路的影响。例如,通过在MFC控制模块310中预先设置好SF6的气体流量和时间的变化关系曲线、以及C4F8的气体流量和时间的变化关系曲线,MFC 314和MFC 315分别接受MFC控制模块310的控制命令后,流过MFC314的SF6的气体流量按预先设定的曲线变化,流过MFC315的C4F8的气体流量按预先设定的曲线变化。在该实施例中,只是列出了用于四种气体的流量控制的气体流量控制装置,其具体气体的数量根据深反应刻蚀过程所选择的气体有关,数量不受本发明限制。通过控制模块310也可是调节聚合物沉积步骤结束时间和刻蚀步骤开始时间之间的关系来控制刻蚀步骤中的刻蚀速率,同时实现刻蚀和沉积步骤之间的逐渐切换,减少侧壁上的扇形纹路(scalloping)。通过控制模块310也可随着刻蚀的深度控制供气量以保证在深度刻蚀增加时的刻蚀速度。
图5所示为该发明提供的深反应离子刻蚀方法流程示意图。在该实施例中,以对TSV通孔的深反应离子刻蚀为例。具体步骤包括如下:
步骤S100,进行采用第一工艺条件的刻蚀步骤。
在该步骤中,首先提供包括硅衬底、以及覆盖于硅衬底上的掩膜层的TSV刻蚀样品,掩膜层可以为SiO2或Si3N4等材料,在掩膜层层上构图暴露硅衬底,然后选择采用第一工艺条件进行等离子体刻蚀。第一工艺条件的具体参数的选择与TSV通孔的具体要求有关,其不受本发明限制,在该实施例中,由于是对体硅的刻蚀,一般采用SF6混和O2的方法进行等离子刻蚀,在具体实际应用中,还包括Ar等惰性气体;第一工艺条件的因素包括气体流量(每种气体的气体流量)、气压、功率等参数。例如,具体第一工艺条件参数可以为:气压200mTorr、功率4000W、SF6、O2、Ar的气体流量之和为1200sccm,SF6、O2、Ar的流量比为10∶1∶1,即SF6气体流量1000sccm、O2气体流量100sccm、Ar气体流量100sccm,SF6、O2、Ar的具体流量比不受本实施例限制。刻蚀步骤中,第一工艺条件的维持时间不受本发明限制,例如,可以为1秒,也可以为1min。在该实施例中,刻蚀步骤采用电容耦合等离子体源(Capacitive Coupled Plasma,CCP)技术。
步骤S200,第一工艺条件以渐变方式转换至第二工艺条件。
在该步骤中,具体的渐变转换方式与步骤S400中的渐变转换方式相同,将在步骤S400中结合在一起说明。
步骤S300,进行采用第二工艺条件的聚合物沉积步骤。
在该步骤中,为使该实施例的深反应离子刻蚀具有良好的各向异性,通过聚合物沉积步骤在TSV通孔的侧壁形成钝化层。第二工艺条件的具体参数的选择与TSV通孔的具体条件要求有关,其不受本发明限制,在该实施例中,采用C4F8气体,在具体实际应用中,可能还包括Ar等惰性气体。第二工艺条件的因素同样包括气体流量(每种气体的气体流量)、气压、功率等参数。例如,具体第二工艺条件参数可以为:气压300mTorr、功率3000W、C4F8的气体流量200sccm、Ar气体流量100sccm。该聚合物沉积步骤时间相对刻蚀步骤较短,。在该步骤后,会在通孔的底部和内侧面沉积厚度在纳米数量级的氟碳聚合物(fluoro-carbon polymer)层。
步骤S400,第二工艺条件以渐变转换方式转换至第一工艺条件。
