CN101888218A - Analog reflective I-Q vector modulation circuit based on GaAs HBT device - Google Patents
Analog reflective I-Q vector modulation circuit based on GaAs HBT device Download PDFInfo
- Publication number
- CN101888218A CN101888218A CN 201010214611 CN201010214611A CN101888218A CN 101888218 A CN101888218 A CN 101888218A CN 201010214611 CN201010214611 CN 201010214611 CN 201010214611 A CN201010214611 A CN 201010214611A CN 101888218 A CN101888218 A CN 101888218A
- Authority
- CN
- China
- Prior art keywords
- attenuator
- port
- analog
- lange coupler
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001218 Gallium arsenide Inorganic materials 0.000 title claims abstract description 32
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 230000003071 parasitic effect Effects 0.000 claims abstract description 15
- 238000004088 simulation Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
Images
Landscapes
- Non-Reversible Transmitting Devices (AREA)
Abstract
本发明公开了一种基于GaAs HBT器件的模拟反射型I-Q矢量调制电路,主要解决现有调制电路占用芯片面积比大,成本高的问题。其包括:一个3-dB lange耦合器(1),两个模拟反射型衰减器(6,7),和1个3-dB wilkinson功率合成器(10),该3-dB lange耦合器的直通端口输出直接通过第一衰减器(6)移相后输出到功率合成器(7)的一个输入端;该3-dB lange耦合器的耦合端口输出直接通过第二衰减器(6)移相后输出到功率合成器(10)的另一个输入端,其中每个模拟反射型衰减器的砷化镓异质结双极晶体管,其集电极分别并联连接有电阻R3和R4,用以减小Vb=0时的反射系数|Γ|,其发射极分别串联连接有电感L1和L2,用以抵消由于HBT器件的寄生效应。本发明可用于产生I-Q调制信号或者进行频率转换。
The invention discloses an analog reflection type IQ vector modulation circuit based on a GaAs HBT device, which mainly solves the problems that the existing modulation circuit occupies a large chip area ratio and high cost. It includes: a 3-dB lange coupler (1), two analog reflection attenuators (6, 7), and a 3-dB Wilkinson power combiner (10), the 3-dB lange coupler through The port output is directly output to an input end of the power combiner (7) after phase-shifting through the first attenuator (6); the coupled port output of the 3-dB lange coupler is directly phase-shifted through the second attenuator (6) Output to the other input terminal of the power combiner (10), wherein the gallium arsenide heterojunction bipolar transistor of each analog reflective attenuator, its collector is respectively connected in parallel with resistors R3 and R4, in order to reduce Vb = 0 when the reflection coefficient |Γ|, the emitters are respectively connected in series with inductors L1 and L2 to offset the parasitic effect due to the HBT device. The invention can be used to generate IQ modulated signals or perform frequency conversion.
Description
技术领域technical field
本发明属于集成电路技术领域,特别是一种反射型I-Q矢量调制电路,用于数字通信中,产生I-Q调制信号或者进行频率转换。The invention belongs to the technical field of integrated circuits, in particular to a reflection type I-Q vector modulation circuit, which is used in digital communication to generate I-Q modulation signals or perform frequency conversion.
背景技术Background technique
传统上讲,在微波以及毫米波应用中,矢量调制器主要有两种实现结构。第一种是利用两个正交二相调制器通过3-dB功率合成器组成;第二种是利用一个可变衰减器和一个360°可变相移器组成。虽然在第二种结构中,插入损耗非常小,但是需要衰减器有固定的相位以及相移器有固定的插入损耗,这使得电路设计非常的困难。因此,在微波以及毫米波应用中,由二相可变模拟反射型衰减器所组成的第一种结构往往得到广泛的应用。Traditionally, there are two main implementation structures for vector modulators in microwave and millimeter wave applications. The first is composed of two quadrature bi-phase modulators through a 3-dB power combiner; the second is composed of a variable attenuator and a 360° variable phase shifter. Although in the second structure, the insertion loss is very small, it requires the attenuator to have a fixed phase and the phase shifter to have a fixed insertion loss, which makes the circuit design very difficult. Therefore, in microwave and millimeter wave applications, the first structure consisting of two-phase variable analog reflective attenuators is often widely used.
