CN101821216B - 快速烧结方法在用于合成和稠化碘代磷灰石中的应用 - Google Patents

快速烧结方法在用于合成和稠化碘代磷灰石中的应用 Download PDF

Info

Publication number
CN101821216B
CN101821216B CN200880110627.5A CN200880110627A CN101821216B CN 101821216 B CN101821216 B CN 101821216B CN 200880110627 A CN200880110627 A CN 200880110627A CN 101821216 B CN101821216 B CN 101821216B
Authority
CN
China
Prior art keywords
sintering
iodo
iodine
compound
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200880110627.5A
Other languages
English (en)
Other versions
CN101821216A (zh
Inventor
利昂内尔·坎帕约
索菲·勒加莱
弗洛伦斯·巴尔特
弗雷德里克·伯纳德
尤里·格里恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Centre National de la Recherche Scientifique CNRS
Universite de Bourgogne
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Centre National de la Recherche Scientifique CNRS
Universite de Bourgogne
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV, Centre National de la Recherche Scientifique CNRS, Universite de Bourgogne, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of CN101821216A publication Critical patent/CN101821216A/zh
Application granted granted Critical
Publication of CN101821216B publication Critical patent/CN101821216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及称作“快速烧结”的方法在用于合成和稠化碘磷灰石或碘代磷灰石中的应用。应用:用过的核燃料的后处理以便在磷灰石中调节和储存在来自该后处理的含水流出物中存在的放射性碘,尤其是碘-129。

Description

快速烧结方法在用于合成和稠化碘代磷灰石中的应用
技术领域
本发明涉及称作“快速烧结”,还缩写称作SPS(火花等离子体烧结)和FAST(场活化烧结技术)的方法在用于合成和稠化(或致密化)碘磷灰石(iodine apatites)或碘代磷灰石(iodoapatites)中的应用。
本发明尤其发现在用过的核燃料的后处理(或再处理)领域中的应用,其中它能够用于在磷灰石中调节和储存在该后处理期间产生的含水流出物中存在的放射性碘,尤其是碘-129。
背景技术
碘是存在于用过的核燃料中的裂变产物,其129同位素具有15.7百万年的半衰期。
考虑到它对人的放射毒性,其紧密地与它对于甲状腺(其中它会富集)的亲和力相关联,近年来对于碘在耐久基质中的调节和储存已进行了一些研究,其中所述耐久基质承受诸如水的载体的传播(或浸染)。
研究表明,可以在属于磷灰石家族的陶瓷内掺入(或结合)碘。
碘代磷灰石尤其可以通过碘化铅(PbI2)与化学式Pb3(VO4)1.6(PO4)0.4的磷酸钒酸铅(lead phosphovanadate)之间的按照以下反应的反应来合成(WO-A-96/18196[1]):