在该步骤中,由于第一工艺条件和第二工艺条件的参数的差别,两个步骤之间需要通过一个工艺条件转变过程实现渐变转换。在该实施例中,仅以气压、功率、气体流量三个工艺条件因素作示意图性说明,气压、功率、气体流量均是渐变转换的。气压、功率、气体流量之外的工艺条件因素的渐变转换可以以基本相同的原理或方式实现。相对于背景技术中的突变式(工艺条件转换时间在1秒以内)的工艺条件转换,该发明采用“模拟式”的调制来实现渐变式的工艺条件转换。
图6所示为第二工艺条件和第一工艺条之间的渐变转换方式的第六实施例示意图。如图6所示:(1)气体流量参数在第一工艺条件与第二工艺条件之间转换时,以曲线形式转换;(2)第一工艺条件的气体流量归零转换过程和第二工艺条件的气体流量由零转换至预订参数过程二者在交叉时间段进行,即工艺条件转换过程的t1与t2时间段之间、t3与t4时间段之间、t5与t6的时间段之间存在第一工艺条件的气体流量和第二工艺条件的气体流量同时大于零的情况,SF6、O2、和C4F8的气体流量参数同时变化,在这一交叉时间段里面,刻蚀和聚合物沉积两个过程可能同时进行,只是由于气体流量参数小,两个过程进行得可能相对缓慢。其中在刻蚀步骤中由于部分时间段是与聚合物沉积过程重叠的所以在这个时间段内刻蚀速率会下降,特别是对侧壁的刻蚀速率由于有了部分聚合物保护层的存在明显降低,这样扇贝纹得以明显减轻其中,256为刻蚀步骤采用的第一工艺条件,266为聚合物沉积步骤采用的第二工艺条件。
图7所示为第二工艺条件和第一工艺条之间的渐变转换方式的第七实施例示意图。如图7所示,对比图6,该实施例与图6所示实施例的区别在于:刻蚀步骤中,气体流量在整个过程以正弦波函数形式变化。我们定义其流量最高点,即T4、T5时间点对应的气体流量,为第一工艺条件的气体流量的参数。在该实施例中,在T4至t2时间段内,既实现了气体流量工艺条件的渐变转换,又同时进行刻蚀步骤;同样,在t3至T5时间段内,既实现了气体流量工艺条件的渐变转换,又同时进行刻蚀步骤。因此充分利用了工艺条件转换时间段,能进一步提高深反应离子刻蚀的效率。其中,257为刻蚀步骤采用的第一工艺条件,267为聚合物沉积步骤采用的第二工艺条件。从图中可见采用这一方法可以获得不同的刻蚀气体和聚合物沉积气体重叠时间,在重叠时间内刻蚀气体流量逐渐下降,聚合物沉积气体逐渐上升,反之亦然。不同的重叠时间长度可以获得不同的刻蚀速率和侧壁形状,重叠时间在整个刻蚀周期中越长则刻蚀速率会略微降低,但是侧壁形状却会显著改善。这是因为重叠时间增加就意味着刻蚀气体和聚合物沉积气体同时供应的时间增加,这样一来刻蚀通孔的侧壁就能得到聚合物的更多保护侧壁就不会被等向性的刻蚀。同时少量的聚合物沉积在刻蚀通孔的底部会被入射的高能等离子轰击所以能够继续向下刻蚀。聚合物沉积气体的存在会部分影响刻蚀气体如SF6到达底部待刻蚀硅的表面,所以会部分影响刻蚀速率。但是采用由于本发明可以省略两个步骤之间的切换时间所以整体刻蚀速率相对现有技术整体上仍然有优势。特别是应用在电容耦合型反应腔,由于气压高每个刻蚀周期有大于四秒的时间用在气体切换上所以采用本发明后整体刻蚀速率并没有减少,但是侧壁形状却能够得到很大的改善。本发明的刻蚀气体和聚合物沉积气体重叠时间可以根据需要调节,最大可以达到整个刻蚀周期的100%,最小重叠时间占整个刻蚀周期的比重大于20%时就对侧壁形状具有显著地改善效果了。重叠时间大于30%能够取得较佳的刻蚀率与侧壁形状的平衡。
