CN101900770A - Method and system for assessing radiation resisting capability of device for satellite - Google Patents

Method and system for assessing radiation resisting capability of device for satellite Download PDF

Info

Publication number
CN101900770A
CN101900770A CN2009100855422A CN200910085542A CN101900770A CN 101900770 A CN101900770 A CN 101900770A CN 2009100855422 A CN2009100855422 A CN 2009100855422A CN 200910085542 A CN200910085542 A CN 200910085542A CN 101900770 A CN101900770 A CN 101900770A
Authority
CN
China
Prior art keywords
proton
test
particle
satellite
particle inversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009100855422A
Other languages
Chinese (zh)
Other versions
CN101900770B (en
Inventor
王群勇
阳辉
陈冬梅
陈宇
刘燕芳
孙旭朋
宋岩
白桦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING SAN-TALKING TESTING ENGINEERING ACADEMY Co Ltd
Original Assignee
BEIJING SAN-TALKING TESTING ENGINEERING ACADEMY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING SAN-TALKING TESTING ENGINEERING ACADEMY Co Ltd filed Critical BEIJING SAN-TALKING TESTING ENGINEERING ACADEMY Co Ltd
Priority to CN 200910085542 priority Critical patent/CN101900770B/en
Publication of CN101900770A publication Critical patent/CN101900770A/en
Application granted granted Critical
Publication of CN101900770B publication Critical patent/CN101900770B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention relates to a method for assessing radiation resisting capability of a device for a satellite. The method comprises the following steps of: performing heavy ion single event effect test on the device to be tested to acquire a test data; fitting the test data by using a Weibull function to obtain a scale parameter and a shape parameter, and deducing a proton single event turnover section expression; calculating a proton single event turnover rate according to the proton single event turnover section expression and a proton single event turnover rate calculation formula; and assessing the radiation resisting capability of the device to be tested according to the proton single event turnover rate. The invention also relates to a system for assessing the radiation resisting capability of the device for the satellite.