二相可变模拟反射型衰减器应用于矢量调制器是由Devlin和Minnis首先提出的。反射型衰减器是由作为正交混合网络的Lange耦合器和两个冷模器件组成,冷模器件采用高电子迁移率晶体管HEMT或者异质结双极型晶体管HBT。采用冷模HEMT器件需要负的偏压来实现调制功能,而采用冷模HBT仅仅需要正偏压就可以实现。冷模HBT器件有较大的寄生参数,通过平衡或者推挽式电路结构可以消除由寄生效应所引起的幅度和相位的误差。这种结构可以实现较好的对称星座图,但是占用芯片面积比较大,成本比较高。The application of the two-phase variable analog reflective attenuator to the vector modulator was first proposed by Devlin and Minnis. The reflective attenuator is composed of a Lange coupler as an orthogonal hybrid network and two cold-mode devices. The cold-mode devices use high electron mobility transistors HEMT or heterojunction bipolar transistors HBT. The use of cold-mode HEMT devices requires a negative bias voltage to realize the modulation function, while the use of cold-mode HBT only requires a positive bias voltage. Cold-mode HBT devices have relatively large parasitic parameters, and the amplitude and phase errors caused by parasitic effects can be eliminated through a balanced or push-pull circuit structure. This structure can realize a better symmetrical constellation diagram, but occupies a relatively large chip area and costs relatively high.
发明内容Contents of the invention
本发明的目的在于克服上述矢量调制器的不足,提供一种基于GaAsHBT器件的模拟反射型I-Q矢量调制电路,以减小芯片占用面积和功耗,提高芯片性能。The purpose of the present invention is to overcome the shortcomings of the above-mentioned vector modulator, and provide an analog reflective I-Q vector modulation circuit based on GaAsHBT devices, so as to reduce the occupied area and power consumption of the chip, and improve the performance of the chip.
本发明的技术方案是这样实现的:Technical scheme of the present invention is realized like this:
1.技术原理1. Technical principle
基于GaAs HBT器件的模拟反射型I-Q矢量调制电路的插入损耗主要由衰减器的可变电阻终端GaAs HBT的集电极的反射系数Γ决定,要求反射系数Γ在Vb=0和Vb=Von两种状态时的幅度相等,相位差为180°。当Vb=0时,可变电阻终端GaAs HBT的阻抗远远大于50Ω,这样信号传输到可变电阻终端GaAs HBT时反射系数很大;当Vb=Von时,由于GaAs HBT器件中存在寄生电阻,可变电阻终端GaAs HBT的阻抗降低不到理想的状态,使得信号传输到可变电阻终端GaAs HBT时反射系数比Vb=0时小。通过在GaAs HBT集电极并联一个相当的电阻可以适当减小Vb=0时的反射系数|Γ|,使得反射型衰减器的可变电阻终端GaAs HBT的集电极的反射系数Γ在Vb=0和Vb=Von两种状态时的幅度相等。由于GaAs HBT器件的基极、集电极以及发射极彼此之间的寄生电容所造成的寄生效应,所以反射系数Γ在Vb=0和Vb=Von两种状态时相位差远离180°,通过在GaAs HBT发射极串联一个电感来抵消这种寄生效应,使得反射型衰减器的可变电阻终端GaAs HBT的集电极的反射系数Γ在Vb=0和Vb=Von两种状态时的相位差为180°The insertion loss of the analog reflective I-Q vector modulation circuit based on GaAs HBT devices is mainly determined by the reflection coefficient Γ of the collector of the variable resistance terminal GaAs HBT of the attenuator, and the reflection coefficient Γ is required to be in two states of Vb=0 and Vb=Von The amplitudes are equal and the phase difference is 180°. When Vb=0, the impedance of the variable resistance terminal GaAs HBT is much greater than 50Ω, so the reflection coefficient is very large when the signal is transmitted to the variable resistance terminal GaAs HBT; when Vb=Von, due to the parasitic resistance in the GaAs HBT device, The impedance reduction of the variable resistor terminal GaAs HBT is not ideal, so that the reflection coefficient when the signal is transmitted to the variable resistor terminal GaAs HBT is smaller than that when Vb=0. The reflection coefficient |Γ| when Vb=0 can be appropriately reduced by connecting a considerable resistance in parallel with the collector of GaAs HBT, so that the reflection coefficient Γ of the collector of the variable resistance terminal GaAs HBT of the reflective attenuator is between Vb=0 and The magnitudes of Vb=Von in both states are equal. Due to the parasitic effect caused by the parasitic capacitance between the base, collector and emitter of the GaAs HBT device, the phase difference of the reflection coefficient Γ is far away from 180° in the two states of Vb=0 and Vb=Von. An inductor is connected in series with the emitter of the HBT to offset this parasitic effect, so that the reflection coefficient Γ of the collector of the variable resistance terminal GaAs HBT of the reflective attenuator has a phase difference of 180° in the two states of Vb=0 and Vb=Von
2.调制电路结构2. Modulation circuit structure
本发明的在调制电路,包括:一个3-dB lange耦合器,两个模拟反射型衰减器,和1个3-dB wilkinson功率合成器,该3-dB lange耦合器的直通端口输出直接通过第一衰减器移相后输出到功率合成器的一个输入端;该3-dB lange耦合器的耦合端口直接通过第二衰减器移相后输出到功率合成器的另一个输入端,功率合成器对输入的两个信号合成后从输出端输出。The modulation circuit of the present invention includes: a 3-dB lange coupler, two analog reflection attenuators, and a 3-dB wilkinson power combiner, the output of the through port of the 3-dB lange coupler directly passes through the first An attenuator is phase-shifted and then output to an input of the power combiner; the coupled port of the 3-dB lange coupler is directly output to the other input of the power combiner after being phase-shifted by the second attenuator. The two input signals are synthesized and output from the output terminal.
