US9159475B2 - High pressure bushing of rotating electrical machine and rotating electrical machine - Google Patents

High pressure bushing of rotating electrical machine and rotating electrical machine Download PDF

Info

Publication number
US9159475B2
US9159475B2 US13/754,044 US201313754044A US9159475B2 US 9159475 B2 US9159475 B2 US 9159475B2 US 201313754044 A US201313754044 A US 201313754044A US 9159475 B2 US9159475 B2 US 9159475B2
Authority
US
United States
Prior art keywords
connecting conductor
machine
hollow connecting
cooling gas
passes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/754,044
Other versions
US20130192025A1 (en
Inventor
Yoshihiro Taniyama
Yasuo Kabata
Mikio Kakiuchi
Toshio Kitajima
Takeo Urita
Koji Matsuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Assigned to KABUSHIKI KAISHA TOSHIBA reassignment KABUSHIKI KAISHA TOSHIBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KITAJIMA, TOSHIO, MATSUYAMA, KOJI, Urita, Takeo, KAKIUCHI, MIKIO, KABATA, YASUO, TANIYAMA, YOSHIHIRO
Publication of US20130192025A1 publication Critical patent/US20130192025A1/en
Application granted granted Critical
Publication of US9159475B2 publication Critical patent/US9159475B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes
    • H01B17/583Grommets; Bushings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • Y10T16/063