Description

A kind of appraisal procedure of radiation resisting capability of device for satellite and system thereof
Technical field
The present invention relates to device for satellite risk assessment technology field, be specifically related to a kind of appraisal procedure and system thereof of radiation resisting capability of device for satellite.
Background technology
Satellite system is used a large amount of semiconductor collectors, as microprocessor (CPU), digital signal processor (DSP), field programmable logic array (FPLA) (FPGA), storer (Memory), and gate circuit etc., but be applied in SIC (semiconductor integrated circuit) on the satellite will meet with very severe in the space environment, as radiation environment, hot vacuum environment, micrometeor/space debris environment etc.
Space radiation environment will cause SIC (semiconductor integrated circuit) ionization damage and (/ or) discomposition damage.The discomposition damage is atomic displacement behind the high energy proton incident semiconductor material, causes lattice imperfection, causes device performance to descend, and the displacement damage is a cumulative effect, promptly is accumulated to certain fluence and also can causes component failure; Ionization damage comprises total dose effect damage and single particle effect damage.The total dose effect damage mainly is by the proton or the electron impact semiconductor devices in space, induces electron-hole pair in device oxide layer and interface state, causes device electrical performance to be degenerated.Single particle effect is meant that single high energy particle incident semiconductor body causes the state of device stores unit to change or logic state changes or other is as phenomenons such as function termination, single particle effect comprises that single-particle inversion (SEU), single event latch-up (SEL), single-particle function end (SEFI), single-particle and burn (SEB) etc., single particle effect is a transient effect, the probability of to be device in the space take place single-particle is at random, and single particle effect is mainly caused by the heavy ion in space and high energy proton.
Carrying out space environment effects such as ionization damage and (/ or) discomposition damage on ground and test and scientificlly and effectively assess radiation resisting capability of device for satellite, is the key link that satellite is selected components and parts for use, also is the highly reliable important leverage of satellite.At present, China has possessed the total dose effect test, and ability, method and the means of the single particle effect test that causes of heavy ion, can assess the capability of resistance to radiation of device for satellite by above-mentioned test.But, owing to also do not possess capacity of equipment and means that proton causes the single particle effect test, therefore, by carry out the test of proton single particle effect on ground, calculate the probability that the proton single event upset rate comes proton single event in the computer memory radiation environment, thereby the method for the capability of resistance to radiation of assessment device for satellite can't realize also.
Test by carry out the proton single particle effect on ground though exist in the prior art, and direct empirical algorithms based on other test figures reckoning proton single event upset rates, for example:
People such as J.Barak have proposed a kind of empirical algorithms of calculating proton based on heavy ion single particle effect test figure:
σ P ( ∞ ) = 2.22 × 10 - 5 σ h / L 0.25 2
σ p(∞): be proton single-particle inversion utmost point root cross section, σ h: be the saturated cross section of heavy ion single-particle inversion;
People such as Petersen have proposed a kind ofly to it is estimated that the threshold value empirical algorithms of proton, L based on heavy ion single particle effect test figure 0Be defined as the LET value of heavy ion of 10% place correspondence of the saturated cross section of single-particle inversion face:
A=L 0+15
In the base: A is the single-particle inversion cross section of proton energy when ∞, also claims limit cross section; L 0Be defined as the LET value of heavy ion of 10% place correspondence of the saturated cross section of single-particle inversion face.But empirical algorithms can cause the error of the order of magnitude.
Summary of the invention
