CN101897009B - 自对准t栅极碳纳米管场效应晶体管器件和用于形成该器件的方法 - Google Patents

自对准t栅极碳纳米管场效应晶体管器件和用于形成该器件的方法 Download PDF

Info

Publication number
CN101897009B
CN101897009B CN2008801095139A CN200880109513A CN101897009B CN 101897009 B CN101897009 B CN 101897009B CN 2008801095139 A CN2008801095139 A CN 2008801095139A CN 200880109513 A CN200880109513 A CN 200880109513A CN 101897009 B CN101897009 B CN 101897009B
Authority
CN
China
Prior art keywords
grid
source electrode
drain electrode
electrode
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008801095139A
Other languages
English (en)
Other versions
CN101897009A (zh
Inventor
A·M·卡尔伯格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RF Nano Corp
Original Assignee
RF Nano Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RF Nano Corp filed Critical RF Nano Corp
Publication of CN101897009A publication Critical patent/CN101897009A/zh
Application granted granted Critical
Publication of CN101897009B publication Critical patent/CN101897009B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/481Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

提供了用于形成自对准碳纳米管(CNT)场效应晶体管(FET)的方法。根据一个特征,形成自对准源极-栅极-漏极(S-G-D)结构使得栅极长度允许被缩短到任意小的值,因此使超高性能的CNT FET成为可能。根据另一特征,栅极的改进设计拥有T形(也被称为T栅极),因此使得能够减小栅极电阻并且还提供增加的功率增益。使用简单的制造步骤来形成所述自对准T栅极的CNT FET以确保低成本、高产量的工艺。

