CN101853939B - 一种负极活性材料及其制备方法及电池 - Google Patents

一种负极活性材料及其制备方法及电池 Download PDF

Info

Publication number
CN101853939B
CN101853939B CN2009101062593A CN200910106259A CN101853939B CN 101853939 B CN101853939 B CN 101853939B CN 2009101062593 A CN2009101062593 A CN 2009101062593A CN 200910106259 A CN200910106259 A CN 200910106259A CN 101853939 B CN101853939 B CN 101853939B
Authority
CN
China
Prior art keywords
carbon
preparation
lithium
vanadium
livo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009101062593A
Other languages
English (en)
Other versions
CN101853939A (zh
Inventor
杨玮
李芬
徐茶清
姜占锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN2009101062593A priority Critical patent/CN101853939B/zh
Publication of CN101853939A publication Critical patent/CN101853939A/zh
Application granted granted Critical
Publication of CN101853939B publication Critical patent/CN101853939B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供了一种负极活性材料,包括LiVO2,其中LiVO2材料的振实密度为1.5~2.2g/cm3,003晶面衍射峰强度I003与104晶面衍射峰强度I104的比值为0.9~1.8,003晶面衍射峰的半高宽为0.17~0.25,材料的振实密度大,晶形完美,电化学性能优良,制备的电池的质量比容量非常大,能达到339mAh/g,有利于现有小型、轻型电池的发展,满足现有电池的发展需求。且本发明提供了该种材料的制备方法,工艺简单很好的解决了传统制备方法对设备的腐蚀,提高了成品率,节约了成本,有利于产业规模化。