The purpose of this invention is to provide a kind of proton single particle effect test that need not to carry out, assess the method for the capability of resistance to radiation of device for satellite with heavy ion experimental data reckoning proton single event upset rate, to remedy the deficiencies in the prior art on ground.
For achieving the above object, the present invention adopts following technical scheme:
A kind of appraisal procedure of radiation resisting capability of device for satellite comprises step:
S1. device under test is carried out the test of heavy ion single particle effect, obtain test figure;
S2. according to described test figure, deduce proton single-particle inversion section expression;
S3. according to described proton single-particle inversion section expression and proton single event upset rate computing formula, calculate described proton single event upset rate;
S4. according to described proton single event upset rate, assess the capability of resistance to radiation of described device under test.
Wherein, described step S2 further comprises:
S2.1 utilizes the described test figure of Weibull function match, draws scale parameter and form parameter;
S2.2 is according to described test figure and tell scale parameter, form parameter, deduces proton single-particle inversion section expression.
Wherein, described proton single event upset rate computing formula is:
R p = ∫ E 0 E max Φ ( E ) σ ( E ) dE
In the formula: R pBe the proton single event upset rate, Φ (E) is the proton differential energy spectrum, and σ (E) is proton single-particle inversion cross section, and E is a proton energy, E 0Be proton single-particle inversion energy threshold, E MaxBe space proton ceiling capacity.
Wherein, described experimental data comprises: the saturated cross section of heavy ion single-particle inversion, the effective LET value of heavy ion single-particle, heavy ion single particle effect threshold value.
A kind of evaluating system of radiation resisting capability of device for satellite, this system comprises: acquiring unit is used to obtain the test figure of device under test heavy ion single-particle inversion test; Deduce the unit, be used for, deduce proton single-particle inversion cross section according to described test figure; Computing unit is used for calculating described proton single event upset rate according to described proton single-particle inversion cross section and proton single event upset rate computing formula; Assessment unit is used for assessing the capability of resistance to radiation of described device under test according to described proton single event upset rate.
Wherein, described deduction unit further comprises: the data processing subelement, utilize the described test figure of Weibull function match, and draw scale parameter and form parameter; Deduce subelement, be used for according to described test figure and tell scale parameter, form parameter, deduce proton single-particle inversion section expression.
Wherein, described proton single event upset rate computing formula is:
R p = ∫ E 0 E max Φ ( E ) σ ( E ) dE
In the formula: R pBe the proton single event upset rate, Φ (E) is the proton differential energy spectrum, and σ (E) is proton single-particle inversion cross section, and E is a proton energy, E 0Be proton single-particle inversion energy threshold, E MaxBe space proton ceiling capacity.
Wherein, described experimental data comprises: the saturated cross section of heavy ion single-particle inversion, the effective LET value of heavy ion single-particle, heavy ion single particle effect threshold value.
Use method and system of the present invention that radiation resisting capability of device for satellite is assessed, by deducing out the proton single event upset rate with the test of heavy ion single-particle inversion, need not carry out the test of proton single particle effect and realize that the comprehensive assessment device is at task device single particle effect risk level, needn't handle the radiation pollution that causes by proton, realized that the comprehensive assessment device at task device single particle effect risk level, makes more science, more effective of risk assessment.
Description of drawings
The appraisal procedure process flow diagram of Fig. 1 radiation resisting capability of device for satellite of the present invention;
Fig. 2 is the detail flowchart of step 2;
The evaluating system structural drawing of Fig. 3 radiation resisting capability of device for satellite of the present invention.
Embodiment