Description

自对准T栅极碳纳米管场效应晶体管器件和用于形成该器件的方法
该申请要求2007年7月31日提交的、序列号为60/952,966的美国临时申请的权益和优先权,其内容通过引用以其整体合并于本文。
技术领域
本发明涉及纳米管(NT)场效应晶体管(FET),更具体地说,涉及自对准T栅极碳纳米管场效应晶体管(CNT FET)。
背景技术
面对纳米管技术的广泛商业化的其中一个挑战是缺少清楚的用于将碳纳米管(CNT)与场效应晶体管集成的途径。随着用于FET的工艺几何尺寸的继续减小,大规模制造FET使得在所有FET上具有一致的特性和统一的特性日益变得更困难,并且甚至将CNT集成入该减小的尺度的FET内也日益变得更困难。
发明内容
根据一个或多个实施例,提供了自对准T栅极碳纳米管场效应晶体管以及用于形成该器件的方法。
在一个或多个实施例中,该方法包括在将在其上形成至少一个FET的半导体衬底上淀积碳纳米管层。接着在CNT层上淀积阻挡层并且使用光刻程序形成图案以形成源极区和漏极区。至少在源极区和漏极区淀积金属层以用作FET的源极和漏极,之后在金属层上淀积介电材料。接着除去阻挡层以在CNT层上定义源极岛/漏极岛。接着在使用仔细控制的光刻程序形成的整个结构上淀积另一阻挡层,以在阻挡层上开窗口,所述窗口定义了没有延伸超出源极岛和漏极岛的栅极区。接着至少在所暴露的栅极区中淀积栅极介电层,之后淀积栅极金属层,以形成自对准T形栅极(T栅极)。T栅极在CNT层上沿着在源极岛/漏极岛之间延伸的栅极长延伸,沿着每一源极岛/漏极岛的侧表面延伸,以及在暴露在图案化的阻挡层中的源极岛/漏极岛的上表面的各自部分上延伸。接着除去阻挡层以形成自对准T栅极CNT FET。
在一个或多个实施例中,通过以该方式形成CNT FET以包括T形栅极,在优化CNT FET的栅极电阻和栅极电容特性的同时,可以将栅极长(即在源极和漏极之间的距离)减小到根据正在使用的工艺几何尺寸能够达到的最小距离。通过将栅极长度缩短到任意小的值,在T栅极的改进T形使得通过增加拥有T形的整个栅极电极的整体宽度能够减小栅极电阻并因此提供了改进的功率增益的同时,提供了超高性能的CNT FET。在一个或多个实施例中,T栅极CNT FET的自对准性质需要比传统FET制造工艺少的光刻步骤来提供用于制造的低成本,高良率的工艺。
附图简述
结合附图参照下述描述,本发明的以上提到的特征将变得更明显,其中相同的标号表示相同的元件,并且其中:
图1至9示出了根据本发明的一个或多个实施例形成自对准T栅极碳纳米管(CNT)场效应晶体管(FET)的方法。
优选实施例的详细描述
本发明定位于自对准T栅极碳纳米管(CNT)场效应晶体管(FET)以及用于形成该器件的方法。
在于此描述的一个或多个实施例中,对于每一描述,虽然可以将纳米管描述为碳纳米管层,但是应理解所述纳米管可以包括任何类型的纳米管,包括但不限于碳纳米管,单壁纳米管(SWNT)和多壁纳米管(MWNT)。此外,也可以以任何一维半导体器件(例如纳米管,纳米线等)或二维半导体器件(例如基于石墨烯的器件等)来实现每一各种实施例。
根据一个或多个实施例,提供了用于形成自对准T栅极碳纳米管场效应晶体管的方法。现在参照图1至8,根据一个或多个实施例说明了形成具有自对准源极-栅极-漏极(S-G-D)结构的CNT FET的各种工艺步骤。
例如通过在硅层10上形成氧化层12,最初地提供开始衬底,如在图1中所示。应理解所述开始衬底可以包括在其上可以形成FET的任何其它类型的衬底,例如但不限于在其上形成所述氧化层12的硅、绝缘体上的硅、堆叠绝缘体上的硅、绝缘体上的SiGe、堆叠绝缘体上的SiGe或任何其它半导体衬底10。可以使用热氧化,CVD淀积,化学氧化或其它氧化形成技术来形成氧化层12。接着使用合适的纳米管合成技术来在氧化层12上淀积碳纳米管层14,如在图2中所示。