所述的模拟反射型衰减器,包括一个3-dB lange耦合器,两个砷化镓异质结双极晶体管Q1和Q2,以及两个电阻R3和R4,该3-dB lange耦合器的输入端口作为衰减器的输入端口,隔离端口作为衰减器的输出端口;该3-dB lange耦合器的直通端口和耦合端口分别与Q1和Q2的集电极相连;Q1和Q2的基极分别与R3、R4相连,电阻R3和R4的另一端连接在一起作为衰减器的控制端口Vb;其中Q1和Q2的集电极分别并联连接有电阻R1和R2,用以减小Vb=0时的反射系数|Γ|;Q1和Q2的发射极分别串联连接有电感L1和L2,用以抵消由于HBT器件的基极、集电极以及发射极彼此之间的寄生电容所造成的寄生效应。The analog reflective attenuator includes a 3-dB lange coupler, two gallium arsenide heterojunction bipolar transistors Q1 and Q2, and two resistors R3 and R4, the input of the 3-dB lange coupler The port is used as the input port of the attenuator, and the isolated port is used as the output port of the attenuator; the through port and coupled port of the 3-dB lange coupler are respectively connected to the collectors of Q1 and Q2; the bases of Q1 and Q2 are respectively connected to R3, R4 is connected, and the other ends of resistors R3 and R4 are connected together as the control port Vb of the attenuator; the collectors of Q1 and Q2 are respectively connected in parallel with resistors R1 and R2 to reduce the reflection coefficient |Γ when Vb=0 |; The emitters of Q1 and Q2 are respectively connected in series with inductors L1 and L2 to offset the parasitic effect caused by the parasitic capacitance between the base, collector and emitter of the HBT device.
本发明具有如下优点:The present invention has the following advantages:
(1)本发明的调制电路只采用两个模拟反射型衰减器,直接连接在3-dBlange耦合器的直通端口和耦合端口,并且直接通过3-dB wilkinson功率合成器进行合成,相对于以往的平衡或者推挽式电路结构的调制电路采用四个模拟反射型衰减器以及附加四个耦合器来实现功能,在不影响电路功能的前提下节省了大量的芯片面积,从而节省了制作成本。(1) The modulation circuit of the present invention only adopts two analog reflective attenuators, directly connected to the through port and the coupled port of the 3-dBlange coupler, and directly synthesized by the 3-dB Wilkinson power combiner, compared to the previous The modulation circuit with a balanced or push-pull circuit structure uses four analog reflective attenuators and four additional couplers to realize the function, which saves a lot of chip area without affecting the circuit function, thereby saving the production cost.
(2)本发明由于在GaAs HBT器件Q1和Q2的集电极分别并联连接了一个阻值相等的电阻R1和R2,使得Vb=0时的反射系数|Γ|减小,从而使反射型衰减器的可变电阻终端GaAs HBT的集电极的反射系数Γ在Vb=0和Vb=Von两种状态时的幅度相等,减小了整体电路的插入损耗。(2) In the present invention, a resistor R1 and R2 with equal resistance are connected in parallel to the collector electrodes of GaAs HBT devices Q1 and Q2 respectively, so that the reflection coefficient |Γ| when Vb=0 is reduced, thereby making the reflective attenuator The reflection coefficient Γ of the collector of the variable resistance terminal GaAs HBT has the same amplitude in the two states of Vb=0 and Vb=Von, which reduces the insertion loss of the overall circuit.