Definitions

  • Embodiments described herein relate generally to a high pressure bushing of a rotating electrical machine, and the rotating electrical machine.
  • a rotating electrical machine such as a turbine generator is configured to seal hydrogen gas and the like within the device, and to cool respective sections such as a rotor, a stator iron core, and a stator coil by using the same as a coolant.
  • a stator frame of the rotating electrical machine is provided with a high pressure bushing that penetrates the stator frame.
  • the stator coil of the rotating electrical machine is wire bound to the high pressure bushing via a connecting conductor, and an electric output can be taken out from the rotating electrical machine through a hollow connecting conductor provided in the high pressure bushing. Since the high pressure bushing generates heat by a large current flowing in the hollow connecting conductor, the cooling gas introduced from inside the device is used for cooling.
  • the high pressure bushing structurally uses only an inner circumferential surface side of the hollow connecting conductor as a cooling surface.
  • An outer circumferential surface side of the hollow connecting conductor ensures a space for maintaining an insulating distance, an insulating cylinder such as glass is also provided, and a sealing section that is vulnerable to heat is provided, however, an effect of cooling is not sufficiently enjoyed on the side thereof.
  • a current value with which the current can be flown must be made small or the high pressure bushing must be made large by enlarging a conductor cross sectional area, neither of which is a crucial solution.
  • FIG. 1 shows a vertical cross sectional diagram showing an example of a configuration of a rotating electrical machine common to first to fourth embodiments;
  • FIG. 2 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of the first embodiment
  • FIG. 3 is a perspective diagram showing an example of a structure of a hollow connecting conductor 11 shown in FIG. 2 ;
  • FIG. 4 is a perspective diagram showing a modification of the hollow connecting conductor 11 shown in FIG. 3 ;
  • FIG. 5 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 2 ;
  • FIG. 6 is a diagram for explaining orientations of a plurality of communicating holes 11 a , 11 b shown in FIG. 5 ;
  • FIG. 7 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2 ;
  • FIG. 8 is a perspective diagram showing an example of a structure of baffle plates 12 A, 12 B and the like shown in FIG. 7 ;
  • FIG. 9 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2 ;
  • FIG. 10 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2 ;
  • FIG. 11 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2 ;
  • FIG. 12 is a perspective diagram showing an example of a structure of partition plates 12 F, 12 G and the like having communication holes shown in FIG. 11 ;
  • FIGS. 13A and 13B are a plan diagram and a side diagram showing an example of the structure of the partition plates 12 F, 12 G and the like having the communication holes shown in FIG. 12 ;
  • FIG. 14 is a perspective diagram showing a rotational flow F of a cooling gas that passes through the communicating hole of the partition plate;
  • FIG. 15 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of a second embodiment
  • FIG. 16 is a perspective diagram showing an example of structures of a hollow connecting conductor 11 and a connecting conductor support 11 C shown in FIG. 15 ;
  • FIG. 17 is a plan diagram showing an example of the structure of the connecting conductor support 11 C shown in FIG. 15 and FIG. 16 ;
  • FIG. 18 is a plan diagram showing a modification of the connecting conductor support 11 C shown in FIG. 17 ;
  • FIG. 19 is a perspective diagram showing a modification of the hollow connecting conductor 11 and the connecting conductor support 11 C shown in FIG. 16 ;
  • FIG. 20 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 15 ;
  • FIG. 21 is a perspective diagram showing a modification of a hollow connecting conductor 11 and a connecting conductor support 11 C shown in FIG. 20 ;
  • FIG. 22 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 20 ;
  • FIG. 23 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 15 ;
  • FIGS. 24A and 24B are a side diagram and a plan diagram showing an example of structure of the connecting conductor support 11 C shown in FIG. 23 ;
  • FIG. 25 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of a third embodiment
  • FIG. 26 is a perspective diagram showing an example of a structure of a partition plate 12 H and the like shown in FIG. 25 ;
  • FIG. 27 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 25 ;
  • FIG. 28 is a perspective diagram showing an example of a structure of a partition plate 12 J and the like having a communication hole shown in FIG. 27 ;
  • FIG. 29 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 27 ;
  • FIG. 30 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of the fourth embodiment
  • FIG. 31 is a perspective diagram showing an example of a structure of partition plates 12 H, 12 K and the like shown in FIG. 30 ;
  • FIG. 32 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 30 ;
  • FIG. 33 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 30 ;
  • FIG. 34 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 30 ;
  • FIG. 35 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 30 .
  • a high pressure bushing arranged through by penetrating a stator frame of a rotating electrical machine in which a cooling gas is sealed, the high pressure bushing comprising: a hollow connecting conductor that has a machine outer side end portion sealed, and introduces the cooling gas within the machine from a machine inner side end portion; a gas circulation pipe that is arranged in an inner circumference side of the hollow connecting conductor with a first gap, and discharges the cooling gas toward a machine inner side; and an insulating cylinder that is arranged in an outer circumference side of the hollow connecting conductor with a second gap, and electrically insulates the hollow connecting conductor and the stator frame, wherein at least a communicating hole is provided in the hollow connecting conductor and at least a reflux hole is provided in the gas circulation pipe, such that the cooling gas flows in both of the first gap and the second gap, passes through an inner side of the gas circulation pipe, and is discharged to the machine inner side.
  • FIG. 1 shows a vertical cross sectional diagram showing an example of a configuration of a rotating electrical machine common to first to fourth embodiments;
  • the rotating electrical machine shown in FIG. 1 is for example a large capacity turbine generator, which is configured to seal a hydrogen gas within the device, and to cool the respective sections such as a rotor 1 , a stator iron core 2 , and a stator coil 3 with the gas as a coolant. Further, it is wire bound to a high pressure bushing 6 a provided in a stator frame 7 configuring an output terminal box 5 from the stator coil 3 via a connecting conductor 4 , and it is configured to take out an electric output to outside the device.
  • the electric output is taken outside via a high pressure bushing 6 b provided in the stator frame 7 , and the neutral point is wire bound thereto.
  • the aforementioned high pressure bushings 6 a , 6 b are configured to perform cooling by introducing the cooling gas to their respective insides.
  • FIG. 2 is a vertical cross sectional diagram showing an example of a structure of the high pressure bushing and a cooling gas circulating flow of the first embodiment.
  • the high pressure bushing shown in FIG. 2 is provided by penetrating the stator frame 7 that configures the output terminal box 5 of the rotating electrical machine, and includes a hollow connecting conductor 11 , a gas circulation pipe 12 , and an insulating cylinder 13 as its primary constituent elements.
  • the hollow connecting conductor 11 has a structure in which its machine outer side end portion 11 B sealed, and the cooling gas within the machine is introduced from a machine inner side end portion 11 A.
  • the gas circulation pipe 12 is provided in an inner circumference side of the hollow connecting conductor 11 with a gap G 1 in between, and has a structure in which its machine outer side end portion is attached to a bottom portion of the hollow connecting conductor 11 , and the cooling gas is discharged to a machine inner side.
  • the insulating cylinder 13 is configured of glass and the like, is provided in an outer circumference side of the hollow connecting conductor 11 with a gap G 2 in between, and has a structure in which its machine outer side end portion is sealed, and the hollow connecting conductor 11 and the stator frame 7 are electrically insulated.
  • the aforementioned hollow connecting conductor 11 forms an outer conductor connecting section at a portion that penetrates the insulating cylinder 13 , and is connected to a current lead not shown on an outside of the rotating electrical machine. Further, a connecting conductor support 11 C that supports the hollow connecting conductor being connected to a machine inner side end portion of the insulating cylinder 13 is directly attached to an outer circumferential surface of the hollow connecting conductor 11 by welding and the like.
  • a gasket P 1 is provided to be intervened at a connecting portion of the machine inner side end portion of the insulating cylinder 13 and the connecting conductor support 11 C, whereas on the other hand, a gasket P 2 is provided to be intervened at a connecting portion of the machine outer side end portion of the insulating cylinder 13 and the hollow connecting conductor 11 , and sealing process is performed so that the cooling gas within the machine does not leak out of the device.
  • the aforementioned gas circulation pipe 12 has an outlet side of the cooling gas connected to a portion within the rotating electrical machine device with a lower pressure than a cooling gas pressure inside the output terminal box 5 that is an inlet side of the cooling gas of the high pressure bushing, for example a low pressure chamber at a fan inlet, via a pipe that is not shown.
  • the cooling gas flows in the high pressure bushing by a pressure difference generated between them, and the heated hollow connecting conductor 11 and the like are configured to be cooled.
  • the aforementioned insulating cylinder 13 includes a flange section 13 A, the flange section 13 A is fixed to the stator frame 7 , and a sealing process is performed.
  • the flange section 13 A of the insulating cylinder 13 is formed for example of metal, and is formed integrally with the insulating portion by adhesive and the like.
  • the hollow connecting conductor 11 includes a plurality of communicating holes 11 a located in the machine inner side and a plurality of communicating holes 11 b located in the machine outer side
  • the gas circulation pipe 12 includes a plurality of reflux holes 12 a located in the vicinity of the machine outer side end portion of the gas circulation pipe 12 .
  • the cooling gas within the machine is introduced into the gap G 1 from the machine inner side end portion 11 A of the hollow connecting conductor 11 , and while passing through an inner circumference side passage of the hollow connecting conductor 11 , a part of the cooling gas introduced into the gap G 1 branches to pass through first communicating holes 11 a , is introduced into the gap G 2 , passes through an outer circumference side passage of the hollow connecting conductor 11 , passes through the communicating holes 11 b , and merges with the cooling gas that passed through the inner circumference side passage of the hollow connecting conductor 11 , and the merged cooling gas passes through reflux holes 12 a and passes through the inner side of the gas circulation pipe 12 , and is discharged to the machine inner side.
  • the hollow connecting conductor 11 can sufficiently be cooled from both surfaces of the inner circumferential surface and the outer circumferential surface, and cooling of the gaskets P 1 , P 2 and the like can also be performed sufficiently, so cooling efficiency of the entire high pressure bushing can be improved.
  • FIG. 3 is a perspective diagram showing an example of a structure of the hollow connecting conductor 11 shown in FIG. 2 .
  • FIG. 4 is a perspective diagram showing a modification of the hollow connecting conductor 11 shown in FIG. 3 .
  • the plurality of communicating holes 11 a provided in the hollow connecting conductor 11 is arranged apart so as to align at a same height relative to a longitudinal direction.
  • An arrangement of the plurality of communicating holes 11 b is also similar.
  • the plurality of communicating holes 11 a provided in the hollow connecting conductor 11 form a zigzag alignment.
  • An arrangement of the plurality of communicating holes 11 b is also similar.
  • FIG. 5 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 2 .
  • an orientation toward which the cooling gas flows in the plurality of communicating holes 11 a , 11 b shown in the example of FIG. 2 as above is directed to a direction vertical to a wall surface of the hollow connecting conductor 11
  • an orientation toward which the cooling gas flows in the plurality of communicating holes 11 a , 11 b shown in FIG. 5 is tilted toward the machine outer side from the direction vertical to the wall surface of the hollow connecting conductor 11 .
  • boring is performed in a direction that is tilted toward the machine outer side by an angle ⁇ from the direction vertical to the wall surface of the hollow connecting conductor 11 .
  • the angle ⁇ in this case is preferably within a range of 20° to 80°, which is dependent on a driving pressure of the cooling gas and a thickness of the wall of the hollow connecting conductor 11 .
  • gas flow pressure loss such as branching loss and colliding loss upon the cooling gas passing through the communicating holes 11 a , 11 b can be reduced.
  • FIG. 7 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2 .
  • FIG. 8 is a perspective diagram showing an example of a structure of disk-shaped baffle plates 12 A, 12 B and the like shown in FIG. 7 .
  • the baffle plate 12 A that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 to be smaller in the gas circulation pipe 12 is provided in a position farther from the machine than the communicating holes 11 a
  • the baffle plate 12 B that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 to be smaller in the gas circulation pipe 12 is provided in a position nearer to the machine than the communicating holes 11 b .
  • the disk-shaped baffle plates 12 A, 12 B are respectively provided on the outer circumferential surface of the gas circulation pipe 12 .
  • the shape is not limited to the disk-shape, and members with other shapes may be used so long as the passage is narrowed.
  • the amount distribution of the cooling gas flowing in both the inner circumference side passage and the outer circumference side passage of the hollow connecting conductor 11 can be adjusted with satisfactory balance. Further, the amount of the cooling gas flowing in the outer circumference side passage of the hollow connecting conductor 11 can easily be increased, and the cooling efficiency on the outer circumference side of the hollow connecting conductor 11 can be made higher. Further, even in a case where the communicating holes 11 a and the like are small, a larger amount of cooling gas can be branched to the outer circumference side of the hollow connecting conductor 11 , and an increase in heat generation density due to a decrease in the cross sectional area where a current passes caused by communicating hole boring can be avoided.
  • FIG. 9 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2 .
  • an umbrella-shaped (or conical parallelepiped-shaped) wind shield plate 12 C that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 approaching toward the machine outer side to be reduced from a first area to a second area is provided in the gas circulation pipe 12 in the vicinity of the communicating holes 11 a
  • an umbrella-shaped (or conical parallelepiped-shaped) wind shield plate 12 D that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 approaching toward the machine outer side to be enlarged from the second area to the first area is provided in the gas circulation pipe 12 in the vicinity of the communicating holes 11 b.
  • FIG. 10 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2 .
  • the gas circulation pipe 12 has an intermediate thick portion 12 E that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 to be smaller in a position farther from the machine than the communicating holes 11 a and to be smaller in a position nearer to the machine than the communicating holes 11 b , and also has shapes at both sides thereof similar to the aforementioned umbrella-shaped wind shield plates 12 C, 12 D. That is, similar to the example of FIG.
  • the gas circulation pipe 12 has the shape that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 approaching toward the machine outer side to be reduced from the first area to the second area in the vicinity of the communicating holes 11 a , and has the shape that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 approaching toward the machine outer side to be enlarged from the second area to the first area in the vicinity of the communicating holes 11 b.
  • FIG. 11 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2 .
  • FIG. 12 is a perspective diagram showing an example of a structure of partition plates 12 F, 12 G and the like having communication holes shown in FIG. 11 ;
  • a partition plate 12 F with communicating holes that includes a plurality of communicating holes is provided in the inner circumference side passage of the hollow connecting conductor 11 in a position farther from the machine than the communicating holes 11 a
  • a partition plate 12 G with communicating holes that includes a plurality of communicating holes is provided in the inner circumference side passage of the hollow connecting conductor 11 in a position nearer to the machine than the communicating holes 11 b .