接着在CNT层14上淀积光刻胶层16并且使用常规的光刻程序来形成图案以在CNT层14上形成源极区18和漏极区20,如在图3中所示。现在参照图4,在至少迄今形成的结构的部分上淀积金属层22或其它传导材料,使得在CNT层14上的源极区18和漏极区20中形成金属层22,以用作FET的源极19和漏极21。在淀积金属层22之后,在至少形成源极19和漏极21的金属层22的那些部分上淀积电介质。在一个或多个实施例中,介电层材料24可以包括SiNx,不同类型的氧化物或任何其它介电材料。接着剥离光刻胶层16以定义源极岛26和漏极岛28,如在图5中所示。
在一个或多个实施例中,接着在图5的结构上淀积另一光刻胶层30,并且使用常规的光刻程序形成图案以开定义栅极区32的窗口,如在6图中所示。应该仔细地控制对准容差以确保在光刻胶30中形成的栅极区32的窗口没有落入源极岛26和漏极岛28之外。在一个或多个实施例中,还仔细地控制对准容差以确保栅极区32的窗口暴露几乎相等的源极岛26和漏极岛28两者的部分。
在一个或多个实施例中,接着在图6的结构的至少部分上淀积栅极介电层34,使得将栅极介电层34至少形成为延伸入栅极区32内并且在源极岛26和漏极岛28的暴露部分以及在源极岛26和漏极岛28之间延伸的CNT层14上延伸,如在图7中所示。可以将任何适当的栅极介电材料用于栅极介电层34,包括但不限于二氧化硅,氮化硅,氮氧化硅或具有高K值的其它金属氧化物,金属氮化物或金属硅化物电介质。接着在栅极介电层34上淀积栅极电极层36,使得至少在栅极区32中形成的栅极介电层34上淀积该栅极电极层36。在一个或多个实施例中,在源极岛26和漏极岛28的暴露部分以及在源极岛26和漏极岛28之间延伸的CNT层14上形成栅极介电层34,在所述栅极介电层34上形成栅极电极层36。栅极电极层36可以包括金属(例如铝、钨、钽、铂、钼等),多晶硅或在栅极的形成中那些本领域熟练技术人员已知的任何其它传导材料。在一些实施例中,为了使形成工艺的制造容易,可以在结构的整个上表面形成栅极介电层34和栅极电极层36,如在图7中所示。
通过仔细地控制栅极区32的窗口的对准容差,提供了仔细安置的窗口以允许形成自对准栅极36。此外,淀积栅极电介质34还允许形成简单地淀积在栅极电介质34上的自对准栅极36。通过将淀积栅极电介质34和栅极金属36进行组合,从常规的基线FET工艺中消除了掩膜步骤,因此提供了制造具有自对准T栅极36的CNT FET的可靠的、可重复的方法。
在一个或多个实施例中,接着剥离光刻胶层30以形成自对准T栅极CNT FET 38,如在图8中所示。基于它一般地为T形几何形状,以“T栅极”指代栅极36(或否则以具有延伸在源极岛26和漏极岛28上的有翼的侧部分的“U形”指代),如在图8中所示。将栅极36优选地形成为在源极岛26和漏极岛28的几乎相等长度的部分的上面延伸,其中栅极36还与源极岛26和漏极岛28的各自侧表面40和侧表面42邻接地延伸,并且也在源极19和漏极21之间延伸的栅极长44上延伸。
在一个或多个实施例中,该CNT FET 38的自对准性质允许将栅极长度40缩短到任意小的值,因此提高了性能。在CNT FET 38的操作中,可以通过应用到安置在CNT层14上的T栅极电极36以及在源极19电极和漏极21电极之间的半导体衬底10的电压来在源极19电极和漏极21电极之间建立可控电流。通过其尺寸和性能参数来确定CNT FET 38的性能。通过减小化在源极19电极和漏极21电极之间的栅极长40,可以最大化CNT FET 38的性能和功能,用于高频和高速性能。可以将栅极长40形成为以用于正在用来形成CNT FET 38的工艺几何尺寸的工艺工具能够达到的最小距离(例如90nm工艺可以生产90nm栅极长40,而0.35微米工艺可以生产0.35微米栅极长40,以及对于任何工艺技术以此类推)。