The appraisal procedure and the system thereof of the radiation resisting capability of device for satellite that the present invention proposes are described as follows in conjunction with the accompanying drawings and embodiments.
As shown in Figure 1, the appraisal procedure of radiation resisting capability of device for satellite of the present invention comprises step:
S1. device under test is carried out the test of heavy ion single particle effect, obtain the test figure that comprises the saturated cross section of heavy ion single-particle inversion, the effective LET value of heavy ion single-particle, heavy ion single particle effect threshold value etc.;
S2. according to test figure, calculate proton single-particle inversion cross section;
S3. according to proton single-particle inversion cross section and proton single event upset rate computing formula, calculate the proton single event upset rate;
S4. according to the proton single event upset rate, assess the capability of resistance to radiation of device under test.
Wherein, as shown in Figure 2, step S2 further comprises:
S2.1 utilizes Weibull function match test figure, draws scale parameter and form parameter;
Utilize the Weibull function to carry out match complete heavy ion single-particle σ-LET curve
σ(L)=σsat(1-exp{-[(L-L0)/w] s}).........(1)
Wherein: L is effective LET value, unit: MeV-cm 2/ g;
σ sat is the saturated cross section of heavy ion single-particle inversion;
L 0Be the single particle effect threshold value;
W is a scale parameter, and s is a form parameter.
S2.2 deduces proton single-particle inversion section expression according to test figure and scale parameter w, form parameter s;
σ ( E ) = Σ 0 [ 1 - e β ( E P ) ] cN at σ muclear ( E P ) . . . . . . ( 2 )
Wherein: β ( E P ) = - ( L ( E si ( E p ) ) - Lo W ) S . . . ( 3 ) ;
E pIt is proton energy;
E si = 4 A si ( 1 + A si ) 2 E p . . . . . . . . . . . . . . . . ( 4 ) ;
A SiIt is the atomic wts 28.09 of silicon atom;
L ( E ) = e ( K 1 + K 2 + K 3 E 2 1 + K 4 E + K 5 E 2 ) . . . . . . . ( 5 ) ;
K 1=-0.15,K 2=1.04,K 3=3.100,K 4=0.003106;
C is a density, the g/cm of unit 2
N AtIt is the silicon atom number in the unit cubic centimetre;
σ muclear ( E P ) = γ E P α 10 - 27 . . . . . . . . . . ( 6 ) ;
γ=758.95,α=-0.5;
Bring w, s into formula (3), find the solution β (E p), release proton single-particle inversion section expression in conjunction with formula (3), (4), (5), (6).
Proton single event upset rate computing formula among the step S3 is as follows:
R p = ∫ E 0 E max Φ ( E ) σ ( E ) dE . . . . . . . . ( 7 )
In the formula: R pBe proton single event upset rate (day -1Bit -1), Φ (E) is proton differential energy spectrum (cm -2Day -1MeV -1), σ (E) is proton single-particle inversion cross section (cm 2/ bit), E is proton energy (MeV), E 0For proton single-particle inversion energy threshold (MeV) is tried to achieve E according to formula (2) MaxBe space proton ceiling capacity (MeV).
Wherein Φ (E) and E MaxCan obtain by inquiry.σ (E) is drawn by step S2.2.
As shown in Figure 2, the evaluating system of radiation resisting capability of device for satellite of the present invention comprises:
Acquiring unit is used to obtain the test figure of device under test heavy ion single-particle inversion test; Deduce the unit, be used for, deduce proton single-particle inversion cross section according to test figure; Computing unit is used for according to proton single-particle inversion cross section and proton single event upset rate computing formula, calculates the proton single event upset rate; Assessment unit is used for according to the proton single event upset rate, the capability of resistance to radiation of assessment device under test.
Wherein, deduce the unit and further comprise: the data processing subelement, utilize Weibull function match test figure, draw scale parameter and form parameter; Deduce subelement, be used for according to test figure and tell scale parameter, form parameter, deduce proton single-particle inversion section expression.
Above embodiment only is used to illustrate the present invention; and be not limitation of the present invention; the those of ordinary skill in relevant technologies field; under the situation that does not break away from the spirit and scope of the present invention; can also make various variations and modification; therefore all technical schemes that are equal to also belong to category of the present invention, and scope of patent protection of the present invention should be defined by the claims.