图8所示为第二工艺条件和第一工艺条之间的渐变转换方式的第三实施例示意图。如图8所示:刻蚀步骤和聚合物沉积步骤中,第一工艺条件和第二工艺的气体流量、功率、气压在整个过程中均以正弦波函数形式变化。我们定义T4、T5时间点对应的气体流量、气压、功率,为第一工艺条件的参数;定义T6、T7时间点对应的气体流量、气压、功率,为第二工艺条件的气体流量的参数。其中,259为刻蚀步骤采用的第一工艺条件,269为聚合物沉积步骤采用的第二工艺条件。在该实施例中,每个步骤中的每个种气体的气体流量均是按照图8中所示的曲线形式变化的,特别是对于刻蚀步骤的SF6气体和聚合物沉积步骤的C4F8气体。
需要指出的是,渐变转换方式过程中,线性形式、曲线形式的其它变换均不受本发明限制。例如,通过阶梯方波的形式代替正弦波曲线形式,三角波形式代替正弦波形式等等。因此,在该说明书中不作一一列举。各种渐变转换过程中,通过设置每个微小时间间隔点(例如时间间隔为10毫秒、50毫秒、100毫秒等等)的参数,实现渐变转换过程的控制。
以上工艺条件的渐变转换过程的实施例仅针对气体流量、功率、气压三者的相应转换作说明,图6至图8实施例的工艺条件转换过程中,由于是渐变转换过程,区别于现有技术的突变转换方式,在转换过程中,仍然等效存在刻蚀效果和聚合物沉积效果,因此,可相对减少刻蚀步骤与聚合沉积步骤的转换时间,提高深反应离子刻蚀效率同时减小侧壁粗糙度。
步骤S500,判断TSV通孔刻蚀是否结束,如果判断为“是”,则结束DRIE刻蚀过过程;如果判断为“否”,返回至步骤S100,继续交替执行步骤S100和步骤S300。例如,如果以步骤S100的刻蚀速率(若每分钟刻蚀20um),通过10次步骤S100刻蚀过程就可以实现刻蚀200um深的TSV。可以通过刻蚀机台的软件预先设置为10次,小于10次,则判断为“否”,继续交替执行步骤S100和步骤S300。
至此,图5所示实施例的DRIE过程结束。通过渐变方式实现第一工艺条件和第二工艺条件之间转换,DRIE刻蚀形成的通孔在保证了刻蚀速率、侧壁垂直度、底切等条件要求的情况下,侧壁上的“扇形”基本消失,从而使侧壁具有良好的光滑度。
需要说明的是,图5实施例是针对体硅刻蚀的实施例,该发明的DRIE方法同样可以用于其它材料的深通孔刻蚀,例如,可以在硅基片上刻蚀深刻宽比为10、深度达到200um的深通孔,具体的气体的种类不同于刻蚀体硅的气体,刻蚀步骤中使用的气体可以选择使用CF4、SF6、NF3等气体(也可以混合O2、Ar等气体),聚合物沉积步骤可以选择使用C4F8、CHF3等气体,具体气体流量大小、气压、功率等工艺参数可以根据具体刻蚀要求做变换。刻蚀步骤的气压参数可以在300-800mTorr范围之间,功率参数可以在3000-6000W之间,CF4的气体流量范围可以在300sccm-1600sccm;聚合物沉积步骤的气压参数可以在300-800mTorr范围之间,功率参数可以在2000-4000W之间,C4F8的气体流量范围可以在100-400sccm。本发明所述聚合物沉积步骤的目的在于给刻蚀通孔侧壁提供保护防止侧壁被刻蚀,基于这一目的,侧壁保护气体除了上面介绍的聚合物沉积气体也可是其它气体如含氧气体如O2,CO,CO2等在侧壁形成SiO2,或者含氮气体形成Si3N4保护层。
在不偏离本发明的精神和范围的情况下还可以构成许多有很大差别的实施例。应当理解,除了如所附的权利要求所限定的,本发明不限于在说明书中所述的具体实施例。