3Pb3(VO4)1.6(PO4)0.4+PbI2→Pb10(VO4)4.8(PO4)1.2I2
该合成可以在密封的石英安瓿中进行,其中温度为约700℃并且保持时间为约10小时,或经由陶瓷途径,也就是说通过在压力下进行反应性烧结(C.Guy et al.,C.R.Physique 2002,3,827-837[2];E.R.Maddrell and P.K.Abraitis,Material Research SocietySymposium Proceedings 2004,807,261-266[3])。
在后一种情况下,加入到反应物中的是第三材料,其作用是使得能够提供碘的防渗安全壳并且其特性取决于所选择的烧结方法而变化。
因此,在单轴压力或HUP(热单轴加压)下反应性烧结的情况下,它是反应物之一,在这种特定情况下为可以用作基质的磷酸钒酸铅[F.Audubert et al.,Solid State Ionics 1997,95(1-2),113-119[4])。这使得可以限制在后者的熔点(410℃)以上碘化铅的扩散。于是,基质不仅用来包含碘而且还用作用于形成碘代磷灰石的可消耗容器。
在等静压或HIP(热等静加压)下反应性烧结的情况下,可以使用各种特性(金属、玻璃等)的容器。
在所有情况下,碘代磷灰石的生产需要高于500℃的温度,对于该温度,在没有防渗安全壳(或防渗密封区)的情况下,将观察到碘的挥发。确实,在组成为Pb10(VO4)4.8(PO4)1.2I2的磷灰石的情况下,质量损失的开始(如通过热重量分析所确定的)对应于500℃。
此外,反应性烧结可能带来一些困难。确实,达到接近100%的反应产率同时保证高的稠化度(或致密化度),也就是说大于92%,证明是复杂的。然而,如果期望在深地质层类型部位在其储存期间使随后经由浸提(通过碘磷灰石)能够被释放的碘的量最小化,则必须满足这两个条件。
在HUP反应性烧结的情况下,烧结条件的优化使得可以产生陶瓷-陶瓷(cer-cer)复合材料,其在稠化度为88%的碘代磷灰石核中结合有重量含量为2.7%的碘。对于这些数值,一部分开气孔保留在材料中,其通过潜在的载体(以保守假设,其中就碘的传播而言基质并不提供任何保留作用)而导致有利于碘的活动化的表面的发展(或形成)。
为了避免反应性烧结的困难,已设想将合成和烧结步骤的分离(M.UNO et al.,Journal of Nuclear Materials 2001,294(1-2),119-122[5])。然而,在这种情况下,存在总共两个高温步骤,这在能量方面是不利的。此外,分配给合成的室的管理,其于是被碘污染,在时间和成本两方面都对该方法造成相当大的负担。
证明,在他们工作的范围内,本发明的发明人已观测到,代替HUP或HIP类型的常规烧结方法,使用快速烧结方法来合成和稠化碘代磷灰石使得可以惊人地解决所有上面提及的问题。
尤其是,他们已经观测到,使用快速烧结方法使得可以同时获得碘代磷灰石,其对于100%或接近该值的反应产率具有大于97%的稠化度,并且免除对使用期望用于确保碘的防渗安全壳的基质的需要。
本发明正是基于这些观测结果。
发明内容
因此,本发明的一个目的是快速烧结方法在用于合成和稠化碘代磷灰石中的应用。
可以回想到,文献中措辞“快速烧结”理解成是指一种烧结,其中使待稠化的材料在模具中经受单轴压力如在HUP烧结中,但是其中由导电材料(通常为石墨)构成的模具被通以电流,通常为脉冲直流电。因此这种模具作为热源,从而导致高加热速率以及将该热量良好的传输至待稠化的材料。
结果,在相等的稠化度下,这种烧结方法一般使得可以使用低于常规烧结方法所需要的烧结温度和时间。
本发明可以涉及任何类型的碘代磷灰石的合成和稠化。因此,例如,它可以适用于制备以下碘代磷灰石:
*Ca10(VO4)6I2,如由A.Ditte在Annales de Chimie et de Physique1886,6th series(volume VIII),502[6]中所描述的;
*Ba10(ReO5)6I2,如由G.Baud等人在Materials Research Bulletin1979,14,675[7]中所描述的;以及
