CN101873031A - 旋转电机的高压套管 - Google Patents

旋转电机的高压套管 Download PDF

Info

Publication number
CN101873031A
CN101873031A CN201010214126A CN201010214126A CN101873031A CN 101873031 A CN101873031 A CN 101873031A CN 201010214126 A CN201010214126 A CN 201010214126A CN 201010214126 A CN201010214126 A CN 201010214126A CN 101873031 A CN101873031 A CN 101873031A
Authority
CN
China
Prior art keywords
hollow conductor
air vent
vent hole
motor
bushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010214126A
Other languages
English (en)
Other versions
CN101873031B (zh
Inventor
加幡安雄
谷山贺浩
植松润一
垣内干雄
上田隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN101873031A publication Critical patent/CN101873031A/zh
Application granted granted Critical
Publication of CN101873031B publication Critical patent/CN101873031B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/22Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of hollow conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • H02K3/505Fastening of winding heads, equalising connectors, or connections thereto for large machine windings, e.g. bar windings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Insulators (AREA)

Abstract

本发明涉及旋转电机的高压套管。在旋转电机的高压套管中,通气孔(14)从与空心导体(8)的壁面相垂直的方向至少向空心导体(8)的圆周方向或者向电机外侧倾斜。

Description

旋转电机的高压套管
技术领域
本发明涉及用于旋转电机的高压套管。
背景技术
在下面的公开文献中已经得知旋转电机的高压套管中的空心导体的冷却结构。例如,日本专利文献特公昭60-16180号公报、特公平5-17780号公报和特开平5-207701号公报。
下面将参照图16和图17来说明包含在旋转电机的高压套管中的空心导体的冷却结构的一个示例。图16是示出了旋转电机的基本结构的视图。图17是示出了包含在旋转电机中的传统的高压套管的结构的视图。
例如,在大容量的涡轮发电机中,氢气被密封在图16所示的旋转电机中。氢气被用作冷却介质(冷却剂)来冷却转子1、定子铁心2、定子线圈3等。借助导体4实现了从定子线圈3到与输出接线盒5相连的高压套管6a的连接,以在旋转电机的外部取得电输出。而且,如果定子线圈3是星形连接以将其中性点接地,那么借助与输出接线盒5相连的高压套管6b,在外部取得电输出,以形成中性点连接。在这种情形下,输出接线盒5被连接至定子架7。前述的高压套管6a和6b将冷却气体11引导至每个套管中以进行冷却。
图17中所示的高压套管具有空心导体8和诸如绝缘子的绝缘管9。特别地,空心导体8以穿透接线盒5的方式连接至接线盒5,以取得旋转电机的输出。绝缘管9被连接至空心导体8的外圆周侧,将空心导体8与接线盒5隔离。而且,绝缘管9具有法兰和密封部分,并被固定至接线盒5。一般来说,法兰是由金属制成,并利用结合剂与绝缘部分整体形成。
空心导体8穿透绝缘管9以形成外部导体连接部15,并使其连接至旋转电机外部的电线。而且,空心导体8借助导体定位器13被固定至绝缘管9并在二者之间形成空隙。利用密封垫10来形成密封,以防止电机中的冷却气体11从空心导体8和绝缘管9的接合部分漏出。而且,空心导体8具有电机外侧端部12被密封的结构。
空心导体8因其中流通的大电流而发热,由于这个原因,空心导体8借助旋转电机中的冷却气体11被冷却。特别地,电机中的冷却气体11从导体定位器13中形成的槽口部分被引导进入高压套管。然后,冷却气体11流过空心导体8和绝缘管9之间的空隙,并且之后流向电机的外侧。这样,冷却气体11冷却空心导体8的外圆周表面。借助在导体8中形成的多个通气孔14,对空心导体8的外圆周表面进行冷却的冷却气体11被引导至导体8的内圆周侧。在这种情况下,这些通气孔14的每个方向(也就是冷却气体11被注入的方向)都与空心导体8的壁面垂直。被引导至空心导体8的内圆周侧的冷却气体11流向空心导体8的电机侧端部。这样,空心导体8的内圆周表面就被冷却。对空心导体8的内圆周表面进行冷却的冷却气体11从空心导体8的电机侧端部排出。