  • the partition plates 12 F, 12 G with the communicating holes having the same outer diameter as an inner diameter of the hollow connecting conductor 11 are attached and fixed to the outer circumferential surface of the gas circulation pipe 12 and the inner circumferential surface of the hollow connecting conductor 11 respectively within the inner circumference side passage of the hollow connecting conductor 11 . Due to this, the gas circulation pipe 12 is firmly supported by the partition plates 12 F, 12 G with the communicating holes.
  • the plurality of communicating holes 12 Fa provided in the partition plate 12 F with the communicating holes and the plurality of communicating holes 12 Ga provided in the partition plate 12 G with the communicating holes respectively have an orientation along which the cooling gas flows tilted from the machine outer side toward a circumferential direction. Due to this, as shown in FIG. 14 , a rotational flow F is induced in the cooling gas that had passed the respective communicating holes 12 Fa, 12 Ga.
  • FIG. 15 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of the second embodiment.
  • FIG. 16 is a perspective diagram showing an example of structures of a hollow connecting conductor 11 and a connecting conductor support 11 C shown in FIG. 15 .
  • the high pressure bushing shown in the example of FIG. 15 does not have the same, and includes a plurality of communicating holes 11 d in the connecting conductor support 11 C instead.
  • the communicating holes 11 d introduce a cooling gas within a device to a gap G 2 .
  • the cooling gas within the machine is introduced into a gap G 1 from a machine inner side end portion 11 A of the hollow connecting conductor 11 , and passes through an inner circumference side passage of the hollow connecting conductor 11
  • the cooling gas within the machine is also introduced into the gap G 2 through the communicating holes 11 d of the connecting conductor support 11 C, passes through an outer circumference side passage of the hollow connecting conductor 11 , passes through communicating holes 11 b , and merges with the cooling gas that passed through the inner circumference side passage of the hollow connecting conductor 11
  • the merged cooling gas passes through reflux holes 12 a and passes through the inner side of a gas circulation pipe 12 , and is discharged to a machine inner side.
  • the hollow connecting conductor 11 can sufficiently be cooled from both surfaces of the inner circumferential surface and the outer circumferential surface, and cooling of gaskets P 1 , P 2 and the like can also be performed sufficiently, so cooling efficiency of the entire high pressure bushing can be improved.
  • FIG. 17 is a plan diagram showing an example of the structure of the connecting conductor support 11 C shown in FIG. 15 and FIG. 16 . Further, FIG. 18 is a plan diagram showing a modification of the connecting conductor support 11 C shown in FIG. 17 .
  • the plurality of communicating holes 11 d provided in the connecting conductor support 11 C is arranged with a regular interval in a circumferential direction at an inner diameter side than a gasket retaining position Pa.
  • each of the plurality of communicating holes 11 d provided in the connecting conductor support 11 C is made larger, for example by enlarging the plurality of communicating holes 11 d to the vicinity of an outer side of the gasket retaining position Pa, and is arranged with a regular interval in the circumferential direction.
  • FIG. 19 is a perspective diagram showing a modification of the hollow connecting conductor 11 and the connecting conductor support 11 C shown in FIG. 16 .
  • the plurality of communicating holes 11 b provided in the hollow connecting conductor 11 form a zigzag alignment similar to the plurality of communicating holes 11 b shown in FIG. 4 .
  • the cooling gas appropriately disperses, and temperature equalization becomes possible.
  • FIG. 20 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 15 .
  • same members as the plurality of communicating holes 11 a shown in FIG. 2 as above are additionally provided in the hollow connecting conductor 11 .
  • FIG. 21 is a perspective diagram showing a modification of the hollow connecting conductor 11 and the connecting conductor support 11 C shown in FIG. 20 .
  • a plurality of communicating holes 11 a and a plurality of communicating holes 11 b provided in the hollow connecting conductor 11 respectively form zigzag alignments.
  • the cooling gas suitably disperses, and temperature equalization can be obtained.
  • FIG. 22 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 20 .
  • the plurality of communicating holes 11 a , 11 b shown in the example of FIG. 22 has an orientation of the flow of the cooling gas tilted toward the machine outer side from the direction vertical to the wall surface of the hollow connecting conductor 11 .
  • the gas flow pressure loss such as branching loss and colliding loss upon the cooling gas passing through the communicating holes 11 a , 11 b can be reduced.
  • baffle plates 12 A, 12 B shown in FIG. 7 may respectively be provided in the high pressure bushing shown in FIG. 20 to FIG. 22 .
  • the baffle plates 12 A, 12 B shown in FIG. 7 may respectively be provided in the high pressure bushing shown in FIG. 20 to FIG. 22 .
  • FIG. 23 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 15 .
  • FIGS. 24A and 24B are a side diagram and a plan diagram showing an example of the structure of a connecting conductor support 11 C shown in FIG. 23 .
  • a plurality of communicating holes 11 d ′ provided in the connecting conductor support 11 C is configured to intake the cooling gas within the machine from a side surface portion on the outer circumference side of the connecting conductor support 11 C toward a radially inner direction, to change an orientation of the gas to the longitudinal direction of the hollow connecting conductor 11 on the way, and to flow the gas to the gap G 2 .
  • This configuration is effective in cases where sufficient size for providing the plurality of communicating holes 11 d as shown in FIG. 15 and FIG. 16 is not ensured in a region in the machine inner side of the connecting conductor support 11 C.
  • FIG. 25 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of the third embodiment. Further, FIG. 26 is a perspective diagram showing an example of a structure of a partition plate 12 H and the like shown in FIG. 25 .
  • a partition plate 12 H that divides a gap G 1 in a longitudinal direction is located in a position farther from the machine than but in the vicinity of communicating holes 11 b .
  • the gas circulation pipe 12 includes reflux holes 12 b located in a position nearer to the machine than but in the vicinity of the partition plate 12 H. For example, as shown in FIG.
  • the partition plate 12 H having an outer diameter that is identical to an inner diameter of a hollow connecting conductor 11 is attached and fixed to an outer circumferential surface of the gas circulation pipe 12 and an inner circumferential surface of the hollow connecting conductor 11 so as to close an inner circumference side passage of the hollow connecting conductor 11 . Due to this, the gas circulation pipe 12 is firmly supported by the partition plate 12 H.
  • the cooling gas within the machine is introduced into a gap G 1 from the machine inner side end portion of the hollow connecting conductor 11 , and while passing through an inner circumference side passage of the hollow connecting conductor 11 and passing through the reflux holes 12 b , a part of the cooling gas introduced into the gap G 1 passes through first communicating holes 11 a and is introduced into the gap G 2 , passes through an outer circumference side passage of the hollow connecting conductor 11 , passes through the communicating holes 11 b , passes through the inner circumference side passage of the hollow connecting conductor 11 , passes through the reflux holes 12 a , and passes through the inner side of the gas circulation pipe 12 , and merges with the cooling gas that passed through the reflux holes 12 b , and the merged cooling gas passes through the inner side of the gas circulation pipe 12 , and is discharged to the machine inner side.
  • the hollow connecting conductor 11 can sufficiently be cooled from both surfaces of the inner circumferential surface and the outer circumferential surface, and cooling of gaskets P 1 , P 2 and the like can also be performed sufficiently, so cooling efficiency of the entire high pressure bushing can be improved.
  • the partition plate 12 H avoids the cooling gas to merge in the inner circumference side passage of the hollow connecting conductor 11 , and thereby a location at which the cooling gas merges comes to be within the gas circulation pipe 12 instead of the inner circumference side passage of the hollow connecting conductor 11 , an influence of merging loss to cooling of the hollow connecting conductor 11 can be reduced, and the cooling of the hollow connecting conductor 11 can further be enhanced.
  • FIG. 27 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 25 .
  • FIG. 28 is a perspective diagram showing an example of a structure of a partition plate 12 J and the like having a communication hole shown in FIG. 27 .
  • the partition plate 12 J having communication holes that has the same outer diameter as the inner diameter of the hollow connecting conductor 11 is attached and fixed to an outer circumferential surface of the gas circulation pipe 12 and an inner circumferential surface of the hollow connecting conductor 11 at within the inner circumference side passage of the hollow connecting conductor 11 . Due to this, the gas circulation pipe 12 is firmly supported by the partition plate 12 J.
  • a plurality of communicating holes 12 Ja provided in the partition plate 12 J having communication holes may have an orientation of a flow of a cooling gas tilted from a machine outer side toward a circumferential direction. Due to this, since a rotational flow is induced in the cooling gas that has passed through the respective communicating holes, cooling of the inner circumferential surface of the hollow connecting conductor 11 can further be enhanced.
  • the baffle plate 12 A shown in FIG. 7 may respectively be provided in the high pressure bushing shown in FIG. 25 .
  • the baffle plate 12 A shown in FIG. 7 the umbrella-shaped (or conical parallelepiped-shaped) wind shield plate 12 C shown in FIG. 9 , and the intermediate thick portion 12 E shown in FIG. 10 may respectively be provided in the high pressure bushing shown in FIG. 25 .
  • FIG. 29 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 27 .
  • the plurality of communicating holes 11 a , 11 b shown in the example of FIG. 29 has the orientation of the flow of the cooling gas tilted toward the machine outer side from the direction vertical to the wall surface of the hollow connecting conductor 11 .
  • the gas flow pressure loss such as branching loss and colliding loss upon the cooling gas passing through the communicating holes 11 a , 11 b can be reduced.
  • FIG. 30 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of the fourth embodiment. Further, FIG. 31 is a perspective diagram showing an example of a structure of partition plates 12 H, 12 K and the like shown in FIG. 30 .
  • a hollow connecting conductor 11 includes communicating holes 11 a located on a machine inner side, and communicating holes 11 b located on a machine outer side, and in addition, communicating holes 11 c located in a position nearer to the machine than but in the vicinity of the communicating holes 11 b are also included. Further, the partition plate 12 K that divides a gap G 1 in a longitudinal direction is located in a position farther from the machine than but in the vicinity of the communicating holes 11 a , and the partition plate 12 H that similarly divides the gap G 1 in the longitudinal direction is provided in the vicinity of an intermediate position between the communicating holes 11 b and the communicating holes 11 c .
  • the gas circulation pipe 12 includes reflux holes 12 a located in the vicinity of a machine outer side end portion of the gas circulation pipe 12 , and reflux holes 12 c located in a position farther from the machine than but in the vicinity of the partition plate 12 K.
  • the partition plates 12 K, 12 H having an outer diameter that is identical to an inner diameter of the hollow connecting conductor 11 are respectively attached and fixed to an outer circumferential surface of the gas circulation pipe 12 and an inner circumferential surface of the hollow connecting conductor 11 so as to close an inner circumference side passage of the hollow connecting conductor 11 . Due to this, the gas circulation pipe 12 is firmly supported by the partition plates 12 K, 12 H.
  • a cooling gas within the machine is introduced into the gap G 1 from the machine inner side end portion of the hollow connecting conductor 11 , passes through the communicating holes 11 a , is introduced into the gap G 2 , and passes through the outer circumference side passage of the hollow connecting conductor 11 , and while a part of the cooling gas that has passed the outer circumference side passage of the hollow connecting conductor 11 passes through the communicating holes 11 b , passes through the inner circumference side passage of the hollow connecting conductor 11 , passes through the reflux holes 12 a , and passes through inside of the gas circulation pipe 12 , another part of the cooling gas that has passed the outer circumference side passage of the hollow connecting conductor 11 passes through the communicating holes 11 c , passes through the inner circumference side passage of the hollow connecting conductor 11 , passes through the reflux holes 12 c , and merges with the cooling gas that has passed inside the gas circulation pipe 12 , and a merged cooling gas passes through the inner side of the gas circulation pipe 12 , and is discharged to the machine inner side.
  • the hollow connecting conductor 11 can sufficiently be cooled from both surfaces of the inner circumferential surface and the outer circumferential surface, and cooling of gaskets P 1 , P 2 and the like can also be performed sufficiently, so cooling efficiency of the entire high pressure bushing can be improved.
  • the communicating holes 11 b , 11 c and the partition plates 12 H, 12 K avoid the cooling gas to merge in the inner circumference side passage of the hollow connecting conductor 11 , and thereby a location at which the cooling gas merges comes to be within the gas circulation pipe 12 instead of the inner circumference side passage of the hollow connecting conductor 11 , an influence of merging loss to cooling of the hollow connecting conductor 11 can be reduced, and the cooling of the hollow connecting conductor 11 can further be enhanced.
  • FIG. 32 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 30 .
  • a plurality of communicating holes 11 d is additionally formed in the connecting conductor support 11 C.
  • FIG. 33 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 30 .
  • a plurality of communicating holes 11 d ′ provided in the connecting conductor support 11 C is configured to intake the cooling gas within the machine from a side surface portion of the connecting conductor support 11 C on the outer circumference in a radially inner direction, to change the orientation of the gas in a longitudinal direction of the hollow connecting conductor 11 on the way, and to flow the same to the gap G 2 .
  • This configuration is effective in cases where sufficient size for providing the plurality of communicating holes 11 d is not ensured in a region in the machine inner side of the connecting conductor support 11 C.
  • FIG. 34 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 30 .
  • a plurality of communicating holes 11 a , 11 b shown in the example of FIG. 34 has an orientation of the flow of the cooling gas tilted toward the machine outer side from the direction vertical to the wall surface of the hollow connecting conductor 11 .
  • the gas flow pressure loss such as branching loss and colliding loss upon the cooling gas passing through the communicating holes 11 a , 11 b can be reduced.
  • FIG. 35 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 30 .
  • the gas circulation pipe 12 has an intermediate thick portion 12 E that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 to be smaller in the machine outer side further than a partition section 12 K and in the machine inner side further than a partition section 12 H.
  • the gas circulation pipe 12 has a shape that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 approaching toward the machine outer side to be reduced from a first area to a second area in the vicinity of the partition section 12 K, and has a shape that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 approaching toward the machine outer side to be enlarged from the second area to the first area in the vicinity of the partition section 12 H.
  • the amount distribution of the cooling gas flowing through both the communicating holes 11 b and the communicating holes 11 c of the hollow connecting conductor 11 can be adjusted with satisfactory balance. Further, the amount of the cooling gas flowing through the communicating holes 11 b of the hollow connecting conductor 11 can easily be increased, and cooling efficiency of machine outer side end portion 11 B can be made higher.
  • the cooling gas flow can be improved and the cooling efficiency can be increased while maintaining the basic configuration from before, there is no need to make a value of a current that can be flown small or make the high pressure bushing large by enlarging the conductor cross sectional area; and a high pressure bushing and a rotating electrical machine in which upper limit of the current to be flown can be increased, heat degradation of the member that seals the cooling gas within the machine can be kept to minimum degree, a possibility of leakage of the cooling gas can be made lower, and reliability is increased can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Insulators (AREA)