应该注意,栅极电极36的电气电阻和电气电容也是CNT FET 38性能中的重要因素。因为栅极电极36的电阻随着它的长度的减小而增加,所以仅仅将栅极长40减小到任意小的值将正常地增加栅极电极36的电阻。根据在此的一个或多个实施例形成的CNT FET 38通过形成特殊成形的实际上具有增加的整个栅极宽的T栅极36,能够实现在源极19电极和漏极21电极之间的最小可能的栅极长40,而仍减小栅极电极36的电阻。T栅极36的T形通过提供超过栅极长40的整个栅极宽来允许减小的栅极电阻,其中整个栅极宽包括在源极19和漏极21之间的栅极长44上充分地延伸的T栅极36的基栅极(base gate)部分46,从基栅极部分46与源极岛26和漏极岛28的各自侧表面40和侧表面42邻接地延伸的侧栅极(side gate)部分48,以及从侧栅极部分48延伸到在源极岛26和漏极岛28的几乎相等的长度的部分的上面延伸的覆盖栅极(overlying gate)部分50,如在图9中所示。在源极岛26和漏极岛28的部分上延伸的覆盖栅极部分50的长度应该选择为适合用于给定的应用,以平衡对源极19电极和漏极21电极的栅极电气电容与栅极电气电阻。在一些实施例中,将侧栅极部分48形成为对基栅极部分46和覆盖栅极部分50两者充分地垂直。
在一个或多个实施例中,因此改进的T栅极CNT FET 38将提供将更大于常规的非自对准和非T栅极CNT FET构造的功率增益。由于栅极设计的“T”性质,与减小T栅极36中栅极电阻产生的增益相比,可以将栅极电容的任何增加控制到最小。
也由于T栅极CNT FET 38的整体源极-漏极-栅极(S-G-D)结构的自对准性质,S-G-D结构将一直是固定的,因此在制造该CNT FET 38器件期间极大地减小了器件到器件的变化。这在大规模制造工艺上对器件之间的统一性是非常有益的。此外,在一个方面,在形成自对准T栅极CNT FET中所包括的设计和步骤的简单化将允许在制造中实现高良率。例如,仅需要单个光刻工艺来形成源极岛26和漏极岛28,并且接着仅需要单个光刻工艺来形成对源极岛26和漏极岛28具有固定关系的T栅极36。相反,许多在先FET非自对准工艺已经包括多个光刻图案步骤来形成源极区和漏极区两者,以及也形成栅极结构。该光刻工艺需要掩膜板互相之间精确地对准,并且形成图案工艺中未对准掩膜板可以引起未对准S-G-D结构的部件。因此,通过需要仅单个光刻图案工艺来形成T栅极36并且也需要仅单个光刻图案工艺来形成源极岛26和漏极岛28,与需要多个光刻图案步骤的常规技术相比,减小了由于未对准掩膜板而引起的错误和不可靠的可能性。
此外,根据本发明的一个或多个实施例形成自对准T栅极CNT FET提供了超出常规非自对准工艺的许多益处。当源极和漏极之间的间距(即栅极长)比常规非自对准工艺中的栅极电极宽度宽时,由于在用于形成源极-漏极电极和栅极电极的光刻步骤之间的未对准,栅极电极和源极(或漏极)电极之间的间距趋向于可变的。此外,当栅极长比栅极电极宽时,因为最多仅可以将栅极电极的宽度缩短到用于给定工艺技术的最小可能的距离(其中栅极长将比那个距离宽),因此不可以将栅极长减小到用于给定工艺技术(例如0.35um)的最小可能的距离。再此外,将栅极电极的宽度减小到用于给定工艺技术的最小可能的距离将导致增加栅极电极电阻。此外,因为在常规非自对准工艺中栅极电极和源极(和漏极)电极之间的间距是可变的,因此电容(Cgd或Cgs)也依赖于用来建立非自对准结构的未对准光刻工艺而变化。因此,根据本发明的一个或多个实施例形成自对准T栅极CNT FET克服了许多这些与常规非自对准工艺关联的问题,并且提供了超出该非自对准结构的若干性能益处和制造益处。在当前的自对准T栅极CNT FET中,在仍减小栅极电极电阻的同时,基于固定的S-G-D结构以一致的方式可以更精确地控制电容(Cgd或Cgs),并且可以将栅极长减小到用于给定工艺技术的最小可能的距离,以增加CNT FET的性能。
如从前述可以看出,提供了用于形成能够为CNT FETs实现高速和高功率的自对准CNT FET而不损害工艺的制造性(即良率)的方法。
虽然根据当前考虑为具体的实施例的内容已经描述了系统和方法,但本发明不限于所公开的实施例。意图覆盖包括在权利要求的精神和范围内的各种修改和类似布置,应该给与其范围最广泛的解释,使得包括所有这种修改和类似结构。本发明包括下述权利要求的任何以及所有实施例。