空心导体8的内径侧流道被连接至旋转电机内的部分,例如,借助管(未示出)被连接至通风进气口低压室,该部分的压力比作为高压套管的冷却气体的入口侧的输出接线盒5中的冷却气体压力低。前述的两个压力之间的差压被用作使得冷却气体11如上述那样在高压套管中流动的驱动力。这样,在空心导体8中产生的热量被冷却。
高压套管具有穿透旋转电机的定子架7的结构;由于这个原因,高压套管必须被密封以使氢气不会泄漏到电机外部。一般来说,用作密封部分的密封垫10(或者密封圈)被暴露于高温中;由于这个原因,密封垫10会老化。结果,密封垫10就失去气体密封的功能。因此,需要对密封部分进行设计,以使密封部分充分地被冷却、并不会具有很高的温度。
然而,根据传统的高压套管的结构,外部导体连接部15具有穿透绝缘管9的凸出的结构。另一方面,考虑到冷却气体11的流道配置,用来运送冷却气体11的通气孔14必须设置在绝缘管9的内侧。由于这个原因,当冷却气体11流过通气孔时,冷却气体11快速返回,并之后流入电机。结果,从通气孔14流出的冷却气体11流停留于位于电机外侧的区域。因此,不能执行足够的冷却;也正因为如此,空心导体8的温度变得很高。
另外,对于来自通气孔14的冷却气体,必须于电机的外侧位置处提供冷却气体的密封。由于这个原因,密封垫10与高温空心导体8相接触;结果,密封垫10发生老化。因此,氢气很容易发生泄漏。
发明内容
因此,本发明的目的就是提供一种能够有效冷却空心导体的旋转电机的高压套管。
根据本发明的一个方面,提供了一种旋转电机的高压套管,包括:穿透其中密封有冷却气体的旋转电机的输出接线盒、并取得旋转电机的输出的空心导体;在该空心导体外部设置的、并将该空心导体与所述输出接线盒隔离的绝缘管;和防止电机中的冷却气体从所述空心导体和所述绝缘管的接合部向电机外部泄漏的密封构件,所述电机中的冷却气体经过所述空心导体和所述绝缘管之间的空隙向电机外部方向流动,并且所述向电机外部方向流动的冷却气体经过形成在所述空心导体中的多个通气孔被引导至空心导体的内圆周侧,并且此外,被引导至所述内圆周侧的冷却气体被引导至空心导体的电机内侧,以使气体被排放;以及从与空心导体的壁面相垂直的方向至少向空心导体的圆周方向或者向电机外侧倾斜的通气孔。
附图说明
在此并入并构成说明书的一部分的附图示出了本发明的实施例,并且结合上面的概括性描述和下面的具体实施方式的详细描述,来阐明本发明的原理。
图1示出了根据本发明的第一实施方式的旋转电机的高压套管中包含的空心导体8的内径侧透视图;
图2示出了图1所示的空心导体8的轴向截面视图;
图3为当从与轴向垂直的方向看时图1所示的空心导体8及其外围部分的截面视图;
图4为说明通气孔14的关于空心导体8的壁面的角度(圆周角)θ的视图;
图5为说明圆周角θ与冷却性能比之间的关系的曲线图;
图6为说明通气孔14的关于空心导体8的壁面的角度(轴向角)φ的视图;
图7为说明轴向角φ与冷却性能比之间的关系的曲线图;
图8为说明在轴向上相邻的通气孔14的中心部分之间的距离(轴向孔距离)p和通气孔14的孔直径(直径)d之间的关系的图;
图9为说明轴向孔距离-孔直径比p/d和冷却性能比之间的关系的曲线图;
图10为当从与轴向垂直的方向看时根据本发明的第二实施方式的旋转电机的高压套管中包含的空心导体8及其外围部分的截面视图;
图11为当从与轴向垂直的方向看时根据本发明的第三实施方式的旋转电机的高压套管中包含的空心导体8及其外围部分的截面视图;
图12为当从与轴向垂直的方向看时根据本发明的第四实施方式的旋转电机的高压套管中包含的空心导体8及其外围部分的截面视图;
图13A、13B和13C为当从轴向看空心导体8时、图12中所示的空心导体8的各级的截面视图;
图14为当从与轴向垂直的方向看时根据本发明的第五实施方式的旋转电机的高压套管中包含的空心导体8及其外围部分的截面视图;
图15为当从与轴向垂直的方向看时根据本发明的第六实施方式的旋转电机的高压套管中包含的空心导体8及其外围部分的截面视图;
图16为示出了旋转电机的基本结构的视图;以及
图17为示出了旋转电机中包含的传统的高压套管的结构的视图。
具体实施方式
以下将参照附图描述本发明的实施方式。
(下面各个实施方式所共有的事实)
根据本发明的各个实施方式的旋转电机的基本结构与已在图16中描述的相同。因此,在各个实施方式中,省略了关于旋转电机的基本结构的说明。
而且,除了通气孔14的结构外,根据本发明的各个实施方式的旋转电机的高压套管的结构与图17中所描述的相同。因此,在以下的各个实施方式中,将主要描述通气孔14的结构的差异。根据下面的第五和第六实施方式,将说明在现有技术中没有设置的分隔板。
将参照图16和图17来适当地说明以下的各个实施方式。
(第一实施方式)
下面将参照图1至图9来说明根据本发明的第一实施方式的旋转电机的高压套管。
图1为示出了根据本发明的第一实施方式的旋转电机的高压套管中包含的空心导体8的内径侧透视图。图2为示出了前述的空心导体8的轴向截面视图。图3为当从轴向看时前述的空心导体8及其外围部分的截面视图。
如图1至图3所示,根据第一实施方式的旋转电机的高压套管具有多个通气孔14。这些通气孔14相互间隔地同时形成在空心导体8的轴向和圆周方向上。
根据图2所示的例子,空心导体8在其圆周方向形成有6个通气孔14。然而,本发明并不局限于上述配置;在该情形中,通气孔14可被形成为2至5个或者7个或者更多。而且,根据图3所示的例子,空心导体8被形成为在空心导体8的轴向上具有两级通气孔14。然而,本发明并不局限于上述配置;在该情形中,可形成三级或者更多级的通气孔14。