Abstract

According to one embodiment, there is provided a high pressure bushing arranged through by penetrating a stator frame of a rotating electrical machine in which a cooling gas is sealed. At least a communicating hole is provided in the hollow connecting conductor and at least a reflux hole is provided in the gas circulation pipe, such that the cooling gas flows in both of the first gap and the second gap, passes through an inner side of the gas circulation pipe, and is discharged to the machine inner side.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2012-016412, filed Jan. 30, 2012, the entire contents of which are incorporated herein by reference.
FIELD
Embodiments described herein relate generally to a high pressure bushing of a rotating electrical machine, and the rotating electrical machine.
BACKGROUND
Generally, a rotating electrical machine such as a turbine generator is configured to seal hydrogen gas and the like within the device, and to cool respective sections such as a rotor, a stator iron core, and a stator coil by using the same as a coolant.
Further, a stator frame of the rotating electrical machine is provided with a high pressure bushing that penetrates the stator frame. The stator coil of the rotating electrical machine is wire bound to the high pressure bushing via a connecting conductor, and an electric output can be taken out from the rotating electrical machine through a hollow connecting conductor provided in the high pressure bushing. Since the high pressure bushing generates heat by a large current flowing in the hollow connecting conductor, the cooling gas introduced from inside the device is used for cooling.
Generally, the high pressure bushing structurally uses only an inner circumferential surface side of the hollow connecting conductor as a cooling surface. An outer circumferential surface side of the hollow connecting conductor ensures a space for maintaining an insulating distance, an insulating cylinder such as glass is also provided, and a sealing section that is vulnerable to heat is provided, however, an effect of cooling is not sufficiently enjoyed on the side thereof. In order to perform a sufficient cooling, a current value with which the current can be flown must be made small or the high pressure bushing must be made large by enlarging a conductor cross sectional area, neither of which is a crucial solution.
Under the circumstances, it is desired to provide a high pressure bushing and a rotating electrical machine, capable of improving cooling efficiency.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a vertical cross sectional diagram showing an example of a configuration of a rotating electrical machine common to first to fourth embodiments;
FIG. 2 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of the first embodiment;
FIG. 3 is a perspective diagram showing an example of a structure of a hollow connecting conductor 11 shown in FIG. 2;
FIG. 4 is a perspective diagram showing a modification of the hollow connecting conductor 11 shown in FIG. 3;
FIG. 5 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 2;
FIG. 6 is a diagram for explaining orientations of a plurality of communicating holes 11 a, 11 b shown in FIG. 5;
FIG. 7 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2;
FIG. 8 is a perspective diagram showing an example of a structure of baffle plates 12A, 12B and the like shown in FIG. 7;
FIG. 9 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2;
FIG. 10 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2;
FIG. 11 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2;
FIG. 12 is a perspective diagram showing an example of a structure of partition plates 12F, 12G and the like having communication holes shown in FIG. 11;
FIGS. 13A and 13B are a plan diagram and a side diagram showing an example of the structure of the partition plates 12F, 12G and the like having the communication holes shown in FIG. 12;
FIG. 14 is a perspective diagram showing a rotational flow F of a cooling gas that passes through the communicating hole of the partition plate;
FIG. 15 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of a second embodiment;
FIG. 16 is a perspective diagram showing an example of structures of a hollow connecting conductor 11 and a connecting conductor support 11C shown in FIG. 15;
FIG. 17 is a plan diagram showing an example of the structure of the connecting conductor support 11C shown in FIG. 15 and FIG. 16;
FIG. 18 is a plan diagram showing a modification of the connecting conductor support 11C shown in FIG. 17;
FIG. 19 is a perspective diagram showing a modification of the hollow connecting conductor 11 and the connecting conductor support 11C shown in FIG. 16;
FIG. 20 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 15;
FIG. 21 is a perspective diagram showing a modification of a hollow connecting conductor 11 and a connecting conductor support 11C shown in FIG. 20;
FIG. 22 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 20;
FIG. 23 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 15;
FIGS. 24A and 24B are a side diagram and a plan diagram showing an example of structure of the connecting conductor support 11C shown in FIG. 23;
FIG. 25 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of a third embodiment;
FIG. 26 is a perspective diagram showing an example of a structure of a partition plate 12H and the like shown in FIG. 25;
FIG. 27 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 25;
FIG. 28 is a perspective diagram showing an example of a structure of a partition plate 12J and the like having a communication hole shown in FIG. 27;
FIG. 29 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 27;
FIG. 30 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of the fourth embodiment;
FIG. 31 is a perspective diagram showing an example of a structure of partition plates 12H, 12K and the like shown in FIG. 30;
FIG. 32 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 30;
FIG. 33 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 30;
FIG. 34 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 30; and
FIG. 35 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 30.
DETAILED DESCRIPTION
Embodiments will be described with reference to the drawings.
In general, according to one embodiment, there is provided a high pressure bushing arranged through by penetrating a stator frame of a rotating electrical machine in which a cooling gas is sealed, the high pressure bushing comprising: a hollow connecting conductor that has a machine outer side end portion sealed, and introduces the cooling gas within the machine from a machine inner side end portion; a gas circulation pipe that is arranged in an inner circumference side of the hollow connecting conductor with a first gap, and discharges the cooling gas toward a machine inner side; and an insulating cylinder that is arranged in an outer circumference side of the hollow connecting conductor with a second gap, and electrically insulates the hollow connecting conductor and the stator frame, wherein at least a communicating hole is provided in the hollow connecting conductor and at least a reflux hole is provided in the gas circulation pipe, such that the cooling gas flows in both of the first gap and the second gap, passes through an inner side of the gas circulation pipe, and is discharged to the machine inner side.
(Matters Common to Respective Embodiments)
FIG. 1 shows a vertical cross sectional diagram showing an example of a configuration of a rotating electrical machine common to first to fourth embodiments;
The rotating electrical machine shown in FIG. 1 is for example a large capacity turbine generator, which is configured to seal a hydrogen gas within the device, and to cool the respective sections such as a rotor 1, a stator iron core 2, and a stator coil 3 with the gas as a coolant. Further, it is wire bound to a high pressure bushing 6 a provided in a stator frame 7 configuring an output terminal box 5 from the stator coil 3 via a connecting conductor 4, and it is configured to take out an electric output to outside the device. Further, when the stator coil 3 is wire bound in a star-connection and a neutral point thereof is to be grounded, the electric output is taken outside via a high pressure bushing 6 b provided in the stator frame 7, and the neutral point is wire bound thereto. The aforementioned high pressure bushings 6 a, 6 b are configured to perform cooling by introducing the cooling gas to their respective insides.
In the following first to fourth embodiments, a configuration example of one of a plurality of high pressure bushings 6 a, 6 b shown in FIG. 1, for example, of the high pressure bushing 6 a will be described.
First Embodiment
Firstly, the first embodiment will be described with reference to FIG. 2 to FIG. 14. Notably, elements common to the drawings are given the same signs.
FIG. 2 is a vertical cross sectional diagram showing an example of a structure of the high pressure bushing and a cooling gas circulating flow of the first embodiment.
The high pressure bushing shown in FIG. 2 is provided by penetrating the stator frame 7 that configures the output terminal box 5 of the rotating electrical machine, and includes a hollow connecting conductor 11, a gas circulation pipe 12, and an insulating cylinder 13 as its primary constituent elements.
The hollow connecting conductor 11 has a structure in which its machine outer side end portion 11B sealed, and the cooling gas within the machine is introduced from a machine inner side end portion 11A. The gas circulation pipe 12 is provided in an inner circumference side of the hollow connecting conductor 11 with a gap G1 in between, and has a structure in which its machine outer side end portion is attached to a bottom portion of the hollow connecting conductor 11, and the cooling gas is discharged to a machine inner side. The insulating cylinder 13 is configured of glass and the like, is provided in an outer circumference side of the hollow connecting conductor 11 with a gap G2 in between, and has a structure in which its machine outer side end portion is sealed, and the hollow connecting conductor 11 and the stator frame 7 are electrically insulated.
The aforementioned hollow connecting conductor 11 forms an outer conductor connecting section at a portion that penetrates the insulating cylinder 13, and is connected to a current lead not shown on an outside of the rotating electrical machine. Further, a connecting conductor support 11C that supports the hollow connecting conductor being connected to a machine inner side end portion of the insulating cylinder 13 is directly attached to an outer circumferential surface of the hollow connecting conductor 11 by welding and the like. A gasket P1 is provided to be intervened at a connecting portion of the machine inner side end portion of the insulating cylinder 13 and the connecting conductor support 11C, whereas on the other hand, a gasket P2 is provided to be intervened at a connecting portion of the machine outer side end portion of the insulating cylinder 13 and the hollow connecting conductor 11, and sealing process is performed so that the cooling gas within the machine does not leak out of the device.
The aforementioned gas circulation pipe 12 has an outlet side of the cooling gas connected to a portion within the rotating electrical machine device with a lower pressure than a cooling gas pressure inside the output terminal box 5 that is an inlet side of the cooling gas of the high pressure bushing, for example a low pressure chamber at a fan inlet, via a pipe that is not shown. The cooling gas flows in the high pressure bushing by a pressure difference generated between them, and the heated hollow connecting conductor 11 and the like are configured to be cooled.
The aforementioned insulating cylinder 13 includes a flange section 13A, the flange section 13A is fixed to the stator frame 7, and a sealing process is performed. The flange section 13A of the insulating cylinder 13 is formed for example of metal, and is formed integrally with the insulating portion by adhesive and the like.
Especially, in the first embodiment, the hollow connecting conductor 11 includes a plurality of communicating holes 11 a located in the machine inner side and a plurality of communicating holes 11 b located in the machine outer side, and the gas circulation pipe 12 includes a plurality of reflux holes 12 a located in the vicinity of the machine outer side end portion of the gas circulation pipe 12.
By the aforementioned configuration, the cooling gas within the machine is introduced into the gap G1 from the machine inner side end portion 11A of the hollow connecting conductor 11, and while passing through an inner circumference side passage of the hollow connecting conductor 11, a part of the cooling gas introduced into the gap G1 branches to pass through first communicating holes 11 a, is introduced into the gap G2, passes through an outer circumference side passage of the hollow connecting conductor 11, passes through the communicating holes 11 b, and merges with the cooling gas that passed through the inner circumference side passage of the hollow connecting conductor 11, and the merged cooling gas passes through reflux holes 12 a and passes through the inner side of the gas circulation pipe 12, and is discharged to the machine inner side.
By configuring as above, since the cooling gas flows in both the inner circumference side passage and the outer circumference side passage of the hollow connecting conductor 11, the hollow connecting conductor 11 can sufficiently be cooled from both surfaces of the inner circumferential surface and the outer circumferential surface, and cooling of the gaskets P1, P2 and the like can also be performed sufficiently, so cooling efficiency of the entire high pressure bushing can be improved.
FIG. 3 is a perspective diagram showing an example of a structure of the hollow connecting conductor 11 shown in FIG. 2. Further, FIG. 4 is a perspective diagram showing a modification of the hollow connecting conductor 11 shown in FIG. 3.
In the example of FIG. 3, the plurality of communicating holes 11 a provided in the hollow connecting conductor 11 is arranged apart so as to align at a same height relative to a longitudinal direction. An arrangement of the plurality of communicating holes 11 b is also similar. On the other hand, in the example of FIG. 4, the plurality of communicating holes 11 a provided in the hollow connecting conductor 11 form a zigzag alignment. An arrangement of the plurality of communicating holes 11 b is also similar. Although either of the arrangements of FIG. 3 and FIG. 4 can be employed, when the zigzag alignment as in FIG. 4 is formed, the cooling gas appropriately disperses, and temperature equalization becomes possible. Further, a technique of this arrangement is adapted to the arrangement of the reflux holes 12 a provided in the gas circulation pipe 12.
FIG. 5 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 2.
Whereas an orientation toward which the cooling gas flows in the plurality of communicating holes 11 a, 11 b shown in the example of FIG. 2 as above is directed to a direction vertical to a wall surface of the hollow connecting conductor 11, an orientation toward which the cooling gas flows in the plurality of communicating holes 11 a, 11 b shown in FIG. 5 is tilted toward the machine outer side from the direction vertical to the wall surface of the hollow connecting conductor 11. For example, as shown in FIG. 6, boring is performed in a direction that is tilted toward the machine outer side by an angle θ from the direction vertical to the wall surface of the hollow connecting conductor 11. The angle θ in this case is preferably within a range of 20° to 80°, which is dependent on a driving pressure of the cooling gas and a thickness of the wall of the hollow connecting conductor 11.