Description

一种负极活性材料及其制备方法及电池
技术领域
本发明涉及一种负极活性材料及其制备方法及电池。
背景技术
锂离子电池作为一种新型绿色蓄电池,以其工作电压高、重量轻、比能量大、自放电率小、循环寿命长、无记忆效应、无环境污染等优点,在可充电池发展中具有十分广阔的应用前景。
目前,锂离子电池负极材料应用最普遍的是石墨。然而石墨的体积密度较低(标称密度为2.2克/立方厘米),极大地限制了它的体积比容量;而且石墨在较高电位下能与电解液发生副反应,存在安全隐患。寻找一种高体积比能量的新型负极材料势在必行。
现有研究将低价态的锂钒氧作为电池负极活性材料,在充电-放电试验中能显示800mAh/cc的高初始可逆容量和良好的循环寿命特性。另外,锂钒氧具有4.2g/cc的单位体积理论密度,其实际的电极密度大约可为3.0g/cc;同时单位重量金属氧化物的容量为300mAh/g时,单位体积金属氧化物的理论容量大于或等于1200mAh/cc,单位体积金属氧化物的实际容量可大于等于900mAh/cc,具有很好的应用前景,但现有作为负极活性材料的锂钒氧的振实密度仍较低,没有达到理想要求,且现有技术制备的锂钒氧的晶形也不够完美,导致最终材料的电化学性能不优,制备的电池不能达到理想要求。
现有制备此类锂钒氧的方法一般包括溶胶-凝胶法、水系法及高温固相法,但溶胶-凝胶法及水系法由于前驱体干燥收缩大、工业化生产难度较大、合成周期较长等缺点研究和应用较少。目前广泛研究的较好制备锂钒氧的方法为高温固相法,是将锂源、钒源和碳源混合,然后在惰性气氛氢气或氮气保护下经过高温锻烧获得产品。此种方法制备的产品的振实密度不高,材料的晶形不完美,且一般制备的产品LiVO2中含有大量的杂相Li3VO4,物相不纯,很大程度上影响了材料的电化学性能。特别是此种方法对反应器的气密性要求非常高,低价态的钒非常容易被氧化成五价的五氧化二钒,而五氧化二钒的熔点较低,在反应过程温度下处于熔融态,极易腐蚀反应器和设备。
发明内容
本发明的目的是为了克服现有技术制备的负极活性材料锂钒氧的振实密度不高、材料的晶形不够完美的缺点,提供一种振实密度较高、材料晶形较完美的锂钒氧的负极活性材料。
一种负极活性材料,包括LiVO2,其中,LiVO2材料的振实密度为1.5~2.2g/cm3,003晶面衍射峰强度I003与104晶面衍射峰强度I104的比值为0.9~1.8,003晶面衍射峰的半高宽为0.17~0.25。
其中,优选,LiVO2中还可选择性的掺杂非锂、钒的金属,非锂、钒的金属选自Al、Cr、Mo、Ti、W和Zr中的一种或几种。优选,LiVO2材料中同时还可还含有碳。
本发明同时提供了该种负极活性材料的制备方法,其中,LiVO2的制备步骤包括:
(1)将锂源、钒源及碳源球磨得前躯体;
(2)将步骤(1)所制前躯体经等静压处理;
(3)将经过步骤(2)等静压处理的前躯体在惰性气体或还原气体或真空条件下烧结制得LiVO2材料。
其中,优选,当步骤(3)中烧结气氛为惰性气体或还原气体时,烧结为将前躯体用碳包覆烧结。
或优选,步骤(3)为在真空条件下烧结,真空度为10-5帕斯卡以下。
本发明的发明人意外的发现将制备材料的原料球磨后的前躯体经过等静压处理后再烧结,能明显提高最终制备的材料的振实密度,完善材料的晶形,特别从制备的材料的XRD图,可以看出本发明制备的材料晶形完美,物相纯,不含杂相Li3VO4等。同时本发明的技术方案优选烧结在真空条件下,可以使反应在无气体的条件下进行,很好的避免了气体造成合成的LiVO2疏松多孔,进一步提高了材料的振实密度,同时很好的解决了传统工艺方法中由于炉子气密性不好而导致的生产安全问题,氧化生成的熔融态五氧化二钒对反应器及设备的腐蚀及合成周期过长的问题,同时此种优选方案反应时间短,节约惰性气体,降低成本;本发明也可优选当烧结在惰性气体或还原气体下,将经过球磨的前躯体用碳包覆烧结,可以通过在反应器底部先铺一层碳,将前躯体放入后再在反应物表面铺一层碳,反应物经过高温烧结后,生成锂钒氧,而锂钒氧较原反应物能明显收缩,而碳粉较松散于产物表面,较易脱落除去,碳粉不仅能进一步作为还原剂,能很好的防止“钒被氧化成五价”,防止反应器的腐蚀。