特别地,根据第一实施方式的旋转电机的高压套管具有以下特性。也就是,前述的通气孔14每个都从与空心导体8的壁面垂直的方向朝向导体8的圆周方向和电机的外侧倾斜。特别地,每个通气孔14都具有朝向圆周方向的倾斜度。因此,如图1和图2可见,当冷却气体11通过通气孔14时,在空心导体8的内径侧中产生了涡流。而且,每个通气孔14都具有朝向电机外侧的倾斜度。因此,如图3可见,产生了流向空心导体8的电机外轴向端部12的气流。然后,到达电机外端部12的冷却气体11返回,并且之后通过中心轴流向电机内侧。
在具有前述结构的旋转电机的高压套管中,电机中的冷却气体11从形成于导体定位器13的槽口部分被引导进入高压套管。而且,冷却气体11通过位于空心导体8和绝缘管9之间的空隙流向电机外方向。这样,空心导体8的外侧圆周表面被冷却。
对空心导体8的外圆周表面进行冷却的冷却气体11经过形成于空心导体8中的通气孔14被引导至其内圆周表面。在这种情况下,这些通气孔14中的每一个都从与导体8的壁面垂直的方向向导体的圆周方向和电机外侧倾斜,如之前所描述的那样。因此,穿过通气孔14被注入到导体8的内径侧的冷却气体流向电机外端部12,同时气体被螺旋式旋转,并因此达到端部12。在这种情况下,来自通气孔14的冷却气体11冷却位于电机外侧的空心导体8的内圆周表面。
对位于电机外侧的空心导体8的内圆周表面进行冷却的来自通气孔14的冷却气体11于电机外端部12返回。之后,冷却气体11经过空心导体8的中心轴侧,然后流向导体8的电机内侧。这样,冷却气体11对空心导体8的内圆周表面进行冷却。对空心导体8的内圆周表面进行冷却的冷却气体11从电机内端部排出。
空心导体8的内径侧流道被连接至旋转电机内的部分,例如,借助管(未示出)被连接至通风进气口低压室,该部分的压力比作为高压套管的冷却气体的入口侧的输出接线盒5中的冷却气体压力低。前述的两个压力之间的差压被用作使得冷却气体11如上述那样在高压套管中流动的驱动力。这样,在空心导体8中产生的热量被冷却。
如上所述,每个通气孔14都是以从与空心导体8的壁面垂直的方向向导体8的圆周方向和电机外侧倾斜的方式形成。由于利用了前述结构,因此,穿过通气孔14被注入空心导体8的内径侧的冷却气体11在被螺旋式旋转的同时流向电机外端部12,并因此达到端部12。在这种情况下,来自通气孔14的冷却气体11冷却位于电机外侧的空心导体8的内圆周表面。因此,这样用来保持于电机外侧的空心导体8处于低温。
而且,与密封垫10接触的空心导体8没有产生高温。因此,将最低程度地防止密封构件的老化;结果,提供能防止冷却气体11的泄漏并具有高可靠性的高压套管是可能的。
该实施方式涉及每个通气孔14都是以从与空心导体8的壁面相垂直的方向同时向导体8的圆周方向和电机外侧倾斜的方式形成的情形。然而,并发明并不局限于前述的实施方式。例如,每个通气孔14可从与空心导体8的壁面相垂直的方向仅向导体8的圆周方向倾斜,或者可仅向电机外侧倾斜。
在每个通气孔14以仅向圆周方向倾斜的方式而形成的情形中可获得以下效果。也就是,不会形成流向电机外端部12的气流;然而,借助流向圆周方向的气流可在空心导体8的内径侧产生涡流。由于前述的涡流,就在位于电机外侧的空心导体8的内侧的停留区域新产生来自通气孔14的涡流。因此,借助新产生的涡流,该停留区域被搅动;因此,位于电机外侧的空心导体8的内圆周表面被冷却。
另外,在每个通气孔14以仅朝向电机外侧倾斜的方式而形成的情形中可获得以下效果。没有导致涡流的产生;然而,借助流向电机外端部12的气流,位于电机外侧的空心导体8的内圆周表面被冷却。
现在参照图4至图9,为了改善冷却效果,下面将说明在轴向上间隔形成的通气孔14的圆周角、轴向角和轴向孔距离。
(a)圆周角
将通气孔14朝空心导体8的圆周方向倾斜的情形作为一个示例。
正如从图4中所看到的,将通气孔14与空心导体8的壁面形成的角(圆周角)设为θ。
图5为说明前述情形中的圆周角θ与冷却性能比之间的关系的曲线图。在该情形中,冷却性能比作如下定义。也就是,冷却性能比是说明在任意圆周角θ时的冷却性能的指标,当通气孔14的角度与空心导体8的壁面垂直时(θ=90°),该状态下的冷却性能设定为1。而且,冷却性能是通过流率和热传导率的乘积来表达的。
从图5中可以看出,在θ=75°附近,冷却性能0显示了峰值。而且,在40°≤θ≤85°的范围内,得到了相当于传统情况1.2倍或者更多倍的优越的冷却性能比。换句话说,通气孔14的角度从θ=90°的状态倾斜了5°或者更多。这样,产生了到目前为止还未产生的圆周气流;因此,热传导率快速升高。如果角度θ被设定得更小,圆周速度分量就变大;由于该原因,冷却气体11在穿过通气孔14后产生的搅动效果变得明显。然而,流通气流的实际直径减小,并且压力损失增加;由于该原因,流率降低;结果,降低了冷却性能。因此,通气孔14形成为使得圆周角θ被设为40°≤θ≤85°的范围。这样,相对于传统的情形,可获得更优越的冷却性能。
(b)轴向角
将通气孔14朝空心导体8的轴向电机外侧倾斜的情形作为一个示例。
从图6中可以看出,将通气孔14到空心导体8的壁面的角(轴向角)设定为φ。
图7为说明前述的情形中的轴向角φ和冷却性能比之间的关系的曲线图。在该情形中,冷却性能比作如下定义。也就是,冷却性能比是说明任意轴向角φ时的冷却性能的指标,当通气孔14的角度与空心导体8的壁面垂直时(φ=90°),该状态下的冷却性能设定为1。而且,冷却性能是通过流率和热传导率的乘积来表达的。