Claims (8)

1. the appraisal procedure of a radiation resisting capability of device for satellite is characterized in that, the method comprising the steps of:
S1. device under test is carried out the test of heavy ion single particle effect, obtain test figure;
S2. according to described test figure, deduce proton single-particle inversion section expression;
S3. according to described proton single-particle inversion section expression and proton single event upset rate computing formula, calculate described proton single event upset rate;
S4. according to described proton single event upset rate, assess the capability of resistance to radiation of described device under test.
2. the appraisal procedure of radiation resisting capability of device for satellite as claimed in claim 1 is characterized in that, described step S2 further comprises:
S2.1 utilizes the described test figure of Weibull function match, draws scale parameter and form parameter;
S2.2 is according to described test figure and tell scale parameter, form parameter, deduces proton single-particle inversion section expression.
3. the appraisal procedure of radiation resisting capability of device for satellite as claimed in claim 1 is characterized in that, described proton single event upset rate computing formula is:
R p = ∫ E 0 E max Φ ( E ) σ ( E ) dE
In the formula: R pBe the proton single event upset rate, Φ (E) is the proton differential energy spectrum, and σ (E) is proton single-particle inversion cross section, and E is a proton energy, E 0Be proton single-particle inversion energy threshold, E MaxBe space proton ceiling capacity.
4. as the appraisal procedure of claim 1 and 2 described radiation resisting capability of device for satellite, it is characterized in that described experimental data comprises: the saturated cross section of heavy ion single-particle inversion, the effective LET value of heavy ion single-particle, heavy ion single particle effect threshold value.
5. the evaluating system of a radiation resisting capability of device for satellite is characterized in that, this system comprises:
Acquiring unit is used to obtain the test figure of device under test heavy ion single-particle inversion test;
Deduce the unit, be used for, deduce proton single-particle inversion cross section according to described test figure;
Computing unit is used for calculating described proton single event upset rate according to described proton single-particle inversion cross section and proton single event upset rate computing formula;
Assessment unit is used for assessing the capability of resistance to radiation of described device under test according to described proton single event upset rate.
6. the evaluating system of radiation resisting capability of device for satellite as claimed in claim 5 is characterized in that, described deduction unit further comprises:
The data processing subelement utilizes the described test figure of Weibull function match, draws scale parameter and form parameter;
Deduce subelement, be used for according to described test figure and tell scale parameter, form parameter, deduce proton single-particle inversion section expression.
7. the evaluating system of radiation resisting capability of device for satellite as claimed in claim 5 is characterized in that, described proton single event upset rate computing formula is:
R p = ∫ E 0 E max Φ ( E ) σ ( E ) dE
In the formula: R pBe the proton single event upset rate, Φ (E) is the proton differential energy spectrum, and σ (E) is proton single-particle inversion cross section, and E is a proton energy, E 0Be proton single-particle inversion energy threshold, E MaxBe space proton ceiling capacity.
8. as the evaluating system of claim 5 and 6 described radiation resisting capability of device for satellite, it is characterized in that described experimental data comprises: the saturated cross section of heavy ion single-particle inversion, the effective LET value of heavy ion single-particle, heavy ion single particle effect threshold value.
CN 200910085542 2009-05-25 2009-05-25 Method and system for assessing radiation resisting capability of device for satellite Expired - Fee Related CN101900770B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910085542 CN101900770B (en) 2009-05-25 2009-05-25 Method and system for assessing radiation resisting capability of device for satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910085542 CN101900770B (en) 2009-05-25 2009-05-25 Method and system for assessing radiation resisting capability of device for satellite