(3)本发明由于在GaAs HBT器件Q1和Q2的发射极分别串联连接了一个电感值相等的电感L1和L2,从而抵消由于GaAs HBT器件的基极、集电极以及发射极彼此之间的寄生电容所造成的寄生效应,使得反射型衰减器的可变电阻终端GaAs HBT的集电极的反射系数Γ在Vb=0和Vb=Von两种状态时的相位差为180°,在减小整体电路的插入损耗的同时提高了相位调制的精确度。(3) In the present invention, an inductance L1 and L2 having equal inductance values are respectively connected in series at the emitters of the GaAs HBT devices Q1 and Q2, thereby offsetting the parasitic between the base, the collector and the emitters of the GaAs HBT devices. The parasitic effect caused by the capacitance makes the reflection coefficient Γ of the collector of the variable resistance terminal GaAs HBT of the reflective attenuator have a phase difference of 180° in the two states of Vb=0 and Vb=Von, which reduces the overall circuit The insertion loss is improved while improving the accuracy of phase modulation.
附图说明Description of drawings
图1是现有基于GaAs HBT器件的模拟反射型I-Q矢量调制电路图;Figure 1 is a circuit diagram of the existing analog reflective I-Q vector modulation based on GaAs HBT devices;
图2是现有模拟反射型衰减器电路图;Fig. 2 is a circuit diagram of an existing analog reflective attenuator;
图3是本发明基于GaAs HBT器件的模拟反射型I-Q矢量调制电路图;Fig. 3 is the analog reflection type I-Q vector modulation circuit diagram based on GaAs HBT device of the present invention;
图4是本发明中的模拟反射型衰减器电路图;Fig. 4 is the analog reflection type attenuator circuit diagram among the present invention;
图5是本发明的模拟反射型衰减器在Vb=0和Vb=Von两种状态时的反射系数幅度的比值以及相位差。Fig. 5 shows the ratio of the amplitude of the reflection coefficient and the phase difference of the analog reflection attenuator of the present invention in the two states of Vb=0 and Vb=Von.
具体实施方式Detailed ways
参照图1,现有基于GaAs HBT器件的模拟反射型I-Q矢量调制电路图,包括五个3-dB lange耦合器1,2,3,4,5,四个模拟反射型衰减器6,7,8,9,和一个3-dB wilkinson功率合成器10,该3-dB lange耦合器有四个端口,分别为输入端口,隔离端口,直通端口以及耦合端口,信号从输入端口输入,从直通端口和耦合端口输出分别与输入信号相位相差0°和90°的信号。该第一3-dB lange耦合器1的输入端口作为调制电路的输入,直通端口和耦合端口分别连接第二3-dB lange耦合器2,和第三3-dB lange耦合器3的输入端口;该第二3-dB lange耦合器2的耦合端口和直通端口分别连接第一模拟反射型衰减器6和第二模拟反射型衰减器7的输入;该第一模拟反射型衰减器6和第二模拟反射型衰减器7的输出分别连接第四3-dB lange耦合器4的耦合端口和直通端口;第一模拟反射型衰减器6控制端口VI和第二模拟反射型衰减器7控制端口的控制信号高低电平相反,作为调制电路的两个控制端;该第三3-dB lange耦合器3的耦合端口和直通端口分别连接第三模拟反射型衰减器8和第四模拟反射型衰减器9的输入;该第三模拟反射型衰减器8和第四模拟反射型衰减器9的输出分别连接第五3-dB lange耦合器5的耦合端口和直通端口;第一模拟反射型衰减器8控制端口VQ和第二模拟反射型衰减器9控制端口的控制信号高低电平相反,作为调制电路的另外两个控制端;该3-dB lange耦合器1,2,3,4,5的隔离端口与地之间各连接一个50Ω的电阻;该第四3-dB lange耦合器4的输入端口连接3-dB wilkinson功率合成器10的一个输入端口;该第五3-dB lange耦合器5的输入端口连接3-dB wilkinson功率合成器10的另一个输入端口;该3-dB wilkinson功率合成器10的输出端口作为调制电路的输出。Referring to Figure 1, the existing analog reflective IQ vector modulation circuit diagram based on GaAs HBT devices, including five 3-dB
参照图2,现有模拟反射型衰减器电路图,包括一个3-dB lange耦合器,两个砷化镓异质结双极晶体管Q1和Q2,以及两个电阻R1和R2,该3-dB lange耦合器的输入端口作为衰减器的输入端口,隔离端口作为衰减器的输出端口;该3-dB lange耦合器的直通端口输出与输入信号相位相差0°的信号并与Q1集电极相连,耦合端口输出与输入信号相位相差90°的信号并与Q2的集电极相连;Q1和Q2的基极分别与R1、R2相连,电阻R1和R2的另一端连接在一起作为衰减器的控制端口Vb。Referring to Figure 2, the circuit diagram of an existing analog reflective attenuator includes a 3-dB lange coupler, two gallium arsenide heterojunction bipolar transistors Q1 and Q2, and two resistors R1 and R2, the 3-dB lange The input port of the coupler is used as the input port of the attenuator, and the isolation port is used as the output port of the attenuator; the through port of the 3-dB lange coupler outputs a signal with a phase difference of 0° from the input signal and is connected to the collector of Q1, and the coupled port The output signal with a phase difference of 90° from the input signal is connected to the collector of Q2; the bases of Q1 and Q2 are connected to R1 and R2 respectively, and the other ends of resistors R1 and R2 are connected together as the control port Vb of the attenuator.