本发明同时提供了一种电池,包括正极片、负极片、隔膜、电解液,其中,负极片中含有上述的负极活性材料。
本发明由于负极活性材料的振实密度大,晶形完美,电化学性能优良,制备的电池的质量比容量非常大,能达到339mAh/g,有利于现有小型、轻型电池的发展,满足现有电池的发展需求。
附图说明
图1为实施例1制备的钒酸锂的XRD(X-射线衍射)图;
图2为实施例1制备的钒酸锂的SEM(扫描电镜)图;
图3为实施例1制备的钒酸锂的粒径分布图;
图4为对比例1制备的钒酸锂的XRD图;
具体实施方式
本发明的目的是为了克服现有技术制备的负极活性材料锂钒氧的振实密度不高、材料的晶形不够完美的缺点,提供一种振实密度较高、材料晶形较完美的锂钒氧的负极活性材料,此负极活性材料包括LiVO2,其中,LiVO2材料的振实密度为高达2.2g/cm3;LiVO2的003晶面衍射峰强度I003与104晶面衍射峰强度I104的比值为0.9~1.8,003晶面衍射峰的半高宽为0.17~0.25,晶形更完美,结构更完善,提高了材料的电化学性能。LiVO2的粒径分布D50为5μm~50μm,D95为20μm~80μm,大小颗粒分散均匀,有效的提高了材料的电化学性能。
优选情况下,LiVO2中还可选择性掺杂有非锂、钒的金属,非锂、钒的金属选自Al、Cr、Mo、Ti、W和Zr中的一种或几种。其中,掺杂是指杂质原子取代主原子位置的过程。从化学角度讲掺杂的实质是氧化-还原过程;从物理角度看掺杂是离子嵌入的过程;掺杂和脱掺杂是完全可逆的过程。按照本发明,非锂、钒金属的掺杂将部分的取代锂钒氧化物中的钒位或锂位。
同时LiVO2的材料中还可含有未反应完的碳,提高材料的导电性。
本发明同时提供了此种负极活性材料的制备方法,其中,LiVO2材料的制备步骤包括:
(1)将锂源、钒源及碳源球磨得前躯体;
(2)将步骤(1)所制前躯体经等静压处理;
(3)将经过步骤(2)等静压处理的前躯体在惰性气体或还原气体或真空条件下烧结制得LiVO2
其中,等静压为本领域技术人员公知的各种等静压,可以为冷等静压或热等静压,本发明采用等静压的压力优选为50-400MPa,进一步优选为200-350MPa,经过等静压处理后可增加粉末颗粒之间的均匀接触,有利于热处理过程中物质的反应均匀扩散。
其中,烧结的方法可以采用本领域公知的各种烧结方法,例如,一次恒温烧结,恒温烧结的温度可以为800-1200℃,优选为900-1100℃,恒温烧结时间可以为6-20小时,优选为8-15小时;也可以进行二次烧结,先在500-700℃,恒温烧结3-5小时,再在900-1100℃恒温烧结3-10小时。为了进一步控制负极活性物质锂钒氧化物颗粒的形貌,使锂钒氧化物晶型发育更完整,优选情况下,所述烧结的方法为以1-10℃/分钟的速度,优选为1-5℃/分钟的速度升温至恒温烧结温度,恒温烧结。
其中,锂源和钒源中Li∶V的摩尔比为0.8∶1至1.5∶1,碳源为还原剂,其用量可使生成的LiVO2材料中碳含量为0-5重量%。
当LiVO2掺杂有非锂、钒的金属时,步骤(1)为将锂源、钒源、碳源及非锂钒金属的化合物球磨得前躯体;锂源、钒源和非锂钒金属的化合物中,以1摩尔钒为基准,Li的用量为0.8-1.5摩尔,非锂钒金属的用量为大于零至0.2摩尔;非锂钒金属的化合物可以为本领域技术人员公知的各种非锂钒金属的化合物,如,可以选自Al、Cr、Mo、Ti、W和Zr的氧化物或氢氧化物中的一种或几种,例如,Al(OH)3、Al2O3、Cr2O3、MoO3、TiO2、WO3和ZrO2中的一种或几种。
其中,锂源可选自Li2CO3、LiOH·H2O、LiNO3、Li2C2O4和CH3COOLi中的一种或几种;钒源选自VO、V2O3、V2O4、V2O5、V4O7、VOSO4·nH2O和NH4VO3中的一种或几种;碳源可以是各种含碳物质,例如,碳单质和/或含碳的化合物,优选情况下,所述碳源可以选自蔗糖、葡萄糖、乳糖、乙酸盐、酚醛树脂、环氧树脂、石墨、乙炔黑、炭黑、碳纤维、焦炭和沥青中的一种或几种。