从图7中可以看出,在φ=50°附近,冷却性能比显示出峰值。而且,在30°≤φ≤75°的范围内,得到了相当于传统情况1.2倍或者更多倍的优越的冷却性能比。换句话说,只要通气孔14的角度从φ=90°的状态倾斜15°或者更多,就能得到流向电机外轴向端部12的气流。而且,如果角度φ小于30°,流率就减小;结果,冷却性能被降低。因此,通气孔14形成为使得轴向角φ被设为30°≤φ≤75°的范围。这样,相对于传统的情形,可获得更优越的冷却性能。
(c)轴向孔距离
将多个通气孔14在空心导体的轴向上间隔形成的情形作为一个示例。
从图8中看出,在轴向上相邻的通气孔14的中心之间的距离(轴向孔距离)设定为p。而且,将通气孔14的孔直径(直径)设定为d。
图9为说明前述的情形中的轴向孔距离-孔直径比率p/d和冷却性能之间关系的曲线图。
从图9中可以看出,在p/d=3附近冷却性能显示出峰值,并且获得了1.2或者更大的优越的冷却性能。而且,在2.2≤p/d≤4.0的范围内,得到了比预定值更大的适当的冷却性能。换句话说,通气孔14被形成为使得轴向孔距离p被设定为大于2.2倍孔直径d并小于4.0倍孔直径。这样,从上游侧的通气孔14流出的冷却气体11用来有效地引导冷却气体11,而不扰乱从下游侧通气孔14流出的冷却气体11的流动。因此,空心导体8能够被保持于较低温度。
(第二实施方式)
下面将参照图10说明本发明的第二实施方式。
在第二实施方式中,用相同的参考数字来指示与图1至图3中显示的第一实施方式相同的部分,并且,省略有重叠的说明。在下面的描述中,主要说明与第一实施方式不同的部分。
图10为当与轴方向垂直的方向看导体8及其外围部分时,根据本发明的第二实施方式的旋转电机的高压套管中包含的空心导体8及其外围部分的截面视图。
前述的第一实施方式涉及其中的空心导体8在整个圆周方向形成有如图2所示的多个通气孔14的情形。根据第二实施方式,空心导体8仅在半圆周部分(也就是一侧)形成有多个通气孔14。
根据图10中示出的例子,空心导体8在轴向上形成有2个通气孔12。然而,本发明并不局限于前述的配置,并且通气孔14可形成为3个或者更多。
由于提供了前述的结构,因此,正如从图10中看出的那样,有可能从通气孔14在位于电机外侧的空心导体8的内侧的部分中产生停留区域。然而,引发了流向与形成有通气孔14的侧边相对的面的冷却气体。在该情形中,冷却气体11碰上与形成有通气孔14的侧边相对的面,以冷却位于电机外侧的空心导体8的内圆周表面。因此,电机外侧上的空心导体8能被保持于低温。
(第三实施方式)
下面将参照图11描述本发明的第三具体实施方式。
在第三实施方式中,相同的参考数字被用来指示与图1至图3所示的第一实施方式共同的部分,并且省略了具有重叠的说明。在下面的描述中,主要说明与第一实施方式不同的部分。
图11为当从与轴向垂直的方向看导体8及其外围部分时,根据本发明的第三具体实施方式的旋转电机的高压套管中包含的空心导体8及其外围部分的截面视图。
如图3所示,前述的第一实施方式涉及其中的空心导体8在轴向上间隔地形成有具有相同孔直径的多个通气孔14的情形。根据该第三实施方式,空心导体8形成有具有不同孔直径的多个通气孔14a、14b和14c。例如,如图11所示,通气孔的孔直径从最靠近电机内侧形成的通气孔14a到最靠近电机外侧处的通气孔14c按顺序连续地增大。换句话说,在电机内侧形成的通气孔具有较小的孔直径而在电机外侧形成的通气孔具有较大的孔直径。
根据图11所示的例子,空心导体8形成有3级(上级、中间和下级)通气孔14a、14b和14c。然而,本发明并不局限于前述的配置;在该情形中,可形成4级或者更多的通气孔。而且,根据图11的示例,每种状态下都形成了具有不同孔直径的通气孔。然而,本发明并不局限于前述的配置;在该情形中,可包含具有相同孔直径的状态。例如,取决于空心导体8的内径和外导体部分15的深度,热状况和冷却状况不同。由于该原因,通气孔的孔直径可被设置为关于所有级中的一些都相同。
由于提供了前述的结构,因而,来自电机外侧而不是来自电机内侧的流向导体8的内径侧的冷却气体11的流率增加。因此,这用来有效地向电机外侧的空心导体8的停留区域提供冷却气体11。结果,空心导体8可被保持于低温。
(第四实施方式)
下面将参照图12以及图13A、13B和13C描述本发明的第四实施方式。
在第四实施方式中,相同的参考数字被用来指示与图1至图3所示的第一实施方式共同的部分,并且省略了具有重叠的说明。在下面的描述中,主要说明与第一实施方式不同的部分。
图12为当从与轴向垂直的方向看导体8及其外围部分时,根据本发明的第四实施方式的旋转电机的高压套管中包含的空心导体8及其外围部分的截面视图。
如图3所示,前述的第一实施方式涉及其中的空心导体8形成有在导体8的轴向上具有相同倾斜度的多个通气孔14的情形。根据第四实施方式,如图12所示,空心导体8形成有具有朝导体8的轴向不同倾斜度的多个通气孔14d、14e和14f。例如,在最靠近电机内侧形成的通气孔14d向电机内侧倾斜。在最靠近电机外侧形成的通气孔14f向电机的外侧倾斜。位于孔14d和14f之间的通气孔14水平地形成。换句话说,在电机的内侧形成的通气孔具有更大的朝向电机内侧的倾斜度而在电机外侧形成的通气孔具有更大的朝电机外侧的倾斜度。
根据图12的示例,空心导体8形成有3级(上级、中级和下级)通气孔14d、14e和14f。然而,本发明并不局限于前述的配置;在该情形中,可形成4级或更多的通气孔。在该情形中,朝向电机外侧的倾斜度被设置为从形成于最靠近电机内侧的通气孔到形成于最靠电机外侧的通气孔依次逐级增大。