参照图3,本发明基于GaAs HBT器件的模拟反射型I-Q矢量调制电路,主要由一个3-dB lange耦合器1,1个3-dB wilkinson功率合成器10,和两个模拟反射型衰减器6与7组成。该3-dB lange耦合器的直通端口输出与输入信号相位相差0°的信号,并直接通过第一衰减器6移相后输出到功率合成器10的一个输入端;该3-dB lange耦合器的耦合端口输出与输入信号相位相差90°的信号,并直接通过第二衰减器7移相后输出到功率合成器10的另一个输入端,功率合成器10对该两个输入信号合成后输出;第一模拟反射型衰减器6控制端口VI和第二模拟反射型衰减器7控制端口VQ作为调制电路的两个控制端。Referring to Fig. 3, the analog reflective I-Q vector modulation circuit of the present invention based on GaAs HBT device mainly consists of a 3-dB lange coupler 1, a 3-dB wilkinson power combiner 10, and two analog
参照图4,本发明中的模拟反射型衰减器,包括一个3-dB lange耦合器,两个砷化镓异质结双极晶体管Q1和Q2,四个电阻R1,R2,R3和R4,以及两个电感L1和L2,其中,电阻R3和R4的阻值相等,且为140±1Ω;电感L1和L2的电感值相等,且为43±1pH。该3-dB lange耦合器的输入端口作为衰减器的输入端口,隔离端口作为衰减器的输出端口;该3-dB lange耦合器的直通端口和耦合端口分别与Q1和Q2的集电极相连;Q1和Q2的集电极分别与电阻R3和R4并联连接,用以减小Vb=0时的反射系数|Γ|;Q1和Q2的基极分别与R1、R2相连,电阻R1和R2的另一端连接在一起作为衰减器的控制端口Vb;Q1和Q2的发射极分别与电感L1和L2串联连接,用以抵消由于HBT器件的基极、集电极以及发射极彼此之间的寄生电容所造成的寄生效应。在控制端口Vb等于低电平0时输出端口输出的信号与Vb等于高电平Von时输出端口输出的信号相位差为180°。Referring to Fig. 4, the analog reflection type attenuator among the present invention comprises a 3-dB lange coupler, two gallium arsenide heterojunction bipolar transistors Q1 and Q2, four resistors R1, R2, R3 and R4, and The two inductors L1 and L2, wherein, the resistance values of the resistors R3 and R4 are equal, and are 140±1Ω; the inductance values of the inductors L1 and L2 are equal, and are 43±1pH. The input port of the 3-dB lange coupler is used as the input port of the attenuator, and the isolation port is used as the output port of the attenuator; the through port and the coupled port of the 3-dB lange coupler are connected to the collectors of Q1 and Q2 respectively; Q1 The collectors of Q1 and Q2 are respectively connected in parallel with resistors R3 and R4 to reduce the reflection coefficient |Γ| when Vb=0; the bases of Q1 and Q2 are connected with R1 and R2 respectively, and the other ends of resistors R1 and R2 are connected Together as the control port Vb of the attenuator; the emitters of Q1 and Q2 are connected in series with the inductors L1 and L2 respectively to offset the parasitic caused by the parasitic capacitance between the base, collector and emitter of the HBT device effect. The phase difference between the signal output by the output port when the control port Vb is equal to low level 0 and the signal output by the output port when Vb is equal to high level Von is 180°.