*Sr10(ReO5)6I2,如由M.S.Schriewer和W.Jeitschko在Journalof Solid State Chemistry 1993,107,1[8]中所描述的。
然而,优选的是,碘代磷灰石由以下化学式(I)的化合物获得:
M3(XO4)2-2x(PO4)2x    (I)
其中:
-M选自铅和镉,
-X选自钒和砷;并且
-x等于0或大于0同时小于1,
其在固态下与碘化合物如金属碘化物(其也处于固态)反应,由此获得的碘代磷灰石确实证明呈现稳定性和阻力特性,其特别好地适于长期储存。
这是为何本发明优选包括下述的原因:
a)混合对应于以上化学式(I)的化合物和碘化合物,这些化合物是以粉末的形式;然后
b)通过快速烧结方法来反应性烧结所得的混合物。
根据本发明,碘化合物有利地是金属碘化物,尤其是碘化铅(PbI2)或碘化银(AgI),在这种情况下,该化合物与化学式(I)的化合物的反应被写成:
PbI2+3[M3(XO4)2-2x(PO4)2x]→PbM9(XO4)6-6x(PO4)6xI2
或者写成
AgI+3[M3(XO4)2-2x(PO4)2x]→AgM9(XO4)6-6x(PO4)6xI□,
符号□表示在碘部位的空位。
根据本发明的一种特别优选的配置,化学式(I)的化合物是钒酸铅或化学式Pb3(VO4)2-2x(PO4)2x的磷酸钒酸铅,其中x具有与前述相同的含义,而碘化合物是碘化铅,使得碘代磷灰石对应于以下的化学式(II):Pb10(VO4)6-6x(PO4)6xI2(II),其中x具有与前述相同的含义。
优选地,x为从0.1至0.75,并且还更好地为从0.1至0.3,最优选的x值为0.2。
在后一种情况下,化学式(I)的化合物是Pb3(VO4)1.6(PO4)0.4,并经由与PbI2的反应导致化学式Pb10(VO4)4.8(PO4)1.2I2的碘代磷灰石。
根据本发明,有利地在从400℃至500℃,并且还更好地从400℃至450℃范围的温度下,在从15至150MPa,优选地从40至100MPa范围的单轴压力下进行反应性烧结。
烧结时间本身优选为从达到烧结温度时的时刻开始的3至30分钟,并且还更好地5至20分钟。
化学式(I)的化合物可以通过常规方法来制备。
因此,例如,在M表示Pb的情况下,化学式(I)的化合物(其中x等于0)可以在约1000℃的温度下通过氧化铅和五氧化二钒或氧化铅和HN4H2AsO4的固/固反应来获得,而化学式(I)的化合物(其中x大于0)可以通过利用适合于提供例如磷酸氢二铵的磷酸根离子的补充性反应物来获得。
在M表示Cd的情况下,可以使用类似的方法,其中用氧化镉代替氧化铅。
还可以通过以下类型:机械磨碎、研磨磨碎等的常规磨碎方法将化学式(I)的化合物减小成粉末,主要是为了获得非常精细粒径的粉末,理想地最多等于1μm,以便获得该粉末与碘化合物粉末之间的密切接触。
本发明具有许多优点,即:
-它使得可以以单一步骤进行碘代磷灰石的合成和稠化;
-它使得可以在足够低的温度下和足够短时间内进行该合成和该稠化,以消除用作反应物的碘化合物的扩散以及碘挥发的风险,因此免除了对依赖防渗安全壳基质的需要;
-此外,它导致获得非常高压实的碘代磷灰石,所述碘代磷灰石对于100%或接近该值的反应产率具有大于97%的稠化度,因此其满足关于用于在深地质层类型部位调节和储存放射性碘的碘代磷灰石所要求的标准。
因此它非常特别有利于在磷灰石中调节和储存在来自用过的核燃料的后处理的含水流出物中存在的放射性碘。
因此,根据本发明,在碘代磷灰石中存在的碘优选为放射性碘,更特别地是碘-129。
在这种情况下,用作用于合成碘代磷灰石的反应物的碘化合物相当于在从用过的核燃料后处理工厂的含水流出物中排除放射性碘期间获得的、或直接由后者制备的化合物。
根据随后的涉及用于制备碘代磷灰石的实例以及参照附图的描述的剩余部分,将可以更好地理解本发明。
当然,该描述的剩余部分仅以本发明的主题的举例说明的方式给出,并且绝不构成对于该主题的限制。
附图说明
图1示意性地表示通过快速烧结方法,可以用于合成和稠化碘代磷灰石的模具的一个实例。
图2表示根据本发明制备的碘代磷灰石的X射线衍射图。
具体实施方式
以下述方式来制备化学式Pb10(VO4)4.8(PO4)1.2I2的碘代磷灰石。
磷酸钒酸铅/碘化铅混合物的制备:
首先,通过在空气中在1000℃温度下并且在1小时内煅烧先前经由机械混合而均化的氧化铅、五氧化二钒以及磷酸氢二铵的化学计量混合物来制备组成为Pb3(VO4)1.6(PO4)0.4的磷酸钒酸铅。
反应如下:
3PbO+0.8V2O5+0.4(NH4)2HPO4→Pb3(VO4)1.6(PO4)0.4+0.6H2O+0.8NH3
然后使用行星式研磨机使由此获得的磷酸钒酸铅在超纯水中经受首次磨碎(固体/水重量比=1),其中所述行星式研磨机装备有由碳化钨制成的缸和球。以300rpm的速度进行该磨碎1小时。
接着,使磷酸钒酸铅在水中经受第二次研磨磨碎。在由氧化锆制成的750cm3缸中进行该磨碎,其中粉末/球重量比等于1/9(粉末的重量=100g),并使用由直径为1和2mm(以等重量)的氧化锆球构成的介质作为磨碎介质。轴的转速设定为450rpm并且磨碎时间设定为4小时。通过具有125μm截止阈值的筛子来筛选由此获得的悬浮液,以便分离磨球,然后在烘箱中干燥悬浮液直到水被完全蒸发并获得粉末。
此外,在环境温度下和在5的pH(通过添加硝酸而获得)下,从碘化钠和硝酸铅以NaI/Pb(NO3)2摩尔比等于2开始通过在水中的沉淀来制备碘化铅。
在这种情况下,反应如下:
2NaI(含水)+Pb(NO3)2(含水)→PbI2(固体)+2NaNO3(含水)
在过滤以后,在烘箱中干燥获得的PbI2粉末过夜。
接着,以化学计量比例(即,每1mol的PbI2,3mol的Pb3(VO4)1.6(PO4)0.4)混合磷酸钒酸铅和碘化铅,并且利用与上文相同仅针对磷酸钒酸铅所描述的操作条件通过研磨来均化该混合物,不同之处在于用变性乙醇代替水。
磷酸钒酸铅/碘化铅混合物的反应性烧结:
利用Sumitomo,Dr Sinter L型快速烧结机来进行磷酸钒酸铅/碘化铅混合物的反应性烧结,所述烧结机包括:
■石墨模具,其中放置有磷酸钒酸铅/碘化铅混合物的样品;以及
■两个电极,其施加于模具并连接至脉冲直流发电机。
如在图1中可以看到的,该图示意性地示出了模具(在该图中标记为10),后者由空心圆筒模体1和两个对称活塞(分别为2a和2b)构成,其使得在整个烧结过程中可以将单轴压力传送至样品3。
模体1在其中心被穿孔,其中外壳4用于能够引入热电偶,其作用是用于测量和调节温度。该热电偶另外离样品3为2mm。
模体1衬有石墨箔
Figure GPA00001087186700101
5,其用于确保电流沿整个模具的良好传导并且用于在烧结过程结束时有助于样品的脱模。类似地,将
Figure GPA00001087186700102
的两个圆盘,分别为6a和6b,置于样品3与活塞2a和2b之间。
在开始烧结以前,在低温下,施加70MPa的外压2分钟,其是在动态初级真空下进行的。在两个电极之间施加方波形式(由2ms的停止所隔开的12ms的脉冲)的约400安培的电流。
通过改变以下三个操作条件之一来进行各种试验:烧结温度、烧结时间(从当达到烧结温度时的时刻开始记录)以及外压,后者被保持在70MPa,或在冷预压结束时被降低至40MPa。
在每个试验结束时,根据样品所呈现的密度(通过流体静力称重来确定)与碘代磷灰石的理论密度(7.117g/cm3)之间的比率来计算样品的稠化度。
表1表示作为操作条件的函数所获得的结果。
表1
  烧结温度(℃)   烧结时间(min)   加热速率(℃/min)  外压(MPa)   稠化度(%)
  400   5   50   40   97.5
  400   20   50   40   97.8
  400   5   50   70   97.9
  450   5   50   40   98.0
该表表明,快速烧结方法的使用使得可以获得碘代磷灰石,其具有大于97%的稠化度,并且因此显著高于那些通过HUP或HIP型的常规烧结方法所获得的稠化度,这是因为烧结温度比常规烧结方法所需要的温度低一百度左右,并且烧结时间也显著更短(5至20分钟相对于4至10小时)。
此外,如图2所示,由此通过X射线衍射获得的碘代磷灰石的表征使得可以证实,这些碘代磷灰石很好地对应于化学式Pb10(VO4)4.8(PO4)1.2I2。此外,没有鉴别到第二阶段,这证实了100%的合成产率(到达检出限内,其是约百分之几的数量级)。