Claims (11)

1.一种形成碳纳米管CNT场效应晶体管FET的方法,包括:
在衬底上淀积纳米管层;
在所述纳米管层上形成源极和漏极;
通过以下步骤在所述源极和所述漏极之间的所述纳米管层上形成自对准栅极:
在所述纳米管层、所述源极和所述漏极上淀积阻挡层;
在所述阻挡层上形成图案以在栅极区中暴露打开的窗口,所述栅极区在所述源极和所述漏极的部分上并且在延伸于所述源极和所述漏极之间的所述纳米管层上;
在所述源极和所述漏极的至少所述暴露部分以及在延伸于所述源极和所述漏极之间的所述纳米管层上形成栅极介电层;以及
在所述栅极介电层上形成栅极电极层,其中所述栅极介电层和所述图案化的阻挡层用来使所述栅极相对于所述源极和所述漏极进行自对准;
其中所述自对准栅极具有大于所述纳米管层上的所述源极和所述漏极之间的栅极长度距离的整体宽度。
2.根据权利要求1所述的方法,还包括在碳纳米管CNT场效应晶体管FET中形成所述源极-漏极-栅极结构S-D-G。
3.根据权利要求1所述的方法,还包括形成所述栅极以包括:
基栅极部分,所述基栅极部分在所述纳米管层上的所述源极和所述漏极之间充分地延伸;
侧栅极部分,所述侧栅极部分从所述基栅极部分的两端延伸,并且延伸以与所述源极和所述漏极的各自的侧表面相邻;以及
覆盖栅极部分,所述覆盖栅极部分从各自的侧栅极部分延伸,并且在所述源极和所述漏极的各自的部分上延伸。
4.根据权利要求1所述的方法,其中使用单个光刻图案化工艺形成所述源极和所述漏极。
5.根据权利要求1所述的方法,其中使用单个光刻图案化工艺形成所述自对准栅极。
6.根据权利要求1所述的方法,还包括以正在使用的工艺几何尺寸能够达到的最小可能的距离在所述源极和所述漏极之间形成所述栅极长度。
7.一种碳纳米管CNT场效应晶体管FET,包括:
基衬底;
淀积在所述衬底上的纳米管层;
在所述纳米管层上形成的源极和漏极;
在所述源极和所述漏极之间的所述纳米管层上形成的自对准栅极,其中所述自对准栅极包括大于在所述纳米管层上的在所述源极和所述漏极之间的栅极长度距离的整体宽度;
其中所述自对准栅极通过以下步骤形成:
在所述纳米管层、所述源极和所述漏极上淀积阻挡层;
在所述阻挡层上形成图案以在栅极区中暴露打开的窗口,所述栅极区在所述源极和所述漏极的部分上并且在延伸于所述源极和所述漏极之间的所述纳米管层上;
在所述源极和所述漏极的至少所述暴露部分以及在延伸于所述源极和所述漏极之间的所述纳米管层上形成栅极介电层;以及
在所述栅极介电层上形成栅极电极层,其中所述栅极介电层和所述图案化的阻挡层用来使所述栅极相对于所述源极和所述漏极进行自对准。
8.根据权利要求7所述的碳纳米管场效应晶体管,其中所述自对准栅极还包括:
基栅极部分,所述基栅极部分在所述纳米管层上的所述源极和所述漏极之间充分地延伸;
侧栅极部分,所述侧栅极部分从所述基栅极部分的两端延伸,并且延伸以与所述源极和所述漏极的各自的侧表面相邻;以及
覆盖栅极部分,所述覆盖栅极部分从各自的侧栅极部分延伸,并且在所述源极和所述漏极的各自的部分上延伸。
9.根据权利要求8所述的碳纳米管场效应晶体管,其中所述侧栅极部分相对于所述基栅极部分和所述覆盖栅极部分是垂直的。
10.根据权利要求7所述的碳纳米管场效应晶体管,其中将在所述源极和所述漏极之间的所述栅极长度形成为正在用于形成所述碳纳米管场效应晶体管的工艺几何尺寸能够达到的最小可能的距离。
11.根据权利要求7所述的碳纳米管场效应晶体管,其中所述自对准栅极还包括:
栅极介电层,所述栅极介电层在所述源极和所述漏极的至少部分上以及在延伸于所述源极和所述漏极之间的所述纳米管层上;
栅极电极层,所述栅极电极层在所述栅极介电层上,其中所述栅极介电层用来帮助所述栅极相对于所述源极和所述漏极的自对准。
CN2008801095139A 2007-07-31 2008-07-30 自对准t栅极碳纳米管场效应晶体管器件和用于形成该器件的方法 Expired - Fee Related CN101897009B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US95296607P 2007-07-31 2007-07-31
US60/952,966 2007-07-31
PCT/US2008/071666 WO2009018395A2 (en) 2007-07-31 2008-07-30 Self-aligned t-gate carbon nanotube field effect transistor devices and method for forming the same

Publications (2)

Publication Number Publication Date
CN101897009A CN101897009A (zh) 2010-11-24
CN101897009B true CN101897009B (zh) 2013-11-06

Family

ID=40305264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801095139A Expired - Fee Related CN101897009B (zh) 2007-07-31 2008-07-30 自对准t栅极碳纳米管场效应晶体管器件和用于形成该器件的方法

Country Status (4)