Publications (2)

Publication Number Publication Date
CN101900770A true CN101900770A (en) 2010-12-01
CN101900770B CN101900770B (en) 2013-01-16

Family

ID=43226471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910085542 Expired - Fee Related CN101900770B (en) 2009-05-25 2009-05-25 Method and system for assessing radiation resisting capability of device for satellite

Country Status (1)

Country Link
CN (1) CN101900770B (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298659A (en) * 2011-08-24 2011-12-28 中国科学院微电子研究所 Method for simulating impulse current and device
CN102338852A (en) * 2011-06-07 2012-02-01 中国电子科技集团公司第十八研究所 Method for predicting radiation attenuation of electrons and protons of spatial solar cell
CN102928773A (en) * 2012-09-24 2013-02-13 北京圣涛平试验工程技术研究院有限责任公司 Method for testing proton/single event effect resisting capacity of device
CN102968562A (en) * 2012-11-22 2013-03-13 北京圣涛平试验工程技术研究院有限责任公司 Method for determining single-event upset rate on basis of historical data
CN103645430A (en) * 2013-12-23 2014-03-19 中国科学院新疆理化技术研究所 Stimulation based detection method for SiGe hetero-junction bipolar transistor (HBT) single event effects
CN103810368A (en) * 2012-11-15 2014-05-21 北京圣涛平试验工程技术研究院有限责任公司 Reliability prediction method
CN104007427A (en) * 2014-05-20 2014-08-27 上海微小卫星工程中心 Mean free error time assessment method and system based on irradiation test satellite-borne responder
CN104143037A (en) * 2013-05-10 2014-11-12 北京圣涛平试验工程技术研究院有限责任公司 Method for measuring and calculating displacement damage failure rate of spacecraft device
CN104143038A (en) * 2013-05-10 2014-11-12 北京圣涛平试验工程技术研究院有限责任公司 Calculation method for failure rate of total dose effect of sensitive devices
CN104155878A (en) * 2013-05-14 2014-11-19 北京圣涛平试验工程技术研究院有限责任公司 Method for formulating DPM-based space radiation environment reliability indexes
CN104459372A (en) * 2014-11-10 2015-03-25 中国科学院新疆理化技术研究所 Displacement damage dosage detection method based on p-i-n structure
CN104732031A (en) * 2015-03-30 2015-06-24 北京空间飞行器总体设计部 Heavy ion testing data based device proton overturning cross section retrieving method
CN104753581A (en) * 2015-03-05 2015-07-01 上海微小卫星工程中心 Satellite system-level anti-radiation system and method
CN104809338A (en) * 2015-04-16 2015-07-29 北京空间飞行器总体设计部 Satellite in orbit space-environment-influence early warning method based on correlation relationship
CN105717385A (en) * 2015-05-12 2016-06-29 北京圣涛平试验工程技术研究院有限责任公司 Method for detecting capability of resisting NSEE by avionic device
CN105893664A (en) * 2016-03-30 2016-08-24 北京空间飞行器总体设计部 System level single event effect influence representation parameter and evaluation method
CN106124953A (en) * 2016-06-14 2016-11-16 工业和信息化部电子第五研究所 Single particle effect Forecasting Methodology and device
CN107966715A (en) * 2017-11-16 2018-04-27 中国空间技术研究院 A kind of test method that single particle effect assessment is carried out to application reinforcing device part
CN108008274A (en) * 2017-11-20 2018-05-08 西安空间无线电技术研究所 A kind of test method and system for carrying out radiation effect synergistic effect using heavy ion
CN108008289A (en) * 2017-11-22 2018-05-08 西北核技术研究所 A kind of acquisition methods in device proton single particle effect section
CN108181524A (en) * 2017-12-19 2018-06-19 西北核技术研究所 Irradiate the evaluation method that bottom device obtains electronic system single particle effect sensibility
CN108254628A (en) * 2018-02-02 2018-07-06 湘潭大学 A kind of base station electromagnetic radiation intensity appraisal procedure
CN109214049A (en) * 2018-07-27 2019-01-15 北京圣涛平试验工程技术研究院有限责任公司 A kind of method and device in acquisition device neutron single-particle effect section
CN109657370A (en) * 2018-12-24 2019-04-19 北京航空航天大学 The space of aerospace electron product radiates reliability estimation method
CN111579957A (en) * 2020-04-16 2020-08-25 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Total dose radiation test method, device and equipment for nano MOSFET device
CN111650452A (en) * 2020-05-07 2020-09-11 西北核技术研究院 Method for estimating device space on-orbit low-energy proton single-particle turnover rate
CN112668232A (en) * 2021-01-05 2021-04-16 中国原子能科学研究院 Method, device, equipment and medium for acquiring SEE section caused by nuclear reaction
CN115356608A (en) * 2022-08-11 2022-11-18 中国科学院近代物理研究所 Wide-range LET value measurement calibration system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3887365B2 (en) * 2003-09-22 2007-02-28 富士通株式会社 Radiation electromagnetic field tolerance calculation device and program recording medium
CN100489795C (en) * 2007-10-30 2009-05-20 北京时代民芯科技有限公司 SPARC processor single particle effect detection device and method
CN100538378C (en) * 2007-11-22 2009-09-09 北京圣涛平试验工程技术研究院有限责任公司 Obtain the method for single particle phenomenon cross section and heavy ion linear energy transfer relation
CN100478901C (en) * 2007-12-26 2009-04-15 北京时代民芯科技有限公司 Device for detecting 80C31 single particle effect