其中,锂源、钒源和碳源以及选择性加入的非锂、钒金属的化合物的混合物可以通过机械混合,优选为球磨的方式混合得到。球磨的方法包括将锂源、钒源和碳源以及选择性加入的非锂、钒金属的化合物与有机溶剂混合然后球磨,所述有机溶剂的种类和用量为本领域技术人员所公知,如乙醇和/或丙醇,有机溶剂的用量与所述混合物的重量比可以为0.5-2∶1。球磨的转速和时间没有特别的限定,可以根据要求的粒度需要设定。优选情况下,采用该方法球磨后还包括干燥该混合物的步骤,干燥的方法和条件为本领域技术人员所公知。本发明同时优选将上述经过处理的前躯体在粉末压片机上2MPa成形,再将成形后的粗坯于等静压中压制。
惰性气氛指不与反应物和产物发生化学反应的任意一种气体或气体混合物,如氮气和元素周期表零族气体中的一种或几种。该惰性气氛可以是静态气氛,优选为气体流速为2-50升/分钟的流动气氛。当为此种气氛烧结时,本发明优选将经过球磨的前躯体用碳包覆后烧结,碳粉不仅能进一步作为还原剂,能很好的防止“钒被氧化成五价”,防止反应器的腐蚀。本发明可以通过在反应器底部先铺一层碳,将前躯体放入后再在反应物表面铺一层碳来简单实现本发明,反应物经过高温烧结后,生成锂钒氧,而锂钒氧较原反应物能明显收缩,而碳粉较松散于产物表面,较易脱落除去。其中,此处本发明优选的包覆的碳用量为前躯体的5%~50%。
真空,本发明可以通过将经过等静压处理的前躯体放入真空碳管炉中,先用惰性气体将炉膛内空气排出,然后再用机械泵或油扩散泵进行抽真空,真空度在10-5帕斯卡以下后,开始升温烧结。
本发明的制备步骤中还包括烧结后冷却,冷却的方法可以采用本领域技术人员公知的各种冷却方法,例如原位冷却至室温或采用本领域技术人员公知的各种退火技术,例如采用一段或多段低温保温退火,完善晶形。
本发明提供的负极活性物质可以应用于各种锂离子二次电池,例如,可以是正极活性物质为LiCoO2、LiNiO2、LiFePO4或LiMn2O4的锂离子二次电。
下面对本发明做进一步具体详细说明。
实施例1
(1)负极活性物质的制备
将81.28碳酸锂、163.69克五氧化二钒、22.8克蔗糖和1.60克二氧化钛置于球磨罐中,与280毫升无水乙醇混合,使反应物能完全分散于乙醇中,在行星式球磨机上以350转/分钟的转速球磨8小时后得到前驱混合物。将该前驱混合物经鼓风干燥、二次球磨5小时得到分散的粉体在粉末压片机上2MPa成形,成形后的粗坯再于300MPa的等静压中压制。经等静压处理后,将混合物放入真空碳管炉中,先用惰性气体将炉膛内空气排出,然后再用机械泵或油扩散泵进行抽真空,真空度在10-5帕斯卡以下,开始升温,反应温度为1100℃,反应时间为8小时,然后冷却至100℃以下,取出,经筛分后即得到负极活性物质。生成的负极活性物质中的碳含量为0.006重量%(碳含量的测定均采用红外碳硫分析仪进行测定(无锡英之诚公司生产),测定方法为:称取0.03-0.5克样品放入到坩埚中,并加入0.6-0.7克的纯铁助溶剂、1.8-1.9克的钨粒作为助燃剂,放入到高频(频率为18兆赫兹)中,利用氧气作助燃剂和载气,将燃烧过后生成的CO2带到碳分析池中,通过仪器分析测定出锂钒氧化物中的碳含量。)
采用JZ-1型振实密度仪,将烘干处理后的粉体,装入13毫升不锈钢样品筒,打开仪器总电源,驱动杆自动上升到一定高度后,样品筒自由落下,在不损坏颗粒原始形态下,经反复上下惯性运动,颗粒之间的间隙趋于一极限,然后将振动前和振动后,粉体高度的数据输入到电脑,计算出粉体的振实密度。测得上述制备的负极活性物质的振实密度为2.18g/cm3
采用Rigaku公司的D/MAX-2200/PC型X射线粉末衍射仪测得的上述制备的负极活性物质的XRD衍射图如图1所示,LiVO2的003晶面衍射峰强度I003与104晶面衍射峰强度I104的比值为1.269,003晶面衍射峰的半高宽为0.192。