By configuring as above, gas flow pressure loss such as branching loss and colliding loss upon the cooling gas passing through the communicating holes 11 a, 11 b can be reduced.
Hereinbelow, various examples of adjusting an amount distribution of the cooling gas flowing in both the inner circumference side passage and the outer circumference side passage of the hollow connecting conductor 11 by providing a structure that causes a cross sectional area of a part of the inner circumference side passage of the hollow connecting conductor 11 to be smaller (for example, a structure to narrow the passage).
FIG. 7 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2. Further, FIG. 8 is a perspective diagram showing an example of a structure of disk-shaped baffle plates 12A, 12B and the like shown in FIG. 7.
In the example of FIG. 7, the baffle plate 12A that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 to be smaller in the gas circulation pipe 12 is provided in a position farther from the machine than the communicating holes 11 a, and the baffle plate 12B that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 to be smaller in the gas circulation pipe 12 is provided in a position nearer to the machine than the communicating holes 11 b. For example, as shown in FIG. 8, the disk-shaped baffle plates 12A, 12B are respectively provided on the outer circumferential surface of the gas circulation pipe 12. Notably, the shape is not limited to the disk-shape, and members with other shapes may be used so long as the passage is narrowed.
By configuring as above, the amount distribution of the cooling gas flowing in both the inner circumference side passage and the outer circumference side passage of the hollow connecting conductor 11 can be adjusted with satisfactory balance. Further, the amount of the cooling gas flowing in the outer circumference side passage of the hollow connecting conductor 11 can easily be increased, and the cooling efficiency on the outer circumference side of the hollow connecting conductor 11 can be made higher. Further, even in a case where the communicating holes 11 a and the like are small, a larger amount of cooling gas can be branched to the outer circumference side of the hollow connecting conductor 11, and an increase in heat generation density due to a decrease in the cross sectional area where a current passes caused by communicating hole boring can be avoided.
FIG. 9 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2.
In the example of FIG. 9, an umbrella-shaped (or conical parallelepiped-shaped) wind shield plate 12C that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 approaching toward the machine outer side to be reduced from a first area to a second area is provided in the gas circulation pipe 12 in the vicinity of the communicating holes 11 a, and an umbrella-shaped (or conical parallelepiped-shaped) wind shield plate 12D that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 approaching toward the machine outer side to be enlarged from the second area to the first area is provided in the gas circulation pipe 12 in the vicinity of the communicating holes 11 b.
By configuring as above, similar effects as in the example of FIG. 7 can be obtained, and since the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 being configured to gradually change along the flow of the cooling gas, a turbulence in the cooling gas flow in the vicinities of the wind shield plates 12C, 12D is made smaller, the gas flow pressure loss can be suppressed, and rectifying effect can be enhanced.
FIG. 10 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2.
In the example of FIG. 10, the gas circulation pipe 12 has an intermediate thick portion 12E that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 to be smaller in a position farther from the machine than the communicating holes 11 a and to be smaller in a position nearer to the machine than the communicating holes 11 b, and also has shapes at both sides thereof similar to the aforementioned umbrella-shaped wind shield plates 12C, 12D. That is, similar to the example of FIG. 9, the gas circulation pipe 12 has the shape that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 approaching toward the machine outer side to be reduced from the first area to the second area in the vicinity of the communicating holes 11 a, and has the shape that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 approaching toward the machine outer side to be enlarged from the second area to the first area in the vicinity of the communicating holes 11 b.
By configuring as above, similar effects as in the example of FIG. 9 can be obtained, and the turbulence in the cooling gas flow in the vicinities of the umbrella-shaped portions can further be made smaller, and the cooling gas can more smoothly be circulated, and the cooling efficiency for the hollow connecting conductor 11 can be improved by the flow rate of the cooling gas being increased at the intermediate thick portion 12E.
FIG. 11 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 2. Further, FIG. 12 is a perspective diagram showing an example of a structure of partition plates 12F, 12G and the like having communication holes shown in FIG. 11;
In the example of FIG. 11, a partition plate 12F with communicating holes that includes a plurality of communicating holes is provided in the inner circumference side passage of the hollow connecting conductor 11 in a position farther from the machine than the communicating holes 11 a, and a partition plate 12G with communicating holes that includes a plurality of communicating holes is provided in the inner circumference side passage of the hollow connecting conductor 11 in a position nearer to the machine than the communicating holes 11 b. For example, as shown in FIG. 12, the partition plates 12F, 12G with the communicating holes having the same outer diameter as an inner diameter of the hollow connecting conductor 11 are attached and fixed to the outer circumferential surface of the gas circulation pipe 12 and the inner circumferential surface of the hollow connecting conductor 11 respectively within the inner circumference side passage of the hollow connecting conductor 11. Due to this, the gas circulation pipe 12 is firmly supported by the partition plates 12F, 12G with the communicating holes.
Further, as shown in the plan diagram of FIG. 13A and the side diagram of FIG. 13B, the plurality of communicating holes 12Fa provided in the partition plate 12F with the communicating holes and the plurality of communicating holes 12Ga provided in the partition plate 12G with the communicating holes respectively have an orientation along which the cooling gas flows tilted from the machine outer side toward a circumferential direction. Due to this, as shown in FIG. 14, a rotational flow F is induced in the cooling gas that had passed the respective communicating holes 12Fa, 12Ga.
By configuring as above, similar effects as in the examples of FIG. 7 to FIG. 10 can be obtained, and since the outer diameter of the partition plates 12F, 12G with the communicating holes is made to match the inner diameter of the hollow connecting conductor 11, the cooling gas can easily be branched, and a circulation loss at the merging portions of the cooling gas in the vicinity of the communicating holes 11 b can be reduced. Further, since the rotational flow F is induced in the cooling gas that had passed the plurality of communicating holes 12Fa, 12Ga respectively provided in the partition plates 12F, 12G with the communicating holes, cooling of the inner circumferential surface of the hollow connecting conductor 11 can further be enhanced.
Second Embodiment
Next, the second embodiment will be described with reference to FIG. 15 to FIG. 24B. Notably, elements common to the drawings are given the same signs. Hereinbelow, description of portions that are common with the aforementioned first embodiment will be omitted, and portions that differ will mainly be described.
FIG. 15 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of the second embodiment. Further, FIG. 16 is a perspective diagram showing an example of structures of a hollow connecting conductor 11 and a connecting conductor support 11C shown in FIG. 15.
In the aforementioned example of FIG. 2, a case in which the high pressure bushing includes the plurality of communicating holes 11 a in the hollow connecting conductor 11 was exemplified, the high pressure bushing shown in the example of FIG. 15 does not have the same, and includes a plurality of communicating holes 11 d in the connecting conductor support 11C instead. The communicating holes 11 d introduce a cooling gas within a device to a gap G2.
According to the aforementioned configuration, the cooling gas within the machine is introduced into a gap G1 from a machine inner side end portion 11A of the hollow connecting conductor 11, and passes through an inner circumference side passage of the hollow connecting conductor 11, whereas on the other hand, the cooling gas within the machine is also introduced into the gap G2 through the communicating holes 11 d of the connecting conductor support 11C, passes through an outer circumference side passage of the hollow connecting conductor 11, passes through communicating holes 11 b, and merges with the cooling gas that passed through the inner circumference side passage of the hollow connecting conductor 11, and the merged cooling gas passes through reflux holes 12 a and passes through the inner side of a gas circulation pipe 12, and is discharged to a machine inner side.
By configuring as above, similar to the aforementioned first embodiment, since the cooling gas flows in both the inner circumference side passage and the outer circumference side passage of the hollow connecting conductor 11, the hollow connecting conductor 11 can sufficiently be cooled from both surfaces of the inner circumferential surface and the outer circumferential surface, and cooling of gaskets P1, P2 and the like can also be performed sufficiently, so cooling efficiency of the entire high pressure bushing can be improved.
FIG. 17 is a plan diagram showing an example of the structure of the connecting conductor support 11C shown in FIG. 15 and FIG. 16. Further, FIG. 18 is a plan diagram showing a modification of the connecting conductor support 11C shown in FIG. 17.
In the example of FIG. 17, the plurality of communicating holes 11 d provided in the connecting conductor support 11C is arranged with a regular interval in a circumferential direction at an inner diameter side than a gasket retaining position Pa. On the other hand, in the example of FIG. 18, each of the plurality of communicating holes 11 d provided in the connecting conductor support 11C is made larger, for example by enlarging the plurality of communicating holes 11 d to the vicinity of an outer side of the gasket retaining position Pa, and is arranged with a regular interval in the circumferential direction. Although either arrangements in FIG. 17 and FIG. 18 may be employed, in a case of arranging the plurality of communicating holes 11 d similar to FIG. 18, since the communicating holes 11 d can be enlarged while maintaining a sealing function of the gasket P1, a gas flow pressure loss upon when the cooling gas passes by can be reduced, and an amount of gas flow can be increased, cooling of an outer circumferential surface of the hollow connecting conductor 11, the gasket P1 and the like can further be enhanced.
FIG. 19 is a perspective diagram showing a modification of the hollow connecting conductor 11 and the connecting conductor support 11C shown in FIG. 16.
In the example of FIG. 19, the plurality of communicating holes 11 b provided in the hollow connecting conductor 11 form a zigzag alignment similar to the plurality of communicating holes 11 b shown in FIG. 4. By configuring as above, the cooling gas appropriately disperses, and temperature equalization becomes possible.
FIG. 20 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 15.
In the example of FIG. 20, same members as the plurality of communicating holes 11 a shown in FIG. 2 as above are additionally provided in the hollow connecting conductor 11.
By configuring as above, since the cooling gas within the machine enters through both the communicating holes 11 a and the communicating holes 11 d, larger amount of cooling gas can be introduced into the gap G2, and cooling of the outer circumferential surface of the hollow connecting conductor 11, the gaskets P1, P2 and the like can further be enhanced.
FIG. 21 is a perspective diagram showing a modification of the hollow connecting conductor 11 and the connecting conductor support 11C shown in FIG. 20.
In the example of FIG. 21, similar to the example of FIG. 4, a plurality of communicating holes 11 a and a plurality of communicating holes 11 b provided in the hollow connecting conductor 11 respectively form zigzag alignments. By configuring as above, similar to the example of FIG. 4, the cooling gas suitably disperses, and temperature equalization can be obtained.
FIG. 22 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 20.
Similar to the example of FIG. 5, the plurality of communicating holes 11 a, 11 b shown in the example of FIG. 22 has an orientation of the flow of the cooling gas tilted toward the machine outer side from the direction vertical to the wall surface of the hollow connecting conductor 11. By configuring as above, similar to the example of FIG. 5, the gas flow pressure loss such as branching loss and colliding loss upon the cooling gas passing through the communicating holes 11 a, 11 b can be reduced.
Notably, according to the first embodiment, as in FIG. 7 to FIG. 14, various examples that adjusts the amount distribution of the cooling gas flowing in both the inner circumference side passage and the outer circumference side passage of the of the hollow connecting conductor 11 by providing a structure that causes a part of a cross sectional area of an inner circumference side passage of the hollow connecting conductor 11 to be smaller have been described, however, these methods can be adapted to a high pressure bushing shown in FIG. 20 to FIG. 22.
For example, the baffle plates 12A, 12B shown in FIG. 7, the umbrella-shaped (or conical parallelepiped-shaped) wind shield plates 12C, 12D shown in FIG. 9, the intermediate thick portion 12E shown in FIG. 10, and the partition plates 12F, 12G with communicating holes shown in FIG. 11 to FIG. 14 may respectively be provided in the high pressure bushing shown in FIG. 20 to FIG. 22.
FIG. 23 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 15. Further, FIGS. 24A and 24B are a side diagram and a plan diagram showing an example of the structure of a connecting conductor support 11C shown in FIG. 23.
In the above example of FIG. 15, the case in which the plurality of communicating holes 11 d supported by the connecting conductor support 11C intakes the cooling gas within the machine from the machine inner side and flows the same along the longitudinal direction of the hollow connecting conductor 11 into the gap G2 was exemplified, however, in the example of FIG. 23, as shown in the side diagram of FIG. 24A and the plan diagram of FIG. 24B, a plurality of communicating holes 11 d′ provided in the connecting conductor support 11C is configured to intake the cooling gas within the machine from a side surface portion on the outer circumference side of the connecting conductor support 11C toward a radially inner direction, to change an orientation of the gas to the longitudinal direction of the hollow connecting conductor 11 on the way, and to flow the gas to the gap G2.
This configuration is effective in cases where sufficient size for providing the plurality of communicating holes 11 d as shown in FIG. 15 and FIG. 16 is not ensured in a region in the machine inner side of the connecting conductor support 11C.