对本发明的模拟反射型衰减器在Vb=0和Vb=Von两种状态时的反射系数幅度的比值以及相位差仿真结果,如图5所示,其中图5(a)为模拟反射型衰减器在Vb=0和Vb=Von两种状态时的反射系数幅度的比值,图5(b)为模拟反射型衰减器在Vb=0和Vb=Von两种状态时的反射系数相位差。由图5可见,本发明的模拟反射型衰减器,在信号频率为30GHz时,可变电阻终端GaAs HBT的集电极的反射系数Γ在Vb=0和Vb=Von两种状态时的幅度之比为1,相位差为180°。说明本发明模拟反射型衰减器的可变电阻终端GaAs HBT的集电极的反射系数Γ达到了模拟反射型I-Q矢量调制电路的要求,在实现功能的同时减小了插入损耗。The ratio and the phase difference simulation results of the reflection coefficient magnitude and the phase difference of the simulated reflective attenuator of the present invention in Vb=0 and Vb=Von two states, as shown in Figure 5, wherein Figure 5 (a) is the simulated reflective attenuator The ratio of the amplitude of the reflection coefficient in the two states of Vb=0 and Vb=Von, Figure 5(b) shows the phase difference of the reflection coefficient of the simulated reflective attenuator in the two states of Vb=0 and Vb=Von. As can be seen from Fig. 5, the analog reflection type attenuator of the present invention, when the signal frequency is 30GHz, the ratio of the reflection coefficient Γ of the collector electrode of the variable resistance terminal GaAs HBT in the two states of Vb=0 and Vb=Von is 1, and the phase difference is 180°. It shows that the reflection coefficient Γ of the collector of the variable resistance terminal GaAs HBT of the simulated reflective attenuator of the present invention has reached the requirement of the simulated reflective I-Q vector modulation circuit, and the insertion loss has been reduced while realizing the function.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010214611 CN101888218B (en) | 2010-06-30 | 2010-06-30 | Simulated reflection type I-Q vector modulation circuit based on GaAs (Generally accepted Auditing standards) HBT (Heterojunction Bipolar Transistor) device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010214611 CN101888218B (en) | 2010-06-30 | 2010-06-30 | Simulated reflection type I-Q vector modulation circuit based on GaAs (Generally accepted Auditing standards) HBT (Heterojunction Bipolar Transistor) device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101888218A true CN101888218A (en) | 2010-11-17 |
CN101888218B CN101888218B (en) | 2013-01-23 |
Family
ID=43073972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010214611 Active CN101888218B (en) | 2010-06-30 | 2010-06-30 | Simulated reflection type I-Q vector modulation circuit based on GaAs (Generally accepted Auditing standards) HBT (Heterojunction Bipolar Transistor) device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101888218B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102569972A (en) * | 2010-12-17 | 2012-07-11 | 成都飞机工业(集团)有限责任公司 | Method for improving performance indexes of directional coupler |
CN103217638A (en) * | 2013-05-05 | 2013-07-24 | 西安电子科技大学 | Method for testing performance of GaAs HBT component after gamma irradiation |
CN105280991A (en) * | 2015-11-13 | 2016-01-27 | 南京米乐为微电子科技有限公司 | Ultra-wideband digital phase shifter |
CN105811885A (en) * | 2016-03-09 | 2016-07-27 | 成都雷电微力科技有限公司 | High-output-power vector modulator |
CN106532197A (en) * | 2016-11-13 | 2017-03-22 | 中国科学院近代物理研究所 | Wideband digital adjustable phase shifter for accelerator random cooling system |
CN106848608A (en) * | 2017-01-25 | 2017-06-13 | 东南大学 | The forming integrated antenna array of broadband mixed-beam |
CN108111145A (en) * | 2018-02-10 | 2018-06-01 | 北京工业大学 | A kind of attenuator |
WO2019024582A1 (en) * | 2017-08-01 | 2019-02-07 | Huawei Technologies Co., Ltd. | High-linearity quadrature hybrid attenuator |
CN110035026A (en) * | 2019-04-10 | 2019-07-19 | 中国电子科技集团公司第十三研究所 | Microwave QPSK modulation circuit and electronic equipment |