采用日本岛津公司(Shimadzu)生产的SSX-550型扫描电镜测得该负极活性物质的SEM图,如图2所示。
采用美国Microtrac公司生产的型号为S3500激光粒度测试仪,对上述制备的负极活性物质的晶体粒子直径进行测量,其中D50是表示样品平均粒度大小的值,即所测样品中有50%的粒子直径大于此值,D90表示所测样品中有90%的粒子直径小于此值,粒径分布图如图3所示。
(2)电池的制备
将90克上述制得的负极活性物质与10克导电碳纤维、6克粘接剂丁苯橡胶和4克羧甲基纤维素混合均匀后,在120℃下烘干,将烘干后的样品研磨成颗粒直径为1-15微米的粉末后称取50毫克以2兆帕的压力压制成电极片,将极片在100℃下真空干燥10小时后取出。
在手套箱中装配电池,以金属锂作为对电极,电解液为1摩尔/升的LiPF6/DMC+EMC+EC,摩尔比为1∶1∶1。分别制成锂离子电池。
采用769YP-40C粉末压片机测得负极的压实密度为2.5-4.0克/厘米3
实施例2
采用与实施例1相同的方法制备负极活性材料,不同是球磨罐中原料还含有2.88克三氧化钼,生成的负极活性物质中的碳含量为0.010重量%。
采用与实施例1相同的方法测得所制备的负极活性物质的振实密度为2.12g/cm3;LiVO2的003晶面衍射峰强度I003与104晶面衍射峰强度I104的比值为1.221,003晶面衍射峰的半高宽为0.199。
采用与实施例1相同的方法制备电池,不同是负极活性材料为实施例2制备的负极活性物质。
实施例3
采用与实施例1相同的方法制备负极活性材料,不同是球磨罐中原料中蔗糖的量为45.6克,生成的负极活性物质中的碳含量为1.26重量%。
采用与实施例1相同的方法测得所制备的负极活性物质的振实密度为1.93g/cm3;LiVO2的003晶面衍射峰强度I003与104晶面衍射峰强度I104的比值为1.189,003晶面衍射峰的半高宽为0.219。
采用与实施例1相同的方法制备电池,不同是负极活性材料为实施例3制备的负极活性物质。
实施例4
采用与实施例1相同的方法制备负极活性材料,不同是等静压的条件为200MPa,生成的负极活性物质中的碳含量为0.006重量%。
采用与实施例1相同的方法测得所制备的负极活性物质的振实密度为2.05g/cm3;LiVO2的003晶面衍射峰强度I003与104晶面衍射峰强度I104的比值为1.317,003晶面衍射峰的半高宽为0.203。
采用与实施例1相同的方法制备电池,不同是负极活性材料为实施例4制备的负极活性物质。
实施例5
采用与实施例1相同的方法制备负极活性材料,不同是等静压的条件为100MPa,生成的负极活性物质中的碳含量为0.005重量%。
采用与实施例1相同的方法测得所制备的负极活性物质的振实密度为1.90g/cm3;LiVO2的003晶面衍射峰强度I003与104晶面衍射峰强度I104的比值为1.192,003晶面衍射峰的半高宽为0.212。
采用与实施例1相同的方法制备电池,不同是负极活性材料为实施例5制备的负极活性物质。
实施例6
采用与实施例1相同的方法制备负极活性材料,不同是烧结是在N2条件下,且在坩埚底部先铺一层碳,再放入反应物,然后再在反应物表面铺一层碳,铺的碳用量为10%,热处理后将碳层除去,生成的负极活性物质中的碳含量为0.17重量%。
采用与实施例1相同的方法测得所制备的负极活性物质的振实密度为1.97g/cm3;LiVO2的003晶面衍射峰强度I003与104晶面衍射峰强度I104的比值为1.456,003晶面衍射峰的半高宽为0.211。
采用与实施例1相同的方法制备电池,不同是负极活性材料为实施例6制备的负极活性物质。
实施例7
采用与实施例6相同的方法制备负极活性材料,不同是铺的碳用量为50%,生成的负极活性物质中的碳含量为1.03重量%。
采用与实施例1相同的方法测得所制备的负极活性物质的振实密度为1.95g/cm3;LiVO2的003晶面衍射峰强度I003与104晶面衍射峰强度I104的比值为1.448,003晶面衍射峰的半高宽为0.214。