Claims (18)

1.一种深反应离子刻蚀方法,包括多个循环进行的刻蚀周期,每个刻蚀周期包括一个刻蚀步骤和侧壁保护步骤,其特征在于:
所述刻蚀步骤供应刻蚀反应气体,侧壁保护步骤供应侧壁保护气体,其中刻蚀气体和侧壁保护气体供应时间存在重叠,在从刻蚀步骤到侧壁保护步骤转换的重叠时间内刻蚀气体逐渐减少同时侧壁保护气体逐渐增加,其中重叠时间大于刻蚀周期时间的20%。
2.根据权利要求1所述的深反应离子刻蚀方法,其特征在于,所述深反应离子刻蚀方法用于对体硅材料刻蚀形成深通孔。
3.根据权利要求2所述的深反应离子刻蚀方法,其特征在于,所述刻蚀气体包括SF6和O2
4.根据权利要求3所述的深反应离子刻蚀方法,其特征在于,所述侧壁保护步骤采用的气体包括氟碳化合物,O2,CO,CO2,N2之一。
5.根据权利要求5所述的深反应离子刻蚀方法,其特征在于,所述刻蚀步骤中气体流量的参数范围为300sccm-1600sccm,功率的参数范围为900瓦-4500瓦,气压的参数范围为300-800毫托。
6.根据权利要求3所述的深反应离子刻蚀方法,其特征在于,所述氟碳化合物气体包括C4F8
7.根据权利要求6所述的深反应离子刻蚀方法,其特征在于,所述侧壁保护气体的气体流量的参数范围为100-400sccm,功率的参数范围为1000瓦-4500瓦,气压的参数范围为300-800毫托。
8.根据权利要求1所述的深反应离子刻蚀方法,其特征在于,所述深反应离子刻蚀方法用于对硅材料刻蚀形成深通孔。
9.根据权利要求8所述的深反应离子刻蚀方法,其特征在于,所刻蚀步骤使用的气体包括CF4、SF6、NF3中的一种。
10.根据权利要求8所述的深反应离子刻蚀方法,其特征在于,所述聚合物沉积步骤使用的气体包括C4F8、CHF3、CH2F2中的一种。
11.根据权利要求1所述的深反应离子刻蚀方法,其特征在于,所述刻蚀步骤的气体流量和侧壁保护步骤的气体流量之间通过线性形式渐变转换.
12.根据权利要求1所述的深反应离子刻蚀方法,其特征在于,通过气体流量控制器实现气体流量的渐变转换。
13.根据权利要求1所述的深反应离子刻蚀方法,其特征在于,所述刻蚀步骤采用电容耦合等离子体源技术。
14.根据权利要求1所述的深反应离子刻蚀方法,其特征在于,所述重叠时间范围为1到60秒。
15.一种气体流量控制装置,用于深反应离子刻蚀,其特征在于,包括:
若干个用于通反应气体的管路,
设置在每个管路上的气体流量控制器,
以及,气体流量控制器控制模块;
所述气体流量控制器控制模块通过控制每个气体流量控制器,实现对每个管路的气体流量的独立控制;其中,所述深反应离子刻蚀包括交替进行的刻蚀步骤和侧壁保护步骤,刻蚀步骤与侧壁刻蚀步骤之间存在重叠,在重叠时间内刻蚀步骤所用的气体与侧壁保护步骤所用的气体逐渐变化实现两个步骤的交替,其中重叠时间占整个深反应离子刻蚀时间的20%以上。
16.根据权利要求15所述的气体流量控制装置,其特征在于,所述深反应离子刻蚀的腔室是电容耦合产生等离子的。
17.根据权利要求15所述的气体流量控制装置,其特征在于,所述刻蚀气体流量通过气体流量控制器控制模块的控制实现刻蚀气体随着刻蚀深度的增加而增加。
18.根据权利要求15所述的气体流量控制装置,其特征在于,所述深反应离子刻蚀中的刻蚀气体和聚合物沉积气体的重叠时间大于30%。
CN 200910056068 2009-08-07 2009-08-07 深反应离子刻蚀方法及其气体流量控制装置 Active CN101988196B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910056068 CN101988196B (zh) 2009-08-07 2009-08-07 深反应离子刻蚀方法及其气体流量控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910056068 CN101988196B (zh) 2009-08-07 2009-08-07 深反应离子刻蚀方法及其气体流量控制装置