CN110474610A (en) * | 2019-07-04 | 2019-11-19 | 中国科学院上海微系统与信息技术研究所 | A kind of vector modulator |
CN110798170A (en) * | 2018-08-01 | 2020-02-14 | 派赛公司 | Low loss reflective passive phase shifter using time delay elements with dual resolution |
CN113589233A (en) * | 2021-07-21 | 2021-11-02 | 东南大学 | S-band high-power double-balanced vector modulator based on PIN diode and control method thereof |
CN114843781A (en) * | 2022-04-18 | 2022-08-02 | 电子科技大学长三角研究院(湖州) | Terahertz vector modulator based on gallium arsenide diode |
CN116488983A (en) * | 2023-04-25 | 2023-07-25 | 西安博瑞集信电子科技有限公司 | I-Q vector modulator and radio frequency signal modulation method applied by same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2654879A1 (en) * | 1989-11-22 | 1991-05-24 | Gen Electric | PREDISTORSION EQ WITH RESISTIVE COMBINATOR AND DIVIDER AND CORRESPONDING EQ METHOD. |
CN2468247Y (en) * | 2001-02-26 | 2001-12-26 | 信息产业部电子第五十五研究所 | Multiplex sound interval gallium arsenide (GaAS) microwave single-chip integrated vector modulator |
CN1388651A (en) * | 2001-05-30 | 2003-01-01 | 华为技术有限公司 | Radio power synthesizer |
CN1459929A (en) * | 2002-05-15 | 2003-12-03 | 韩国电子通信研究院 | S/N intensifier |
-
2010
- 2010-06-30 CN CN 201010214611 patent/CN101888218B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2654879A1 (en) * | 1989-11-22 | 1991-05-24 | Gen Electric | PREDISTORSION EQ WITH RESISTIVE COMBINATOR AND DIVIDER AND CORRESPONDING EQ METHOD. |
CN2468247Y (en) * | 2001-02-26 | 2001-12-26 | 信息产业部电子第五十五研究所 | Multiplex sound interval gallium arsenide (GaAS) microwave single-chip integrated vector modulator |
CN1388651A (en) * | 2001-05-30 | 2003-01-01 | 华为技术有限公司 | Radio power synthesizer |
CN1459929A (en) * | 2002-05-15 | 2003-12-03 | 韩国电子通信研究院 | S/N intensifier |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102569972A (en) * | 2010-12-17 | 2012-07-11 | 成都飞机工业(集团)有限责任公司 | Method for improving performance indexes of directional coupler |
CN103217638A (en) * | 2013-05-05 | 2013-07-24 | 西安电子科技大学 | Method for testing performance of GaAs HBT component after gamma irradiation |
CN105280991B (en) * | 2015-11-13 | 2018-05-29 | 南京米乐为微电子科技有限公司 | Ultra-broadband digital phase shifter |
CN105280991A (en) * | 2015-11-13 | 2016-01-27 | 南京米乐为微电子科技有限公司 | Ultra-wideband digital phase shifter |
CN105811885A (en) * | 2016-03-09 | 2016-07-27 | 成都雷电微力科技有限公司 | High-output-power vector modulator |
CN106532197A (en) * | 2016-11-13 | 2017-03-22 | 中国科学院近代物理研究所 | Wideband digital adjustable phase shifter for accelerator random cooling system |
CN106532197B (en) * | 2016-11-13 | 2021-09-17 | 中国科学院近代物理研究所 | Broadband digital adjustable phase shifter for accelerator random cooling system |
CN106848608A (en) * | 2017-01-25 | 2017-06-13 | 东南大学 | The forming integrated antenna array of broadband mixed-beam |
CN106848608B (en) * | 2017-01-25 | 2020-03-17 | 东南大学 | Broadband mixed beam forming integrated antenna array |
WO2019024582A1 (en) * | 2017-08-01 | 2019-02-07 | Huawei Technologies Co., Ltd. | High-linearity quadrature hybrid attenuator |
CN108111145A (en) * | 2018-02-10 | 2018-06-01 | 北京工业大学 | A kind of attenuator |
CN110798170B (en) * | 2018-08-01 | 2023-10-10 | 派赛公司 | Low loss reflective passive phase shifter using time delay elements with dual resolution |
CN110798170A (en) * | 2018-08-01 | 2020-02-14 | 派赛公司 | Low loss reflective passive phase shifter using time delay elements with dual resolution |
CN110035026B (en) * | 2019-04-10 | 2022-06-10 | 中国电子科技集团公司第十三研究所 | Microwave QPSK modulation circuit and electronic equipment |
CN110035026A (en) * | 2019-04-10 | 2019-07-19 | 中国电子科技集团公司第十三研究所 | Microwave QPSK modulation circuit and electronic equipment |
CN110474610A (en) * | 2019-07-04 | 2019-11-19 | 中国科学院上海微系统与信息技术研究所 | A kind of vector modulator |