采用与实施例1相同的方法制备电池,不同是负极活性材料为实施例7制备的负极活性物质。
实施例8
采用与实施例6相同的方法制备负极活性材料,不同是烧结是在H2气氛保护热处理炉中,先以5℃/分钟的速度升温至650℃,恒温烧结6小时,再以5℃/分钟的速度升温至1100℃恒温烧结9小时,后自然冷却至室温。生成的负极活性物质中的碳含量为1.08重量%。
采用与实施例1相同的方法测得所制备的负极活性物质的振实密度为1.92g/cm3;LiVO2的003晶面衍射峰强度I003与104晶面衍射峰强度I104的比值为1.621,003晶面衍射峰的半高宽为0.213。
采用与实施例1相同的方法制备电池,不同是负极活性材料为实施例8制备的负极活性物质。
对比例1
采用常规的方法制备负极活性材料,与实施例1的方法相同,不同的是没有步骤(2)的等静压,烧结在N2气氛下。
采用与实施例1相同的方法测得所制备的负极活性物质的振实密度为1.04g/cm3;
采用Rigaku公司的D/MAX-2200/PC型X射线粉末衍射仪测得的该负极活性物质锂钒氧化物的XRD衍射图如图4所示,从图中可以看出制得的锂钒氧化物LiVO2中含有大量Li3VO4
且有样品粘附在坩埚上,样品较难取出;高温条件下,反应物为熔融态对设备和坩埚造成了很大的腐蚀。
采用与实施例1相同的方法制备电池,不同是负极活性材料为对比例1制备的负极活性物质。
性能测试
将上述实施例1-8、对比例1制得的锂离子电池分别放在25℃下,在DATA-BK6016测试仪上进行充放电测试,即将上述电池分别以0.2毫安的电流恒流放电至0.2伏特,再分别以1.0毫安、0.9毫安、0.8毫安、0.7毫安、0.6毫安、0.5毫安、0.4毫安、0.3毫安、0.2毫安、0.1毫安、0.09毫安、0.08毫安、0.07毫安、0.06毫安和0.05毫安放电至0.005伏特,搁置30分钟后,以0.5毫安的电流恒流充电至2.5伏特,分别记录电池的放电容量。并计算电池的质量比容量结果如表1所示。
放电质量比容量(毫安时/克)=放电容量(毫安时)/正极活性物质质量(克)
表1
样品 振实密度(g/cm3) D50 D95 含C(%)   质量比容量(mAh/g) I003/I104 003晶面衍射峰半高宽
 实施例1   2.18   14.37   41.56   0.08   330   1.269   0.192
 实施例2   2.12   15.18   25.79   0.010   339   1.221   0.199
 实施例3   1.93   13.77   29.13   1.26   332   1.189   0.219
 实施例4   2.05   15.23   40.31   0.006   318   1.317   0.203
 实施例5   1.90   12.95   28.18   0.005   314   1.192   0.212
 实施例6   1.97   13.34   38.96   0.17   309   1.456   0.211
 实施例7   1.95   16.41   50.19   1.03   312   1.448   0.214
 实施例8   1.92   22.94   67.73   1.08   307   1.621   0.213
 对比例1   1.04   53.25   108.6   0.13   142   -   -
对比例1材料的XRD的特征衍射峰不明显,杂相峰较多,没法确定003峰与104峰,物相不纯。
从上表测试结果可以看出本发明制备的负极活性材料振实密度大,晶形完美,物相纯,电化学性能优良,制备的电池的质量比容量非常大,能达到339mAh/g,有利于现有小型、轻型电池的发展,满足现有电池的发展需求。且本发明的制备方法很好的解决了传统制备方法对设备的腐蚀,提高了成品率,节约了成本,有利于产业规模化。