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338852A (en) * 2011-06-07 2012-02-01 中国电子科技集团公司第十八研究所 Method for predicting radiation attenuation of electrons and protons of spatial solar cell
CN102338852B (en) * 2011-06-07 2015-06-17 中国电子科技集团公司第十八研究所 Method for predicting radiation attenuation of electrons and protons of spatial solar cell
CN102298659A (en) * 2011-08-24 2011-12-28 中国科学院微电子研究所 Method for simulating impulse current and device
CN102928773B (en) * 2012-09-24 2015-01-07 北京圣涛平试验工程技术研究院有限责任公司 Method for testing proton/single event effect resisting capacity of device
CN102928773A (en) * 2012-09-24 2013-02-13 北京圣涛平试验工程技术研究院有限责任公司 Method for testing proton/single event effect resisting capacity of device
CN103810368B (en) * 2012-11-15 2016-10-26 北京圣涛平试验工程技术研究院有限责任公司 A kind of reliability prediction algorithm
CN103810368A (en) * 2012-11-15 2014-05-21 北京圣涛平试验工程技术研究院有限责任公司 Reliability prediction method
CN102968562A (en) * 2012-11-22 2013-03-13 北京圣涛平试验工程技术研究院有限责任公司 Method for determining single-event upset rate on basis of historical data
CN104143038B (en) * 2013-05-10 2017-04-26 北京圣涛平试验工程技术研究院有限责任公司 Calculation method for failure rate of total dose effect of sensitive devices
CN104143038A (en) * 2013-05-10 2014-11-12 北京圣涛平试验工程技术研究院有限责任公司 Calculation method for failure rate of total dose effect of sensitive devices
CN104143037B (en) * 2013-05-10 2017-04-26 北京圣涛平试验工程技术研究院有限责任公司 Method for measuring and calculating displacement damage failure rate of spacecraft device
CN104143037A (en) * 2013-05-10 2014-11-12 北京圣涛平试验工程技术研究院有限责任公司 Method for measuring and calculating displacement damage failure rate of spacecraft device
CN104155878A (en) * 2013-05-14 2014-11-19 北京圣涛平试验工程技术研究院有限责任公司 Method for formulating DPM-based space radiation environment reliability indexes
CN104155878B (en) * 2013-05-14 2016-08-17 北京圣涛平试验工程技术研究院有限责任公司 Space radiation environment reliability index formulating method based on DPM
CN103645430A (en) * 2013-12-23 2014-03-19 中国科学院新疆理化技术研究所 Stimulation based detection method for SiGe hetero-junction bipolar transistor (HBT) single event effects
CN104007427B (en) * 2014-05-20 2017-01-25 上海微小卫星工程中心 Mean free error time assessment method and system based on irradiation test satellite-borne responder
CN104007427A (en) * 2014-05-20 2014-08-27 上海微小卫星工程中心 Mean free error time assessment method and system based on irradiation test satellite-borne responder
CN104459372A (en) * 2014-11-10 2015-03-25 中国科学院新疆理化技术研究所 Displacement damage dosage detection method based on p-i-n structure
CN104459372B (en) * 2014-11-10 2017-09-01 中国科学院新疆理化技术研究所 Displacement damage dose detecting method based on p i n structures
CN104753581A (en) * 2015-03-05 2015-07-01 上海微小卫星工程中心 Satellite system-level anti-radiation system and method
CN104753581B (en) * 2015-03-05 2018-05-01 上海微小卫星工程中心 A kind of satellite system irrespective of size Flouride-resistani acid phesphatase system and method
CN104732031A (en) * 2015-03-30 2015-06-24 北京空间飞行器总体设计部 Heavy ion testing data based device proton overturning cross section retrieving method
CN104732031B (en) * 2015-03-30 2017-08-29 北京空间飞行器总体设计部 A kind of device proton upset cross section inversion method based on heavy ion test data
CN104809338A (en) * 2015-04-16 2015-07-29 北京空间飞行器总体设计部 Satellite in orbit space-environment-influence early warning method based on correlation relationship
CN104809338B (en) * 2015-04-16 2017-11-17 北京空间飞行器总体设计部 A kind of method for early warning influenceed based on the satellite in orbit of incidence relation by space environment
CN105717385A (en) * 2015-05-12 2016-06-29 北京圣涛平试验工程技术研究院有限责任公司 Method for detecting capability of resisting NSEE by avionic device
CN105893664A (en) * 2016-03-30 2016-08-24 北京空间飞行器总体设计部 System level single event effect influence representation parameter and evaluation method
CN105893664B (en) * 2016-03-30 2019-01-15 北京空间飞行器总体设计部 A kind of system-level single particle effect influences the evaluation method of characterization parameter
CN106124953A (en) * 2016-06-14 2016-11-16 工业和信息化部电子第五研究所 Single particle effect Forecasting Methodology and device
CN106124953B (en) * 2016-06-14 2019-01-29 工业和信息化部电子第五研究所 Single particle effect prediction technique and device
CN107966715A (en) * 2017-11-16 2018-04-27 中国空间技术研究院 A kind of test method that single particle effect assessment is carried out to application reinforcing device part
CN108008274A (en) * 2017-11-20 2018-05-08 西安空间无线电技术研究所 A kind of test method and system for carrying out radiation effect synergistic effect using heavy ion
CN108008289A (en) * 2017-11-22 2018-05-08 西北核技术研究所 A kind of acquisition methods in device proton single particle effect section
CN108008289B (en) * 2017-11-22 2019-12-27 西北核技术研究所 Method for obtaining device proton single event effect cross section
CN108181524A (en) * 2017-12-19 2018-06-19 西北核技术研究所 Irradiate the evaluation method that bottom device obtains electronic system single particle effect sensibility
CN108254628A (en) * 2018-02-02 2018-07-06 湘潭大学 A kind of base station electromagnetic radiation intensity appraisal procedure
CN109214049A (en) * 2018-07-27 2019-01-15 北京圣涛平试验工程技术研究院有限责任公司 A kind of method and device in acquisition device neutron single-particle effect section
CN109657370A (en) * 2018-12-24 2019-04-19 北京航空航天大学 The space of aerospace electron product radiates reliability estimation method
CN111579957A (en) * 2020-04-16 2020-08-25 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Total dose radiation test method, device and equipment for nano MOSFET device
CN111650452A (en) * 2020-05-07 2020-09-11 西北核技术研究院 Method for estimating device space on-orbit low-energy proton single-particle turnover rate
CN112668232A (en) * 2021-01-05 2021-04-16 中国原子能科学研究院 Method, device, equipment and medium for acquiring SEE section caused by nuclear reaction
CN112668232B (en) * 2021-01-05 2022-03-11 中国原子能科学研究院 Method, device, equipment and medium for acquiring SEE section caused by nuclear reaction
CN115356608A (en) * 2022-08-11 2022-11-18 中国科学院近代物理研究所 Wide-range LET value measurement calibration system and method