CN113589233A (en) * | 2021-07-21 | 2021-11-02 | 东南大学 | S-band high-power double-balanced vector modulator based on PIN diode and control method thereof |
CN114843781A (en) * | 2022-04-18 | 2022-08-02 | 电子科技大学长三角研究院(湖州) | Terahertz vector modulator based on gallium arsenide diode |
CN114843781B (en) * | 2022-04-18 | 2023-04-28 | 电子科技大学长三角研究院(湖州) | Terahertz vector modulator based on gallium arsenide diode |
CN116488983A (en) * | 2023-04-25 | 2023-07-25 | 西安博瑞集信电子科技有限公司 | I-Q vector modulator and radio frequency signal modulation method applied by same |
CN116488983B (en) * | 2023-04-25 | 2024-07-16 | 博瑞集信(西安)电子科技股份有限公司 | I-Q vector modulator and radio frequency signal modulation method applied by same |
Also Published As
Publication number | Publication date |
---|---|
CN101888218B (en) | 2013-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101888218B (en) | Simulated reflection type I-Q vector modulation circuit based on GaAs (Generally accepted Auditing standards) HBT (Heterojunction Bipolar Transistor) device | |
Mannem et al. | A reconfigurable hybrid series/parallel Doherty power amplifier with antenna VSWR resilient performance for MIMO arrays | |
Deferm et al. | A 120GHz 10Gb/s phase-modulating transmitter in 65nm LP CMOS | |
CN104167994B (en) | Amplitude and phase tunable type pre-distortion linearizer | |
CN109889162B (en) | Self-input controlled load modulation power amplifier and implementation method thereof | |
CN103312275B (en) | Hybrid pre-distortion linearizer | |
CN109687839A (en) | Active passive mixed type microwave phase shifter | |
EP3493399A1 (en) | Reflective signal modulator | |
CN107306123A (en) | Digital phase shifter | |
TW200937881A (en) | Wideband active balance converter of Darlington pair | |
CN114826174A (en) | Microwave power amplifier capable of realizing polarization mode selection | |
CN113055324B (en) | Amplitude and Phase Independently Adjustable Analog Predistorter for SSPA | |
Quan et al. | A 275 GHz active vector-sum phase shifter | |
CN118381485B (en) | Broadband high-balance single-ended-to-differential impedance converter | |
CN201290128Y (en) | Monolithic millimeter-wave vector modulator | |
CN111313845B (en) | A Waveguide Bridge-Based Analog Predistorter for Tunable Millimeter-Wave Traveling Wave Tubes | |
CN115913852B (en) | A novel high carrier suppression four-phase balanced modulator | |
CN108847825B (en) | Transistor push-pull pair and radio frequency amplifying circuit with same | |
CN113659938B (en) | Analog predistorter | |
CN105811898A (en) | Balanced type high-gain and high-power radio frequency power amplifier | |
CN112019192B (en) | High-order coupling quadrature signal generation circuit based on transformer and application thereof | |
US10284289B1 (en) | Signal modulator | |
CN101510757A (en) | Millimeter-wave monolithic quadrature down converter | |
TWI641212B (en) | Reflective modulator and its application | |
Popescu | Design of an E-band QPSK Modulator Employing a Novel Power Combining Strategy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180926 Address after: 710065 16, 5 20 zhang84 Road, hi tech Zone, Xi'an, Shaanxi. Patentee after: Shaanxi Semiconductor Pioneer Technology Center Co.,Ltd. Address before: No. 2 Taibai Road, Xi'an, Shaanxi Province, Shaanxi Patentee before: Shaanxi Xi'an electronic large Assets Management Co.,Ltd. Effective date of registration: 20180926 Address after: No. 2 Taibai Road, Xi'an, Shaanxi Province, Shaanxi Patentee after: Shaanxi Xi'an electronic large Assets Management Co.,Ltd. Address before: No. 2 Taibai Road, Xi'an, Shaanxi Province, Shaanxi Patentee before: Xidian University |