Claims (15)

1.一种负极活性材料,其特征在于,所述负极活性材料为LiVO2,所述LiVO2的振实密度为1.5~2.2g/cm3,003晶面衍射峰强度I003与104晶面衍射峰强度I104的比值为0.9~1.8,003晶面衍射峰的半高宽为0.17~0.25。
2.根据权利要求1所述的负极活性材料,其特征在于,所述LiVO2的粒径分布D50为5μm~50μm,D95为20μm~80μm。
3.根据权利要求1所述的负极活性材料,其特征在于,所述LiVO2中还掺杂有非锂、钒的金属,所述非锂、钒的金属选自Al、Cr、Mo、Ti、W和Zr中的一种或几种。
4.根据权利要求1-3任意一项所述的负极活性材料,其特征在于,所述LiVO2的材料中还含有碳,碳含量为0-5重量%。
5.一种负极活性材料的制备方法,其特征在于,所述负极活性材料包括LiVO2,所述LiVO2的制备步骤包括:
(1)将锂源、钒源及碳源球磨得前躯体;
(2)将步骤(1)所制前躯体经等静压处理;
(3)将经过步骤(2)等静压处理的前躯体在惰性气体或还原气体或真空条件下烧结制得振实密度为1.5~2.2g/cm3的LiVO2,所述LiVO2的003晶面衍射峰强度I003与104晶面衍射峰强度I104的比值为0.9~1.8,003晶面衍射峰的半高宽为0.17~0.25。
6.根据权利要求5所述的制备方法,其特征在于,所述等静压的压力为50-400MPa。
7.根据权利要求6所述的制备方法,其特征在于,所述等静压的压力为200-350MPa。
8.根据权利要求5所述的制备方法,其特征在于,所述步骤(3)为将经过等静压处理的前躯体在惰性气体或还原气体下烧结,所述烧结包括将前躯体表面用碳包覆烧结。
9.根据权利要求8所述的制备方法,其特征在于,所述将前躯体表面用碳包覆烧结为在反应器底部先铺一层碳,后放入前躯体,再在前躯体表面铺一层碳烧结,所述包覆的碳用量为前躯体的5%~50%。
10.根据权利要求5所述的制备方法,其特征在于,所述步骤(3)为将经过等静压处理的前躯体在真空条件下烧结,所述真空条件的真空度为10-5帕斯卡以下。
11.根据权利要求5-10任意一项所述的制备方法,其特征在于,所述烧结的温度为800℃-1200℃,烧结的时间为6-12小时,所述烧结包括一次恒温烧结或二次恒温烧结。
12.根据权利要求5所述的制备方法,其特征在于,所述锂源和 钒源中Li∶V的摩尔比为0.8∶1至1.5∶1,所述碳源的用量使生成的LiVO2材料中的碳含量为0-5重量%。
13.根据权利要求5所述的制备方法,其特征在于,所述步骤(1)为将锂源、钒源、碳源及非锂、钒金属的化合物球磨得前躯体;所述锂源、钒源和非锂、钒金属的化合物中,以1摩尔钒为基准,Li的用量为0.8-1.5摩尔,非锂钒金属的用量为大于零至0.2摩尔;所述非锂钒金属的化合物选自Al、Cr、Mo、Ti、W和Zr的氧化物或氢氧化物中的一种或几种。
14.根据权利要求5所述的制备方法,其特征在于,所述锂源选自Li2CO3、LiOH·H2O、LiNO3、Li2C2O4和CH3COOLi中的一种或几种;所述钒源选自VO、V2O3、V2O4、V2O5、V4O7、VOSO4·nH2O和NH4VO3中的一种或几种;所述碳源选自蔗糖、葡萄糖、乳糖、乙酸盐、酚醛树脂、环氧树脂、石墨、乙炔黑、炭黑、碳纤维、焦炭和沥青中的一种或几种。
15.一种电池,包括正极片、负极片、隔膜、电解液,其特征在于:所述负极片中含有如权利要求1-4任意一项所述的负极活性材料。 
CN2009101062593A 2009-03-31 2009-03-31 一种负极活性材料及其制备方法及电池 Expired - Fee Related CN101853939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101062593A CN101853939B (zh) 2009-03-31 2009-03-31 一种负极活性材料及其制备方法及电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101062593A CN101853939B (zh) 2009-03-31 2009-03-31 一种负极活性材料及其制备方法及电池