Third Embodiment
Next, the third embodiment will be described with reference to FIG. 25 to FIG. 29. Notably, elements common to the drawings are given the same signs. Hereinbelow, description of portions that are common with the aforementioned first embodiment will be omitted, and portions that differ will mainly be described.
FIG. 25 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of the third embodiment. Further, FIG. 26 is a perspective diagram showing an example of a structure of a partition plate 12H and the like shown in FIG. 25.
In the example of FIG. 25, a partition plate 12H that divides a gap G1 in a longitudinal direction is located in a position farther from the machine than but in the vicinity of communicating holes 11 b. Further, in addition to reflux holes 12 a located in the vicinity of a machine outer side end portion of a gas circulation pipe 12, the gas circulation pipe 12 includes reflux holes 12 b located in a position nearer to the machine than but in the vicinity of the partition plate 12H. For example, as shown in FIG. 26, the partition plate 12H having an outer diameter that is identical to an inner diameter of a hollow connecting conductor 11 is attached and fixed to an outer circumferential surface of the gas circulation pipe 12 and an inner circumferential surface of the hollow connecting conductor 11 so as to close an inner circumference side passage of the hollow connecting conductor 11. Due to this, the gas circulation pipe 12 is firmly supported by the partition plate 12H.
By the aforementioned configuration, the cooling gas within the machine is introduced into a gap G1 from the machine inner side end portion of the hollow connecting conductor 11, and while passing through an inner circumference side passage of the hollow connecting conductor 11 and passing through the reflux holes 12 b, a part of the cooling gas introduced into the gap G1 passes through first communicating holes 11 a and is introduced into the gap G2, passes through an outer circumference side passage of the hollow connecting conductor 11, passes through the communicating holes 11 b, passes through the inner circumference side passage of the hollow connecting conductor 11, passes through the reflux holes 12 a, and passes through the inner side of the gas circulation pipe 12, and merges with the cooling gas that passed through the reflux holes 12 b, and the merged cooling gas passes through the inner side of the gas circulation pipe 12, and is discharged to the machine inner side.
By configuring as above, similar to the aforementioned first and second embodiments, since the cooling gas flows in both the inner circumference side passage and the outer circumference side passage of the hollow connecting conductor 11, the hollow connecting conductor 11 can sufficiently be cooled from both surfaces of the inner circumferential surface and the outer circumferential surface, and cooling of gaskets P1, P2 and the like can also be performed sufficiently, so cooling efficiency of the entire high pressure bushing can be improved.
Further, since the partition plate 12H avoids the cooling gas to merge in the inner circumference side passage of the hollow connecting conductor 11, and thereby a location at which the cooling gas merges comes to be within the gas circulation pipe 12 instead of the inner circumference side passage of the hollow connecting conductor 11, an influence of merging loss to cooling of the hollow connecting conductor 11 can be reduced, and the cooling of the hollow connecting conductor 11 can further be enhanced.
FIG. 27 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 25. Further, FIG. 28 is a perspective diagram showing an example of a structure of a partition plate 12J and the like having a communication hole shown in FIG. 27.
In the example of FIG. 27, there is provided a partition plate 12J having a plurality of communicating holes in a position farther from the machine than the communicating holes 11 a in the inner circumference side passage of the hollow connecting conductor 11. For example, as shown in FIG. 28, the partition plate 12J having communication holes that has the same outer diameter as the inner diameter of the hollow connecting conductor 11 is attached and fixed to an outer circumferential surface of the gas circulation pipe 12 and an inner circumferential surface of the hollow connecting conductor 11 at within the inner circumference side passage of the hollow connecting conductor 11. Due to this, the gas circulation pipe 12 is firmly supported by the partition plate 12J.
Further, a plurality of communicating holes 12Ja provided in the partition plate 12J having communication holes may have an orientation of a flow of a cooling gas tilted from a machine outer side toward a circumferential direction. Due to this, since a rotational flow is induced in the cooling gas that has passed through the respective communicating holes, cooling of the inner circumferential surface of the hollow connecting conductor 11 can further be enhanced.
By configuring as above, in addition to being able to adjust an amount distribution of the cooling gas flowing in both the inner circumference side passage and the outer circumference side passage of the hollow connecting conductor 11 with satisfactory balance, since the rotational flow is induced in the cooling gas that has passed through the plurality of communicating hole 12Ja provided in the partition plate 12J having communication holes, the cooling of the inner circumferential surface of the hollow connecting conductor 11 can further be enhanced.
Notably, according to the first embodiment, as in FIG. 7 to FIG. 14, various examples that adjusts the amount distribution of the cooling gas flowing in both the inner circumference side passage and the outer circumference side passage of the of the hollow connecting conductor 11 by providing a structure that causes a part of a cross sectional area of an inner circumference side passage of the hollow connecting conductor 11 to be smaller have been described, however, these methods can be adapted to a high pressure bushing shown in FIG. 25 and the like.
For example, the baffle plate 12A shown in FIG. 7, the umbrella-shaped (or conical parallelepiped-shaped) wind shield plate 12C shown in FIG. 9, and the intermediate thick portion 12E shown in FIG. 10 may respectively be provided in the high pressure bushing shown in FIG. 25.
FIG. 29 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 27.
Similar to the example of FIG. 5, the plurality of communicating holes 11 a, 11 b shown in the example of FIG. 29 has the orientation of the flow of the cooling gas tilted toward the machine outer side from the direction vertical to the wall surface of the hollow connecting conductor 11. By configuring as above, similar to the example of FIG. 5, the gas flow pressure loss such as branching loss and colliding loss upon the cooling gas passing through the communicating holes 11 a, 11 b can be reduced.
Fourth Embodiment
Next, the fourth embodiment will be described with reference to FIG. 30 to FIG. 35. Notably, elements common to the drawings are given the same signs. Hereinbelow, description of portions that are common with the aforementioned third embodiment will be omitted, and portions that differ will mainly be described.
FIG. 30 is a vertical cross sectional diagram showing an example of a structure of a high pressure bushing and a cooling gas circulating flow of the fourth embodiment. Further, FIG. 31 is a perspective diagram showing an example of a structure of partition plates 12H, 12K and the like shown in FIG. 30.
In the example of FIG. 30, a hollow connecting conductor 11 includes communicating holes 11 a located on a machine inner side, and communicating holes 11 b located on a machine outer side, and in addition, communicating holes 11 c located in a position nearer to the machine than but in the vicinity of the communicating holes 11 b are also included. Further, the partition plate 12K that divides a gap G1 in a longitudinal direction is located in a position farther from the machine than but in the vicinity of the communicating holes 11 a, and the partition plate 12H that similarly divides the gap G1 in the longitudinal direction is provided in the vicinity of an intermediate position between the communicating holes 11 b and the communicating holes 11 c. The gas circulation pipe 12 includes reflux holes 12 a located in the vicinity of a machine outer side end portion of the gas circulation pipe 12, and reflux holes 12 c located in a position farther from the machine than but in the vicinity of the partition plate 12K. For example, as shown in FIG. 31, the partition plates 12K, 12H having an outer diameter that is identical to an inner diameter of the hollow connecting conductor 11 are respectively attached and fixed to an outer circumferential surface of the gas circulation pipe 12 and an inner circumferential surface of the hollow connecting conductor 11 so as to close an inner circumference side passage of the hollow connecting conductor 11. Due to this, the gas circulation pipe 12 is firmly supported by the partition plates 12K, 12H.
By the aforementioned configuration, a cooling gas within the machine is introduced into the gap G1 from the machine inner side end portion of the hollow connecting conductor 11, passes through the communicating holes 11 a, is introduced into the gap G2, and passes through the outer circumference side passage of the hollow connecting conductor 11, and while a part of the cooling gas that has passed the outer circumference side passage of the hollow connecting conductor 11 passes through the communicating holes 11 b, passes through the inner circumference side passage of the hollow connecting conductor 11, passes through the reflux holes 12 a, and passes through inside of the gas circulation pipe 12, another part of the cooling gas that has passed the outer circumference side passage of the hollow connecting conductor 11 passes through the communicating holes 11 c, passes through the inner circumference side passage of the hollow connecting conductor 11, passes through the reflux holes 12 c, and merges with the cooling gas that has passed inside the gas circulation pipe 12, and a merged cooling gas passes through the inner side of the gas circulation pipe 12, and is discharged to the machine inner side.
By configuring as above, similar to the aforementioned first to third embodiments, since the cooling gas flows in both the inner circumference side passage and the outer circumference side passage of the hollow connecting conductor 11, the hollow connecting conductor 11 can sufficiently be cooled from both surfaces of the inner circumferential surface and the outer circumferential surface, and cooling of gaskets P1, P2 and the like can also be performed sufficiently, so cooling efficiency of the entire high pressure bushing can be improved.
Further, since the communicating holes 11 b, 11 c and the partition plates 12H, 12K avoid the cooling gas to merge in the inner circumference side passage of the hollow connecting conductor 11, and thereby a location at which the cooling gas merges comes to be within the gas circulation pipe 12 instead of the inner circumference side passage of the hollow connecting conductor 11, an influence of merging loss to cooling of the hollow connecting conductor 11 can be reduced, and the cooling of the hollow connecting conductor 11 can further be enhanced.
Further, aside from a passage in which the cooling gas flows to the machine outer side in the inner circumference side passage of the hollow connecting conductor 11, since a passage in which the cooling gas flows to the machine inner side is also formed, a temperature of the hollow connecting conductor 11 undergoes a temperature equalization, and the cooling efficiency can be improved.
FIG. 32 is a vertical cross sectional diagram showing a modification of the high pressure bushing shown in FIG. 30.
In the example of FIG. 32, a plurality of communicating holes 11 d is additionally formed in the connecting conductor support 11C.
By configuring as above, since the cooling gas within the machine enters through both the communicating holes 11 a and the communicating holes 11 d into the gap G2, the cooling of the outer circumferential surface of the hollow connecting conductor 11, the gaskets P1, P2 and the like can further be enhanced.
FIG. 33 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 30.
In the example of FIG. 33, similar to the example of FIG. 23, a plurality of communicating holes 11 d′ provided in the connecting conductor support 11C is configured to intake the cooling gas within the machine from a side surface portion of the connecting conductor support 11C on the outer circumference in a radially inner direction, to change the orientation of the gas in a longitudinal direction of the hollow connecting conductor 11 on the way, and to flow the same to the gap G2.
This configuration is effective in cases where sufficient size for providing the plurality of communicating holes 11 d is not ensured in a region in the machine inner side of the connecting conductor support 11C.
FIG. 34 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 30.
Similar to the example of FIG. 5, a plurality of communicating holes 11 a, 11 b shown in the example of FIG. 34 has an orientation of the flow of the cooling gas tilted toward the machine outer side from the direction vertical to the wall surface of the hollow connecting conductor 11. By configuring as above, similar to the example of FIG. 5, the gas flow pressure loss such as branching loss and colliding loss upon the cooling gas passing through the communicating holes 11 a, 11 b can be reduced.
FIG. 35 is a vertical cross sectional diagram showing another modification of the high pressure bushing shown in FIG. 30.
In the example of FIG. 35, the gas circulation pipe 12 has an intermediate thick portion 12E that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 to be smaller in the machine outer side further than a partition section 12K and in the machine inner side further than a partition section 12H. In this case, the gas circulation pipe 12 has a shape that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 approaching toward the machine outer side to be reduced from a first area to a second area in the vicinity of the partition section 12K, and has a shape that causes a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor 11 approaching toward the machine outer side to be enlarged from the second area to the first area in the vicinity of the partition section 12H.
By configuring as above, the amount distribution of the cooling gas flowing through both the communicating holes 11 b and the communicating holes 11 c of the hollow connecting conductor 11 can be adjusted with satisfactory balance. Further, the amount of the cooling gas flowing through the communicating holes 11 b of the hollow connecting conductor 11 can easily be increased, and cooling efficiency of machine outer side end portion 11B can be made higher.
According to the embodiments described in detail above, the cooling gas flow can be improved and the cooling efficiency can be increased while maintaining the basic configuration from before, there is no need to make a value of a current that can be flown small or make the high pressure bushing large by enlarging the conductor cross sectional area; and a high pressure bushing and a rotating electrical machine in which upper limit of the current to be flown can be increased, heat degradation of the member that seals the cooling gas within the machine can be kept to minimum degree, a possibility of leakage of the cooling gas can be made lower, and reliability is increased can be provided.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.