Publications (2)

Publication Number Publication Date
CN101988196A true CN101988196A (zh) 2011-03-23
CN101988196B CN101988196B (zh) 2013-09-04

Family

ID=43744980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910056068 Active CN101988196B (zh) 2009-08-07 2009-08-07 深反应离子刻蚀方法及其气体流量控制装置

Country Status (1)

Country Link
CN (1) CN101988196B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420124A (zh) * 2011-05-26 2012-04-18 上海华力微电子有限公司 一种介质层刻蚀方法
CN102586890A (zh) * 2012-03-20 2012-07-18 北京大学 一种用于黑硅制备的设备
CN103031557A (zh) * 2012-12-12 2013-04-10 中国科学院长春光学精密机械与物理研究所 类矩形全息光栅等离子体刻蚀方法
CN103050434A (zh) * 2011-10-17 2013-04-17 中芯国际集成电路制造(上海)有限公司 硅通孔的刻蚀方法
CN103077920A (zh) * 2011-10-25 2013-05-01 上海华虹Nec电子有限公司 改善硅通孔横向开口的干法刻蚀方法
CN103159163A (zh) * 2011-12-19 2013-06-19 北京北方微电子基地设备工艺研究中心有限责任公司 基片刻蚀方法及基片处理设备
CN103646918A (zh) * 2013-11-28 2014-03-19 中微半导体设备(上海)有限公司 硅通孔的形成方法
CN104465493A (zh) * 2013-09-24 2015-03-25 中国科学院微电子研究所 一种自对准接触孔刻蚀工艺方法
CN104637866A (zh) * 2013-11-15 2015-05-20 中微半导体设备(上海)有限公司 硅通孔刻蚀方法
CN104752191A (zh) * 2013-12-31 2015-07-01 中微半导体设备(上海)有限公司 Icp等离子体处理腔室及其气体注入装置,硅通孔刻蚀方法
CN106683997A (zh) * 2015-11-10 2017-05-17 北京北方微电子基地设备工艺研究中心有限责任公司 一种深硅刻蚀工艺
CN107993938A (zh) * 2016-10-26 2018-05-04 东莞新科技术研究开发有限公司 半导体的反应离子刻蚀方法
CN108751124A (zh) * 2018-05-21 2018-11-06 赛莱克斯微系统科技(北京)有限公司 一种制作带有沟道或空腔的半导体结构的方法
CN113889476A (zh) * 2019-03-29 2022-01-04 湘潭大学 一种1t1c柔性铁电存储器及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711033B (zh) * 2015-11-17 2020-07-17 北京北方华创微电子装备有限公司 衬底刻蚀方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723549A (zh) * 2002-10-11 2006-01-18 兰姆研究有限公司 增强等离子体蚀刻性能的方法
US20070023394A1 (en) * 2005-07-27 2007-02-01 Sumitomo Precision Products Co., Ltd. Etching Method and Etching Apparatus
CN101265578A (zh) * 2008-04-14 2008-09-17 北京大学 一种多角度垂直反射镜面的制造方法及产品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723549A (zh) * 2002-10-11 2006-01-18 兰姆研究有限公司 增强等离子体蚀刻性能的方法
US20070023394A1 (en) * 2005-07-27 2007-02-01 Sumitomo Precision Products Co., Ltd. Etching Method and Etching Apparatus
CN101265578A (zh) * 2008-04-14 2008-09-17 北京大学 一种多角度垂直反射镜面的制造方法及产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王成伟等: "ICP硅深槽刻蚀中的线宽控制问题研究", 《微纳电子技术》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420124B (zh) * 2011-05-26 2014-04-02 上海华力微电子有限公司 一种介质层刻蚀方法
CN102420124A (zh) * 2011-05-26 2012-04-18 上海华力微电子有限公司 一种介质层刻蚀方法
CN103050434A (zh) * 2011-10-17 2013-04-17 中芯国际集成电路制造(上海)有限公司 硅通孔的刻蚀方法
CN103077920A (zh) * 2011-10-25 2013-05-01 上海华虹Nec电子有限公司 改善硅通孔横向开口的干法刻蚀方法
US9187319B2 (en) 2011-12-19 2015-11-17 Beijing Nmc Co., Ltd. Substrate etching method and substrate processing device
CN103159163A (zh) * 2011-12-19 2013-06-19 北京北方微电子基地设备工艺研究中心有限责任公司 基片刻蚀方法及基片处理设备
WO2013091354A1 (zh) * 2011-12-19 2013-06-27 北京北方微电子基地设备工艺研究中心有限责任公司 基片刻蚀方法及基片处理设备
CN103159163B (zh) * 2011-12-19 2016-06-08 北京北方微电子基地设备工艺研究中心有限责任公司 基片刻蚀方法及基片处理设备
CN102586890A (zh) * 2012-03-20 2012-07-18 北京大学 一种用于黑硅制备的设备
CN103031557A (zh) * 2012-12-12 2013-04-10 中国科学院长春光学精密机械与物理研究所 类矩形全息光栅等离子体刻蚀方法
CN104465493B (zh) * 2013-09-24 2018-06-26 中国科学院微电子研究所 一种自对准接触孔刻蚀工艺方法
CN104465493A (zh) * 2013-09-24 2015-03-25 中国科学院微电子研究所 一种自对准接触孔刻蚀工艺方法
CN104637866A (zh) * 2013-11-15 2015-05-20 中微半导体设备(上海)有限公司 硅通孔刻蚀方法
TWI575588B (zh) * 2013-11-15 2017-03-21
CN104637866B (zh) * 2013-11-15 2018-01-05 中微半导体设备(上海)有限公司 硅通孔刻蚀方法
CN103646918B (zh) * 2013-11-28 2017-01-11 中微半导体设备(上海)有限公司 硅通孔的形成方法
CN103646918A (zh) * 2013-11-28 2014-03-19 中微半导体设备(上海)有限公司 硅通孔的形成方法
CN104752191A (zh) * 2013-12-31 2015-07-01 中微半导体设备(上海)有限公司 Icp等离子体处理腔室及其气体注入装置,硅通孔刻蚀方法
CN106683997A (zh) * 2015-11-10 2017-05-17 北京北方微电子基地设备工艺研究中心有限责任公司 一种深硅刻蚀工艺
CN106683997B (zh) * 2015-11-10 2019-10-29 北京北方华创微电子装备有限公司 一种深硅刻蚀工艺
CN107993938A (zh) * 2016-10-26 2018-05-04 东莞新科技术研究开发有限公司 半导体的反应离子刻蚀方法
CN108751124A (zh) * 2018-05-21 2018-11-06 赛莱克斯微系统科技(北京)有限公司 一种制作带有沟道或空腔的半导体结构的方法
CN113889476A (zh) * 2019-03-29 2022-01-04 湘潭大学 一种1t1c柔性铁电存储器及其制备方法