由于提供了前述的结构,因而,从电机外侧的通气孔注入的冷却气体11被有效地提供给位于电机外侧的空心导体的停留区域。而且,借助于从电机内侧形成的通气孔注入的冷却气体11,产生了流向电机内侧的气流。因此,空心导体8可被保持于低温。
除了图12中所示的结构,还可应用图13A、13B和13C中示出的结构。
图13A、13B和13C为当从轴向看空心导体8时的各级的截面视图。
例如,如图13A所示,形成于最靠近电机内侧的通气孔14d(也就是上级通气孔)没有向空心导体8的圆周方向倾斜。如图13C所示例说明的,形成于最靠近电机外侧的通气孔14f向电机最外侧倾斜。如图13B所描述的,在通气孔14d和14f之间插入的通气孔14适当地向电机外侧倾斜。换句话说,形成于电机外侧的通气孔具有更大的朝向电机外侧的倾斜度。
根据图13A、13B和13C的示例,空心导体8形成有3级(上级、中间和下级)通气孔14d、14e和14f。然而,本发明并不局限于前述的配置;在该情形中,可具有4级或者更多的通气孔。在该情形中,朝向电机外侧的倾斜度被设置为从最靠近电机内侧形成的通气孔到最靠近电机外侧的通气孔依次逐级增大。
由于提供了前述的结构,因而,从电机外侧的通气孔产生了更强的涡流。这用来有效地搅动电机外侧的空心导体8的停留区域。因此,空心导体8可被保持于低温。
另外,取决于空心导体8的内径和外导体部分15的深度,多级通气孔中的每个在轴向和圆周方向上的倾斜度可依据热状况和冷却状况而适当地改变。这样,冷却气体11流被控制以使空心导体8被保持于低温。
第四实施方式除了图12所示的结构外,还应用图13A、13B和13C所示的结构的情形。然而,本发明并不局限于前述结构。例如,下述的配置可用作通气孔14d、14e和14f的结构。特别地,可仅仅采用图12中示出的形状而不采用图13A、13B和13C所示的形状。相反地,也可仅采用图13A、13B和13C中示出的形状而不采用图12中所示的形状。
(第五实施方式)
下面将参照图14描述本发明的第五实施方式。
在第五实施方式中,相同的参考数字被用来指示与图1至图3所示的第一实施方式共同的部分,并且省略了具有重叠的说明。在下面的描述中,主要说明与第一实施方式不同的部分。
图14为当从与轴向垂直的方向看导体8及其外围部分时,根据本发明的第五实施方式的旋转电机的高压套管中包含的导体8及其外围部分的截面视图。
根据第五实施方式,如图14所示,空心导体8在轴向上间隔地形成有多个通气孔14g、14h和14i。而且,空心导体8的内圆周侧具有在轴中心方向上水平延伸的分隔板。这些分隔板将从前述的通气孔注入的冷却气体部分地隔开。
例如,在通气孔14g和14h之间插入分隔板16a。同样地,在通气孔14h和14i之间插入较前述的分隔板16a更长的分隔板16b。在这种情况下,由分隔板16b占据的面积大约为空心导体8的空心部分所占据的水平面积的约1/3。
另外,通气孔14i可从与空心导体8的壁面相垂直的方向至少朝向空心导体8的圆周方向或者朝向电机外侧倾斜。
由于提供了前述的结构,因而,从通气孔流到电机外侧的冷却气体11长时间逗留于空心导体8的停留区域。因此,空心导体8被有效地冷却;结果,空心导体8被保持为低温。
(第六实施方式)
下面将参照图15描述本发明的第六实施方式。
在第六实施方式中,相同的参考数字被用来指示与图1至图3所示的第一实施方式共同的部分,并且省略了具有重叠的说明。在下面的描述中,主要说明与第一实施方式不同的部分。
图15为当从与轴向垂直的方向看导体8及其外围部分时,根据本发明的第六实施方式的旋转电机的高压套管中包含的空心导体8及其外围部分的截面视图。
根据第六实施方式,如图15所示,空心导体8在轴向上间隔地形成有多个通气孔14j、14k和14m。而且,空心导体8的内圆周侧具有内圆筒17。该内圆筒17被用于将来自空心导体8的电机外端部的冷却气体11引导至空心导体8的电机内端部。
例如,如图15所示,设置内圆筒17以使内圆筒的电机外端部位于停留区域的上方。在该情形中,由内圆筒17的空心部分占据的水平面积大约为由空心导体8的空心部分所占据的水平面积的约1/3。
而且,最靠近电机内侧形成的通气孔14j朝向电机内侧倾斜。最靠近电机外侧形成的通气孔14m朝向电机外侧倾斜。通气孔14i和14j之间的通气孔14k水平地形成。换句话说,电机内侧形成的通气孔具有更大的朝向电机内侧的倾斜度。电机外侧形成的通气孔具有更大的朝向电机外侧的倾斜度。根据图15的示例,空心导体8在轴向上间隔地形成有3级(上级、中间和下级)通气孔14j、14k和14m。然而,本发明并不局限于前述的配置;在该情形中,可形成4级或者更多的通气孔。在该情形中,朝向电机外侧的倾斜度被设置为从最靠近电机内侧形成的通气孔到最靠近电机外侧形成的通气孔逐级增大。
由于采用了前述的配置,因而,从通气孔流至电机外侧的冷却气体11确保从空心导体8的停留区域至电机内侧返回的冷却气体11的流通路径。因此,冷却气体11有效地被提供至空心导体8的停留区域。这样,空心导体8被保持于低温。
如上所述,根据各个实施方式,可提供能够有效冷却空心导体的旋转电机的高压套管。
对于所属技术领域技术人员而言,很容易得到其它的优点和修正。因此,本发明在其更宽泛的方面并不局限于在此说明和描述的具体细节和代表性的实施方式。因此,可进行各种各样的修正,而不脱离由所附的权利要求以及它们的等同物所定义的一般性的发明概念的精神或范围。