Also Published As

Publication number Publication date
CN101900770B (en) 2013-01-16

Similar Documents

Publication Publication Date Title
CN101900770B (en) Method and system for assessing radiation resisting capability of device for satellite
Gasiot et al. Multiple cell upsets as the key contribution to the total SER of 65 nm CMOS SRAMs and its dependence on well engineering
Shim et al. Energy-efficient soft error-tolerant digital signal processing
Seifert et al. Multi-cell upset probabilities of 45nm high-k+ metal gate SRAM devices in terrestrial and space environments
CN102928773B (en) Method for testing proton/single event effect resisting capacity of device
Rossi et al. Impact of bias temperature instability on soft error susceptibility
Loveless et al. On-chip measurement of single-event transients in a 45 nm silicon-on-insulator technology
Autran et al. Soft-errors induced by terrestrial neutrons and natural alpha-particle emitters in advanced memory circuits at ground level
Zebrev et al. Compact modeling and simulation of heavy ion-induced soft error rate in space environment: Principles and validation
CN107229775A (en) The method that photoelectronic imaging device radiation injury is assessed using Monte Carlo simulation
Johnston et al. Low dose rate effects in shallow trench isolation regions
Martinie et al. Underground experiment and modeling of alpha emitters induced soft-error rate in CMOS 65 nm SRAM
CN106124953A (en) Single particle effect Forecasting Methodology and device
CN104732031A (en) Heavy ion testing data based device proton overturning cross section retrieving method
Constantinescu Neutron SER characterization of microprocessors
Martinie et al. Alpha-particle induced soft-error rate in CMOS 130 nm SRAM
Oldiges et al. Theoretical determination of the temporal and spatial structure of/spl alpha/-particle induced electron-hole pair generation in silicon
Han et al. Single event hard error due to terrestrial radiation
Maillard et al. Single-Event Evaluation of Xilinx 16nm UltraScale+™ Single Event Mitigation IP
Zhang et al. Single event upset sensitivity of D-flip flop: Comparison of PDSOI with bulk Si at 130 nm technology node
Narasimham et al. Quantifying the reduction in collected charge and soft errors in the presence of guard rings
McGregor et al. Micro-structured high-efficiency semiconductor neutron detectors
Baumann Impact of single-event upsets in deep-submicron silicon technology
Narasimham et al. Characterization of neutron-and alpha-particle-induced transients leading to soft errors in 90-nm CMOS technology
Baggio et al. Neutron-induced SEU in bulk and SOI SRAMs in terrestrial environment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130116

Termination date: 20180525