Country Link
US (1) US7858454B2 (zh)
CN (1) CN101897009B (zh)
TW (1) TW200921799A (zh)
WO (1) WO2009018395A2 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354291B2 (en) 2008-11-24 2013-01-15 University Of Southern California Integrated circuits based on aligned nanotubes
US20110101302A1 (en) * 2009-11-05 2011-05-05 University Of Southern California Wafer-scale fabrication of separated carbon nanotube thin-film transistors
WO2011115891A2 (en) * 2010-03-15 2011-09-22 University Of Florida Research Foundation Inc. Graphite and/or graphene semiconductor devices
GB2479150B (en) 2010-03-30 2013-05-15 Pragmatic Printing Ltd Transistor and its method of manufacture
US8513099B2 (en) 2010-06-17 2013-08-20 International Business Machines Corporation Epitaxial source/drain contacts self-aligned to gates for deposited FET channels
US9368599B2 (en) * 2010-06-22 2016-06-14 International Business Machines Corporation Graphene/nanostructure FET with self-aligned contact and gate
US8404539B2 (en) 2010-07-08 2013-03-26 International Business Machines Corporation Self-aligned contacts in carbon devices
US8344358B2 (en) * 2010-09-07 2013-01-01 International Business Machines Corporation Graphene transistor with a self-aligned gate
US8530886B2 (en) * 2011-03-18 2013-09-10 International Business Machines Corporation Nitride gate dielectric for graphene MOSFET
US8692230B2 (en) * 2011-03-29 2014-04-08 University Of Southern California High performance field-effect transistors
US8455365B2 (en) 2011-05-19 2013-06-04 Dechao Guo Self-aligned carbon electronics with embedded gate electrode
US8860137B2 (en) 2011-06-08 2014-10-14 University Of Southern California Radio frequency devices based on carbon nanomaterials
CN102629577B (zh) 2011-09-29 2013-11-13 京东方科技集团股份有限公司 一种tft阵列基板及其制造方法和显示装置
CN102629579B (zh) * 2011-09-29 2014-04-16 京东方科技集团股份有限公司 一种柔性tft阵列基板及其制造方法和显示装置
US8569121B2 (en) * 2011-11-01 2013-10-29 International Business Machines Corporation Graphene and nanotube/nanowire transistor with a self-aligned gate structure on transparent substrates and method of making same
US8895417B2 (en) * 2011-11-29 2014-11-25 International Business Machines Corporation Reducing contact resistance for field-effect transistor devices
US8772910B2 (en) 2011-11-29 2014-07-08 International Business Machines Corporation Doping carbon nanotubes and graphene for improving electronic mobility
US8420474B1 (en) 2012-01-11 2013-04-16 International Business Machines Corporation Controlling threshold voltage in carbon based field effect transistors
US8623717B2 (en) 2012-06-12 2014-01-07 International Business Machines Corporation Side-gate defined tunable nanoconstriction in double-gated graphene multilayers
US8609481B1 (en) * 2012-12-05 2013-12-17 International Business Machines Corporation Gate-all-around carbon nanotube transistor with selectively doped spacers
CN103295912B (zh) * 2013-05-21 2015-12-02 中国电子科技集团公司第十三研究所 一种基于自对准技术的石墨烯晶体管制造方法
US9246112B2 (en) 2014-01-08 2016-01-26 International Business Machines Corporation Semiconductor device with ballistic gate length structure
US9379327B1 (en) * 2014-12-16 2016-06-28 Carbonics Inc. Photolithography based fabrication of 3D structures
US10276698B2 (en) 2015-10-21 2019-04-30 International Business Machines Corporation Scalable process for the formation of self aligned, planar electrodes for devices employing one or two dimensional lattice structures
CN105336792B (zh) * 2015-11-02 2019-03-01 京东方科技集团股份有限公司 碳纳米管半导体器件及其制备方法
US9698363B1 (en) 2015-12-30 2017-07-04 International Business Machines Corporation RF-transistors with self-aligned point contacts
US9748334B1 (en) 2016-02-18 2017-08-29 International Business Machines Corporation Fabrication of nanomaterial T-gate transistors with charge transfer doping layer
US11490851B2 (en) 2016-03-14 2022-11-08 Newton Howard Neuroanalytic, neurodiagnostic, and therapeutic tools
CN108258054A (zh) * 2016-12-28 2018-07-06 中芯国际集成电路制造(上海)有限公司 石墨烯器件及其制造方法
US10170702B2 (en) * 2017-01-12 2019-01-01 International Business Machines Corporation Intermetallic contact for carbon nanotube FETs
US10580924B2 (en) * 2018-04-04 2020-03-03 The Florida International University Board Of Trustees Graphene devices for terahertz detection and emission
US10325982B1 (en) 2018-05-17 2019-06-18 Northrop Grumman Systems Corporation Drain ledge for self-aligned gate and independent channel region and drain-side ridges for SLCFET