Publications (2)

Publication Number Publication Date
CN101853939A CN101853939A (zh) 2010-10-06
CN101853939B true CN101853939B (zh) 2012-12-26

Family

ID=42805277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101062593A Expired - Fee Related CN101853939B (zh) 2009-03-31 2009-03-31 一种负极活性材料及其制备方法及电池

Country Status (1)

Country Link
CN (1) CN101853939B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241625B (zh) * 2013-06-17 2017-06-06 华南理工大学 锂离子电池的钒酸锂负极材料及其制备方法
CN103496741B (zh) * 2013-09-25 2015-12-23 三峡大学 一种固相反应方法制备Li3VO4负极材料
CN105552358A (zh) * 2016-02-03 2016-05-04 三峡大学 一种铬掺杂Li3VO4/C锂离子电池负极材料的制备方法
US11005099B2 (en) * 2016-03-31 2021-05-11 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
EP3846261A4 (en) * 2018-08-31 2021-11-17 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL AND BATTERY INCLUDING THE LATTER
CN112074977A (zh) * 2018-09-05 2020-12-11 松下知识产权经营株式会社 正极活性物质和具备该正极活性物质的电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3950958B2 (ja) * 2002-06-07 2007-08-01 独立行政法人物質・材料研究機構 Li−V酸化物の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3950958B2 (ja) * 2002-06-07 2007-08-01 独立行政法人物質・材料研究機構 Li−V酸化物の製造方法

Also Published As

Publication number Publication date
CN101853939A (zh) 2010-10-06

Similar Documents

Publication Publication Date Title
EP4057390A1 (en) Carbon-coated lithium-rich oxide composite material and preparation method therefor
CN101728525B (zh) 锂离子二次电池负极活性物质及其制备方法
CN103022462B (zh) 一种锂电池高电导率钛酸锂负极材料的制备方法
CN109546123B (zh) 五氧化二钒包覆核壳结构梯度镍钴锰正极材料及制备方法
CN107275606B (zh) 一种碳包覆尖晶石锰酸锂纳米复合材料及制备方法与应用
CN101630739B (zh) 掺杂改性的磷酸铁锂的制备方法
CN101853939B (zh) 一种负极活性材料及其制备方法及电池
CN102745663B (zh) 制备磷酸铁锂材料的方法
WO2011009231A1 (zh) 一种碳包覆锂离子电池正极材料的制备方法
CN114956203B (zh) 钠离子电池用含锌正极材料及其制法和应用
CN112164796B (zh) 一种锂离子电池正极材料的预锂化添加剂及其制备方法和应用
CN103137976B (zh) 纳米复合材料及其制备方法和正极材料与电池
CN101752555A (zh) 一种锂离子电池正极材料磷酸铁锂的制备方法
CN110817972A (zh) 一种氟改性高电压钴酸锂、其制备方法及电池
CN106025182B (zh) 一种钛铬掺杂氟化铁-碳纳米复合正极材料及其制备方法和应用
US20240105937A1 (en) Preparation method of high-rate lithium iron phosphate positive electrode material
EP3694034A1 (en) Anode layer and all solid state battery
CN107565099B (zh) 一种正极活性材料及其制备方法和一种锂离子电池
CN115064670A (zh) 一种掺杂包覆改性的镍锰酸钠正极材料的制备方法
CN110797525A (zh) 保护型结构硅氧复合与薄膜及其制备方法与应用
CN105174240A (zh) 纳米棒组装磷酸锰铁锂微球、复合材料及其制备方法
CN112993257A (zh) 一种rGO包覆Co3O4微球的复合材料及其制备方法
CN106099074B (zh) 一种改性氟化铁纳米复合正极材料及其制备方法和应用
CN109428066A (zh) 核壳材料及其制备方法、锂离子电池负极材料及锂离子电池
CN110176595A (zh) 一种锂离子电池正极材料LiMnO2@C及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121226

Termination date: 20170331

CF01 Termination of patent right due to non-payment of annual fee