Claims (6)

1.一种旋转电机的高压套管,其特征在于,包括:
空心导体(8),所述空心导体穿透其中密封有冷却气体的旋转电机的输出接线盒并取得旋转电机的输出;
绝缘管(9),所述绝缘管在该空心导体(8)外部设置、并将该空心导体(8)与所述输出接线盒隔离;和
密封构件(10),所述密封构件防止电机中的冷却气体从所述空心导体(8)和所述绝缘管(9)的接合部向电机外部泄漏,
所述电机中的冷却气体经过所述空心导体(8)和所述绝缘管(9)之间的空隙向电机外部方向流动,所述向电机外部方向流动的冷却气体经过形成在所述空心导体(8)中的多个通气孔(14)被引导至空心导体(8)的内圆周侧,并且此外,所述被引导至所述内圆周侧的冷却气体被引导至空心导体(8)的电机内侧,以使气体被排放,以及
通气孔(14),所述通气孔从与空心导体(8)的壁面相垂直的方向至少向空心导体(8)的圆周方向或者向电机外侧倾斜。
2.根据权利要求1所述的高压套管,其特征在于,所述通气孔(14)从与空心导体(8)的壁面相垂直的方向向空心导体(8)的圆周方向和电机外侧两个方向倾斜。
3.根据权利要求1或2所述的高压套管,其特征在于,所述通气孔(14)间隔地形成在空心导体(8)的轴向上,且在电机外侧形成的通气孔具有更大的孔直径。
4.根据权利要求1至3中任一项所述的高压套管,其特征在于,所述通气孔(14)间隔地形成在空心导体(8)的轴向上,且形成于电机外侧的通气孔具有朝向圆周方向或者朝向电机外侧的大的倾斜度。
5.根据权利要求1至4中任一项所述的高压套管,其特征在于,所述通气孔(14)间隔地形成在空心导体(8)的轴向上,且空心导体(8)的内圆周侧具有用来将从各个通气孔(14)注入的冷却气体部分地分隔的分隔板。
6.根据权利要求1至4中任一项所述的高压套管,其特征在于,所述通气孔(14)间隔地形成在空心导体(8)的轴向上,且空心导体(8)的内圆周侧具有用来将来自空心导体(8)的电机外端部的冷却气体引导至电机内端部的内圆筒。
CN2010102141260A 2009-04-23 2010-04-23 旋转电机的高压套管 Expired - Fee Related CN101873031B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009105337A JP5306037B2 (ja) 2009-04-23 2009-04-23 回転電機の高圧ブッシング
JP105337/2009 2009-04-23