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334234A (zh) * 2000-07-18 2002-02-06 Lg电子株式会社 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管
US6821911B1 (en) * 2003-08-20 2004-11-23 Industrial Technology Research Institute Manufacturing method of carbon nanotube transistors
US6962839B2 (en) * 2003-05-05 2005-11-08 Industrial Technology Research Institute Apparatus and manufacturing process of carbon nanotube gate field effect transistor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3826013B2 (ja) * 2001-02-28 2006-09-27 キヤノン株式会社 画像形成装置
US6891227B2 (en) * 2002-03-20 2005-05-10 International Business Machines Corporation Self-aligned nanotube field effect transistor and method of fabricating same
US7358121B2 (en) * 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334234A (zh) * 2000-07-18 2002-02-06 Lg电子株式会社 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管
US6962839B2 (en) * 2003-05-05 2005-11-08 Industrial Technology Research Institute Apparatus and manufacturing process of carbon nanotube gate field effect transistor
US6821911B1 (en) * 2003-08-20 2004-11-23 Industrial Technology Research Institute Manufacturing method of carbon nanotube transistors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP平8-107064A 1996.04.23

Also Published As

Publication number Publication date
WO2009018395A3 (en) 2009-03-12
TW200921799A (en) 2009-05-16
US7858454B2 (en) 2010-12-28
CN101897009A (zh) 2010-11-24
US20090032804A1 (en) 2009-02-05
WO2009018395A2 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
CN101897009B (zh) 自对准t栅极碳纳米管场效应晶体管器件和用于形成该器件的方法
KR100511045B1 (ko) 리세스된 게이트 전극을 갖는 반도체 소자의 집적방법
JP5695656B2 (ja) 自己整列グラフェン・トランジスタ
US8803130B2 (en) Graphene transistors with self-aligned gates
US8022393B2 (en) Lithographic process using a nanowire mask, and nanoscale devices fabricated using the process
US20070122986A1 (en) Carbon nanotube field effect transistor and methods for making same
JP5852643B2 (ja) 自己整合cntfetデバイスおよびその形成方法
US8586437B2 (en) Semiconductor device and method of manufacturing the semiconductor device
CN110571333B (zh) 一种无掺杂晶体管器件制作方法
US8658461B2 (en) Self aligned carbide source/drain FET
KR20090028360A (ko) 상온동작 단전자 소자 및 그 제조방법
CN115863439A (zh) Ldmos器件及其制作方法
JPH10261789A (ja) 半導体デバイスのための電極構造
KR100996778B1 (ko) 단전자 터널링 인버터 회로 및 그 제조방법
KR100496432B1 (ko) 자기조립 단분자막 전계효과 트랜지스터 및 그 제조방법
KR100584719B1 (ko) 쓰리-게이트 전계효과 분자트랜지스터 및 그 제조방법
CN109560125A (zh) 金属堆叠源漏电极场效应管及其制作方法
CN220172135U (zh) 过渡金属硫化物垂直场效应晶体管
WO2014192282A1 (ja) 有機薄膜トランジスタ
JP3249445B2 (ja) 電界効果トランジスタの製造方法
CN116978948A (zh) 半导体结构及其形成方法
CN116978949A (zh) 半导体结构及其形成方法
CN117650141A (zh) 一种基于二维沟道的堆叠纳米片器件及其制备方法
KR101160585B1 (ko) 탄소나노튜브를 게이트로 이용한 트랜지스터 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131106

Termination date: 20140730

EXPY Termination of patent right or utility model