Claims (16)

What is claimed is:
1. A high pressure bushing arranged through by penetrating a stator frame of a rotating electrical machine in which a cooling gas is sealed, the high pressure bushing comprising:
a hollow connecting conductor that has a machine outer side end portion sealed, and introduces the cooling gas within the machine from a machine inner side end portion;
a gas circulation pipe that is arranged in an inner circumference side of the hollow connecting conductor with a first gap, and discharges the cooling gas toward a machine inner side; and
an insulating cylinder that is arranged in an outer circumference side of the hollow connecting conductor with a second gap, and electrically insulates the hollow connecting conductor and the stator frame, wherein
at least a communicating hole is provided in the hollow connecting conductor and at least a reflux hole is provided in the gas circulation pipe, such that the cooling gas flows in both of the first gap and the second gap, passes through an inner side of the gas circulation pipe, and is discharged to the machine inner side,
the hollow connecting conductor includes a first communicating hole located in the machine inner side, and a second communicating hole located in a machine outer side,
the gas circulation pipe includes a reflux hole located in the vicinity of a machine outer side end portion of the gas circulation pipe, and
the cooling gas within the machine is introduced into the first gap from the machine inner side end portion of the hollow connecting conductor, and while the cooling gas passes through an inner circumference side passage of the hollow connecting conductor, a part of the cooling gas introduced into the first gap passes through the first communicating hole and is introduced into the second gap, passes in an outer circumference side passage of the hollow connecting conductor, passes through the second communicating hole, and merges with the cooling gas that has passed an inner circumference side passage of the hollow connecting conductor, and a merged cooling gas passes through the reflux hole, passes inside the gas circulation pipe, and is discharged to the machine inner side.
2. A high pressure bushing arranged through by penetrating a stator frame of a rotating electrical machine in which a cooling gas is sealed, the high pressure bushing comprising:
a hollow connecting conductor that has a machine outer side end portion sealed, and introduces the cooling gas within the machine from a machine inner side end portion;
a gas circulation pipe that is arranged in an inner circumference side of the hollow connecting conductor with a first gap, and discharges the cooling gas toward a machine inner side; and
an insulating cylinder that is arranged in an outer circumference side of the hollow connecting conductor with a second gap, and electrically insulates the hollow connecting conductor and the stator frame
a connecting conductor support that is arranged on an outer circumferential surface of the hollow connecting conductor, and supports the hollow connecting conductor by being connected to a machine inner side end portion of the insulating cylinder, wherein
at least a communicating hole is provided in the hollow connecting conductor and at least a reflux hole is provided in the gas circulation pipe, such that the cooling gas flows in both of the first gap and the second gap, passes through an inner side of the gas circulation pipe, and is discharged to the machine inner side,
the connecting conductor support includes a first communicating hole that introduces the cooling gas within the machine into the second gap,
the hollow connecting conductor includes a second communicating hole located in a machine outer side,
the gas circulation pipe includes a reflux hole located in the vicinity of a machine outer side end portion of the gas circulation pipe, and
the cooling gas within the machine is introduced into the first gap from the machine inner side end portion of the hollow connecting conductor, and while the cooling gas passes through an inner circumference side passage of the hollow connecting conductor, the cooling gas within the machine is further introduced into the second gap from the first communicating hole of the connecting conductor support, passes in an outer circumference side passage of the hollow connecting conductor, passes through the second communicating hole, and merges with the cooling gas that has passed an inner circumference side passage of the hollow connecting conductor, and a merged cooling gas passes through the reflux hole, passes inside the gas circulation pipe, and is discharged to the machine inner side.
3. A high pressure bushing arranged through by penetrating a stator frame of a rotating electrical machine in which a cooling gas is sealed, the high pressure bushing comprising:
a hollow connecting conductor that has a machine outer side end portion sealed, and introduces the cooling gas within the machine from a machine inner side end portion;
a gas circulation pipe that is arranged in an inner circumference side of the hollow connecting conductor with a first gap, and discharges the cooling gas toward a machine inner side; and
an insulating cylinder that is arranged in an outer circumference side of the hollow connecting conductor with a second gap, and electrically insulates the hollow connecting conductor and the stator frame, wherein
at least a communicating hole is provided in the hollow connecting conductor, such that the cooling gas flows in both of the first gap and the second gap, passes through an inner side of the gas circulation pipe, and is discharged to the machine inner side,
the hollow connecting conductor includes a first communicating hole located in the machine inner side, and a second communicating hole located in a machine outer side,
a partition section that divides the first gap in a longitudinal direction is located in a position nearer to the machine than but in the vicinity of the second communicating hole,
the gas circulation pipe includes a first reflux hole located in the vicinity of a machine outer side end portion of the gas circulation pipe, and a second reflux hole located in a position nearer to the machine than but in the vicinity of the partition section, and
the cooling gas within the machine is introduced into the first gap from the machine inner side end portion of the hollow connecting conductor, and while the cooling gas passes through an inner circumference side passage of the hollow connecting conductor and passes through the second reflux hole, a part of the cooling gas introduced into the first gap passes through the first communicating hole and is introduced into the second gap, passes in an outer circumference side passage of the hollow connecting conductor, passes through the second communicating hole, passes in an inner circumference side passage of the hollow connecting conductor, passes through the first reflux hole, passes inside the gas circulation pipe, and merges with the cooling gas that has passed through the second reflux hole, and a merged cooling gas passes inside the gas circulation pipe, and is discharged to the machine inner side.
4. A high pressure bushing arranged through by penetrating a stator frame of a rotating electrical machine in which a cooling gas is sealed, the high pressure bushing comprising:
a hollow connecting conductor that has a machine outer side end portion sealed, and introduces the cooling gas within the machine from a machine inner side end portion;
a gas circulation pipe that is arranged in an inner circumference side of the hollow connecting conductor with a first gap, and discharges the cooling gas toward a machine inner side; and
an insulating cylinder that is arranged in an outer circumference side of the hollow connecting conductor with a second gap, and electrically insulates the hollow connecting conductor and the stator frame,
wherein at least a communicating hole is provided in the hollow connecting conductor, such that the cooling gas flows in both of the first gap and the second gap, passes through an inner side of the gas circulation pipe, and is discharged to the machine inner side,
the hollow connecting conductor includes a first communicating hole located in the machine inner side, a second communicating hole located in a machine outer side, and a third communicating hole located in the machine inner side further than the second communicating hole,
a first partition section that divides the first gap in a longitudinal direction is located in a position farther from the machine than but in the vicinity of the first communicating hole, and a second partition section that divides the first gap in the longitudinal direction is located in the vicinity of an intermediate position between the second communicating hole and the third communicating hole,
the gas circulation pipe includes a first reflux hole located in the vicinity of a machine outer side end portion of the gas circulation pipe, and a second reflux hole located in a position farther from the machine than but in the vicinity of the first partition section, and
the cooling gas within the machine is introduced into the first gap from the machine inner side end portion of the hollow connecting conductor, passes through the first communicating hole and is introduced into the second gap, and passes in an outer circumference side passage of the hollow connecting conductor, and while a part of the cooling gas that has passed in the outer circumference side passage of the hollow connecting conductor passes through the second communicating hole, passes through an inner circumference side passage of the hollow connecting conductor, passes through the first reflux hole, and passes through an inner side of the gas circulation pipe, another part of the cooling gas that passed in the outer circumference side passage of the hollow connecting conductor passes through the third communicating hole, passes in the inner circumference side passage of the hollow connecting conductor, passes through the second reflux hole, and merges with the cooling gas that has passed inside the gas circulation pipe, and a merged cooling gas passes inside the gas circulation pipe, and is discharged to the machine inner side.
5. The high pressure bushing according to any one of claims 1, 3, and 4, further comprising:
a connecting conductor support that is arranged on an outer circumferential surface of the hollow connecting conductor, and supports the hollow connecting conductor by being connected to a machine inner side end portion of the insulating cylinder,
wherein the connecting conductor support includes a communicating hole that introduces the cooling gas within the machine into the second gap.
6. The high pressure bushing according to any one of claims 1, 3, and 4, wherein
at least one of the first communicating hole and the second communicating hole has an orientation of a flow of the cooling gas tilted toward the machine outer side from a direction vertical to a wall surface of the hollow connecting conductor.
7. The high pressure bushing according to claim 1, further comprising:
a portion configured to cause a part of a cross sectional area of the inner circumference side passage of the hollow connecting conductor to be smaller.
8. The high pressure bushing according to claim 1, wherein
a first member configured to cause a part of a cross sectional area of the inner circumference side passage of the hollow connecting conductor to be smaller is arranged in a position farther from the machine than the first communicating hole, and
a second member configured to cause a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor to be smaller is arranged in a position nearer to the machine than the second communicating hole.
9. The high pressure bushing according to claim 3, wherein
a first member configured to cause a part of a cross sectional area of the inner circumference side passage of the hollow connecting conductor to be smaller is arranged in the machine outer side further than the first communicating hole.
10. The high pressure bushing according to claim 1, wherein
a first member configured to cause a part of a cross sectional area of the inner circumference side passage of the hollow connecting conductor approaching toward the machine outer side to be reduced from a first area to a second area is located in the vicinity of the first communicating hole, and
a second member configured to cause a part of the cross sectional area of the inner circumference side passage of the hollow connecting conductor approaching toward the machine outer side to be enlarged from the second area to the first area is located in the vicinity of the second communicating hole.
11. The high pressure bushing according to claim 1, wherein
the gas circulation pipe has a shape that causes a part of a cross sectional area of the inner circumference side passage of the hollow connecting conductor to be smaller in a position farther from the machine than the first communicating hole and to be smaller in a position nearer to the machine than the second communicating hole.
12. The high pressure bushing according to claim 4, wherein
the gas circulation pipe has a shape that causes a part of a cross sectional area of the inner circumference side passage of the hollow connecting conductor to be smaller in a position farther from the machine than the first partition section and to be smaller in a position nearer to the machine than the second partition section.
13. The high pressure bushing according to claim 1, wherein
a first partition plate that includes a plurality of communicating holes is arranged in a position farther from the machine than the first communicating hole, and
a second partition plate that includes a plurality of communicating holes is arranged in a position nearer to the machine than the second communicating hole.
14. The high pressure bushing according to claim 3, wherein
a first partition plate that includes a plurality of communicating holes is arranged in a position farther from the machine than the first communicating hole.
15. The high pressure bushing according to claim 13 or 14, wherein
each of the plurality of communicating holes has an orientation of a flow of the cooling gas tilted from the machine outer side toward a circumferential direction.
16. The high pressure bushing according to claim 2, wherein
the communicating hole included in the connecting conductor support is configured to intake the cooling gas within the machine from a side surface portion of the outer circumference side of the connecting conductor support.
US13/754,044 2012-01-30 2013-01-30 High pressure bushing of rotating electrical machine and rotating electrical machine Active 2033-11-03 US9159475B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012016412A JP5571107B2 (en) 2012-01-30 2012-01-30 Rotating electric machine high pressure bushing and rotating electric machine
JP2012-016412 2012-01-30