Also Published As

Publication number Publication date
CN101988196B (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
CN101988196B (zh) 深反应离子刻蚀方法及其气体流量控制装置
CN101958244A (zh) 深反应离子刻蚀方法及其气体流量控制装置
US6924235B2 (en) Sidewall smoothing in high aspect ratio/deep etching using a discrete gas switching method
CN102031525B (zh) 一种深硅通孔的刻蚀方法
Oehrlein et al. Foundations of low-temperature plasma enhanced materials synthesis and etching
De Boer et al. Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures
US7109123B2 (en) Silicon etching method
CN101734611B (zh) 基于无掩膜深反应离子刻蚀制备黑硅的方法
Craigie et al. Polymer thickness effects on Bosch etch profiles
CN102165565A (zh) 用以使穿过衬底的过孔侧壁及其它深蚀刻特征部光滑的后蚀刻反应等离子体研磨
CN104025246B (zh) 等离子体处理室的压强控制阀总成以及快速交替方法
CN103159163B (zh) 基片刻蚀方法及基片处理设备
JP2019501489A (ja) 傾斜イオンビームを用いて空洞を満たすための装置及び技術
TWI471930B (zh) A Deep Hole Silicon Etching Method
TWI540640B (zh) And a method for realizing a rapid switching of the reaction gas and a method thereof
CN103031557A (zh) 类矩形全息光栅等离子体刻蚀方法
CN102751160A (zh) 刻蚀装置及对应的刻蚀方法
TWI553731B (zh) The method of etching the deep through hole
CN105679700B (zh) 硅深孔刻蚀方法
CN108573867A (zh) 硅深孔刻蚀方法
CN101928941B (zh) 一种用于刻蚀硅的反应离子刻蚀方法
CN104752266A (zh) 一种硅通孔刻蚀装置
US7033514B2 (en) Method and apparatus for micromachining using a magnetic field and plasma etching
Lai et al. Scalloping minimization in deep Si etching on Unaxis DSE tools
CN201138658Y (zh) 沉积-刻蚀-沉积反应系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 201201 No. 188 Taihua Road, Jinqiao Export Processing Zone, Pudong New Area, Shanghai

Patentee after: Medium and Micro Semiconductor Equipment (Shanghai) Co., Ltd.

Address before: 201201 188 Central Avenue, Jinqiao Export Processing Zone, 5001 East China Road, Pudong New Area, Shanghai

Patentee before: Advanced Micro-Fabrication Equipment (Shanghai) Inc.