Publications (2)

Publication Number Publication Date
CN101873031A true CN101873031A (zh) 2010-10-27
CN101873031B CN101873031B (zh) 2012-12-12

Family

ID=42236796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102141260A Expired - Fee Related CN101873031B (zh) 2009-04-23 2010-04-23 旋转电机的高压套管

Country Status (4)

Country Link
US (1) US8222778B2 (zh)
EP (1) EP2244360B1 (zh)
JP (1) JP5306037B2 (zh)
CN (1) CN101873031B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063021A (zh) * 2017-12-11 2018-05-22 江西新龙电瓷电器制造有限公司 一种新型绝缘子
CN108364732A (zh) * 2017-12-29 2018-08-03 浙江省三门中鑫实业有限公司 一种风电电机绝缘套管

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5571107B2 (ja) * 2012-01-30 2014-08-13 株式会社東芝 回転電機の高圧ブッシング及び回転電機
JP6847008B2 (ja) * 2017-09-19 2021-03-24 三菱パワー株式会社 回転電機
CN109839016B (zh) 2018-04-09 2024-04-19 国家电网公司 一种导流杆、套管及换流变系统
JP7103917B2 (ja) * 2018-10-31 2022-07-20 三菱重工業株式会社 回転電機
DE102018129230B4 (de) * 2018-11-20 2021-02-04 Dynamic E Flow Gmbh Elektrische Maschine mit mehreren als Hohlleiter ausgebildeten starren Wicklungsstücken - hydraulisches Anschlusskonzept II
WO2023011912A1 (en) 2021-08-05 2023-02-09 Hitachi Energy Switzerland Ag Bushing comprising low-viscosity insulating fluid and electrical facility with bushing
EP4131292A1 (en) * 2021-08-05 2023-02-08 Hitachi Energy Switzerland AG Bushing comprising low-viscosity insulating fluid and electrical facility with bushing
CN116612948B (zh) * 2023-05-12 2024-04-16 湖南汇丰电瓷电器有限公司 一种柱式高压线路组合型瓷绝缘子及其组合方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883680A (en) * 1974-01-18 1975-05-13 Gen Electric High voltage electrical bushing incorporating a central conductor expandable expansion chamber
JPH05207701A (ja) * 1992-01-24 1993-08-13 Toshiba Corp 変流器機内設置形回転電機
CN1094502A (zh) * 1992-11-30 1994-11-02 瑞典通用电器勃朗勃威力公司 低温槽中作超导用途用的气冷套管
JP2002140945A (ja) * 2000-11-02 2002-05-17 Hitachi Ltd 水冷ブッシング
WO2008053015A1 (en) * 2006-10-31 2008-05-08 Abb Research Ltd A high voltage bushing
CN101331561A (zh) * 2005-12-14 2008-12-24 Abb研究有限公司 高压套管