Publications (2)

Publication Number Publication Date
US20130192025A1 US20130192025A1 (en) 2013-08-01
US9159475B2 true US9159475B2 (en) 2015-10-13

Family

ID=47683559

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/754,044 Active 2033-11-03 US9159475B2 (en) 2012-01-30 2013-01-30 High pressure bushing of rotating electrical machine and rotating electrical machine

Country Status (3)

Country Link
US (1) US9159475B2 (en)
EP (1) EP2621063B1 (en)
JP (1) JP5571107B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6847008B2 (en) * 2017-09-19 2021-03-24 三菱パワー株式会社 Rotating machine
JP2019115177A (en) * 2017-12-25 2019-07-11 株式会社日立製作所 Motor cooling system
JP7103917B2 (en) * 2018-10-31 2022-07-20 三菱重工業株式会社 Rotating electric machine
CN113241219A (en) * 2021-05-07 2021-08-10 国家电网有限公司 High-voltage air supply device and high-voltage power transmission equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1567201A (en) * 1919-04-11 1925-12-29 Steinberger Louis Insulated connecter
US2900538A (en) * 1955-06-14 1959-08-18 Vickers Electrical Co Ltd Dynamo-electric machines
US3513437A (en) * 1968-01-08 1970-05-19 Gen Electric Arc gas expansion chamber for high voltage termination bushings
US3626079A (en) * 1970-08-10 1971-12-07 Gen Electric Electrical bushing with cooling means
US4132853A (en) * 1977-04-25 1979-01-02 Westinghouse Electric Corp. Electrical bushing
US4169965A (en) * 1978-02-21 1979-10-02 General Electric Company Integrally cooled electrical feedthrough bushing
US4424402A (en) * 1980-12-19 1984-01-03 Tokyo Shibaura Denki Kabushiki Kaisha Gas-insulated bushing
US20100270875A1 (en) * 2009-04-23 2010-10-28 Kabushiki Kaisha Toshiba High-voltage bushing of a rotating electric machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101499U (en) * 1977-12-28 1979-07-17
JPS5795060U (en) * 1980-12-01 1982-06-11
JPS61138358U (en) * 1985-02-13 1986-08-27

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1567201A (en) * 1919-04-11 1925-12-29 Steinberger Louis Insulated connecter
US2900538A (en) * 1955-06-14 1959-08-18 Vickers Electrical Co Ltd Dynamo-electric machines
US3513437A (en) * 1968-01-08 1970-05-19 Gen Electric Arc gas expansion chamber for high voltage termination bushings
US3626079A (en) * 1970-08-10 1971-12-07 Gen Electric Electrical bushing with cooling means
US4132853A (en) * 1977-04-25 1979-01-02 Westinghouse Electric Corp. Electrical bushing
US4169965A (en) * 1978-02-21 1979-10-02 General Electric Company Integrally cooled electrical feedthrough bushing
US4424402A (en) * 1980-12-19 1984-01-03 Tokyo Shibaura Denki Kabushiki Kaisha Gas-insulated bushing
US20100270875A1 (en) * 2009-04-23 2010-10-28 Kabushiki Kaisha Toshiba High-voltage bushing of a rotating electric machine

Also Published As

Publication number Publication date
EP2621063A2 (en) 2013-07-31
JP5571107B2 (en) 2014-08-13
JP2013158135A (en) 2013-08-15
EP2621063A3 (en) 2018-03-28
US20130192025A1 (en) 2013-08-01
EP2621063B1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
US9159475B2 (en) High pressure bushing of rotating electrical machine and rotating electrical machine
US20170047809A1 (en) Dynamo-electric machine
US8222778B2 (en) High-voltage bushing of a rotating electric machine
WO2015008359A1 (en) Air-cooled reactor
US20130119794A1 (en) Rotating electrical machine
JP2009076825A (en) Transformer board
JP5388961B2 (en) Rotating electric machine
US8022591B2 (en) Flux screen for generators
KR102054591B1 (en) Rotating electric machine
CN105226897A (en) A kind of high pressure Non-spark Large-power High-Speed self-lubricating threephase asynchronous
US11316394B2 (en) Electrical machine of a turbomachine comprising a rotor cooled by a cooling channel
US20170141651A1 (en) Rotary electric machine
CN104009582B (en) High thrust circulation-water pump electric machine ventilation cooling structure
KR102402405B1 (en) Cooling arrangement
CN107834774A (en) A kind of motor of stator with ventilation slot mouth
CN203850971U (en) Large-thrust circulating water pump motor ventilation cooling structure
WO2020217274A1 (en) Cooling structure for transformer
JP2016219597A (en) Wind cooling device of dry-type transformer and dry-type transformer
CN211957392U (en) Transformer and transformer winding thereof
WO2015040586A2 (en) Wind turbine rotating electric machine stator
JP2015171186A (en) Totally-enclosed rotary electric machine
CN106464053A (en) Rotating electric machine rotor
JP2008091740A (en) Disassemblable and transportable transformer

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANIYAMA, YOSHIHIRO;KABATA, YASUO;KAKIUCHI, MIKIO;AND OTHERS;SIGNING DATES FROM 20130111 TO 20130514;REEL/FRAME:030796/0069

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8