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2683227A (en) * 1952-05-16 1954-07-06 Allis Chalmers Mfg Co Electrical apparatus with fluid cooled terminal bushing
US2742582A (en) * 1953-07-21 1956-04-17 Gen Electric Gas-cooled high voltage bushing for large generator
US2742583A (en) * 1954-05-20 1956-04-17 Allis Chalmers Mfg Co Dynamoelectric machine with gas jet cooled lead conductors and terminal bushings
JPS50125100U (zh) * 1974-03-29 1975-10-14
JPS529888A (en) * 1975-07-15 1977-01-25 Hitachi Ltd Cooling device for oil-filled electrical equipment
US4078150A (en) * 1976-08-04 1978-03-07 Westinghouse Electric Corporation Liquid-cooled stud for terminal bushings of a generator
JPS5925326B2 (ja) * 1977-02-14 1984-06-16 株式会社東芝 ブツシングの冷却装置
JPS6016180B2 (ja) * 1977-12-02 1985-04-24 株式会社東芝 回転電機における中性点接続導体の冷却装置
JPS54101499U (zh) * 1977-12-28 1979-07-17
US4169965A (en) * 1978-02-21 1979-10-02 General Electric Company Integrally cooled electrical feedthrough bushing
JPS55103057A (en) * 1979-02-02 1980-08-06 Hitachi Ltd Lead wire connector of rotary electric machine
JPS614989Y2 (zh) * 1980-11-28 1986-02-15
JPS58206012A (ja) * 1982-05-26 1983-12-01 株式会社日立製作所 高圧ブツシング
JPS5979920U (ja) * 1982-11-19 1984-05-30 株式会社東芝 ガス絶縁ブツシング
JPS6016180A (ja) 1983-07-06 1985-01-26 Horiba Ltd 回転駆動装置
JPS61109439A (ja) * 1984-11-02 1986-05-27 Toshiba Corp ガス冷却回転電機の口出装置
JPS6270656U (zh) * 1985-10-24 1987-05-06
JPH087211Y2 (ja) * 1989-08-31 1996-03-04 いすゞ自動車株式会社 燃焼器
JPH0517780A (ja) 1991-07-08 1993-01-26 Kawasaki Steel Corp キノリン、イソキノリンおよびインドール混合物の回収方法
JPH10275532A (ja) * 1997-03-28 1998-10-13 Ngk Insulators Ltd ガスブッシング
JP4459982B2 (ja) * 2007-06-04 2010-04-28 株式会社日立製作所 ブッシング及び発電機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883680A (en) * 1974-01-18 1975-05-13 Gen Electric High voltage electrical bushing incorporating a central conductor expandable expansion chamber
JPH05207701A (ja) * 1992-01-24 1993-08-13 Toshiba Corp 変流器機内設置形回転電機
CN1094502A (zh) * 1992-11-30 1994-11-02 瑞典通用电器勃朗勃威力公司 低温槽中作超导用途用的气冷套管
JP2002140945A (ja) * 2000-11-02 2002-05-17 Hitachi Ltd 水冷ブッシング
JP3846176B2 (ja) * 2000-11-02 2006-11-15 株式会社日立製作所 水冷ブッシング
CN101331561A (zh) * 2005-12-14 2008-12-24 Abb研究有限公司 高压套管
WO2008053015A1 (en) * 2006-10-31 2008-05-08 Abb Research Ltd A high voltage bushing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063021A (zh) * 2017-12-11 2018-05-22 江西新龙电瓷电器制造有限公司 一种新型绝缘子
CN108063021B (zh) * 2017-12-11 2020-03-24 江西新龙电瓷电器制造有限公司 一种新型绝缘子
CN108364732A (zh) * 2017-12-29 2018-08-03 浙江省三门中鑫实业有限公司 一种风电电机绝缘套管

Also Published As

Publication number Publication date
EP2244360A3 (en) 2017-07-26
EP2244360B1 (en) 2019-06-05
JP2010259196A (ja) 2010-11-11
US8222778B2 (en) 2012-07-17
JP5306037B2 (ja) 2013-10-02
US20100270875A1 (en) 2010-10-28
CN101873031B (zh) 2012-12-12
EP2244360A2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
CN101873031B (zh) 旋转电机的高压套管
CN102265484B (zh) 包含沿径向偏移的轴向冷却流的电机及相应方法
US8087901B2 (en) Fluid channeling device for back-to-back compressors
CN101123380B (zh) 转子空冷定子蒸发冷却的汽轮发电机
CN101277035B (zh) 旋转电机及其转子
CN105190047A (zh) 压缩机
CN102536913B (zh) 空气循环机内的轴承冷却控制
CN110868002A (zh) 高速永磁电机的新型一体化水冷系统
CN105164425A (zh) 压缩机
CN107534361A (zh) 旋转电机
CN106998108A (zh) 用于旋转电机的气流挡板
CN101841212A (zh) 在面向线圈的表面中具有偏流槽道的电机线圈间隔块
CN206009858U (zh) 具有冷却功能的电主轴套件
CN207393573U (zh) 轴流风扇以及冰箱
CN1443390B (zh) 用于增强转子空腔热传递的间隔块铲状结构
US9159475B2 (en) High pressure bushing of rotating electrical machine and rotating electrical machine
CN207437407U (zh) 轴流风扇以及冰箱
CN103384101B (zh) 电机模块冷却系统和方法
CN104009582B (zh) 大推力循环水泵电机通风冷却结构
KR101755492B1 (ko) 하이브리드 차량용 구동모터의 고정자 조립유닛
CN106949070A (zh) 一种自循环水冷微型泵
JP2013526263A (ja) 電気機械冷却システム及び方法
US6558116B2 (en) Gas-cooled machine, in particular a turbo-generator
US7431506B2 (en) Motor with fluid dynamic bearing and fan employing the motor
CN220172991U (zh) 一种油冷电机结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121212

Termination date: 20210423

CF01 Termination of patent right due to non-payment of annual fee