参考文献
[1]WO-A-96/18196
[2]C.Guy et al.,C.R.Physique 2002,3,827-837
[3]E.R.Maddrell and P.K.Abraitis,Material Research SocietySymposium Proceedings 2004,807,261-266
[4]F.Audubert et al.,Solid State Ionics 1997,95(1-2),113-119
[5]M.UNO et al.,Journal of Nuclear Materials 2001,294(1-2),119-122
[6]A.Ditte,Annales de Chimie et de Physique 1886,6th series(volume VIII),502
[7]G.Baud et al.,Materials Research Bulletin 1979,14,675
[8]M.S.Schriewer and W.Jeitschko,Journal of Solid StateChemistry 1993,107,1

Claims (11)

1.火花等离子体烧结方法在用于合成和稠化碘代磷灰石中的应用,其包括:
a)混合碘化合物和以下化学式(I)的化合物:
M3(XO4)2-2x(PO4)2x       (I)
其中:
M选自铅或镉;
X选自钒或砷;并且
x等于0或大于0同时小于1;
所述碘化合物和所述化学式(I)的化合物是以粉末的形式;然后
b)通过火花等离子体烧结方法来反应性烧结由此获得的混合物,
其中在从400℃至500℃范围的温度下进行所述反应性烧结,在从15至150MPa范围的单轴压力下进行所述反应性烧结,并且从达到烧结温度时的时刻开始,所述反应性烧结的持续时间为从3至30分钟。
2.根据权利要求1所述的应用,其中,所述碘化合物选自碘化铅PbI2和碘化银(AgI)。
3.根据权利要求1所述的应用,其中,所述化学式(I)的化合物是钒酸铅或以下化学式的磷酸钒酸铅:
Pb3(VO4)2-2x(PO4)2x
其中,x具有与前述相同的含义;
而所述碘化合物是碘化铅,使得所述碘代磷灰石对应于以下化学式(II):
Pb10(VO4)6-6x(PO4)6xI2      (II)
其中,x具有与前述相同的含义。
4.根据权利要求1至3中任一项所述的应用,其中,x为从0.1至0.75。
5.根据权利要求4所述的应用,其中,x为从0.1至0.3。
6.根据权利要求1至3中任一项所述的应用,其中,x等于0.2。
7.根据权利要求1所述的应用,其中,在从400℃至450℃范围的温度下进行所述反应性烧结。
8.根据权利要求1所述的应用,其中,在从40至100MPa范围的单轴压力下进行所述反应性烧结。
9.根据权利要求1所述的应用,其中,从达到所述烧结温度时的时刻开始,所述反应性烧结的持续时间为从5至20分钟。
10.根据权利要求1至3中任一项所述的应用,其中,存在于所述碘代磷灰石中的碘是放射性碘。
11.根据权利要求10所述的应用,其中,所述放射性碘是碘-129。
CN200880110627.5A 2007-10-08 2008-10-07 快速烧结方法在用于合成和稠化碘代磷灰石中的应用 Active CN101821216B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0758128A FR2921919A1 (fr) 2007-10-08 2007-10-08 Utilisation de la technique de frittage flash pour la synthese et la densification d'iodoapatites
FR0758128 2007-10-08
PCT/EP2008/063392 WO2009047246A1 (fr) 2007-10-08 2008-10-07 Utilisation de la technique de frittage flash pour la synthese et la densification d'iodoapatites.

Publications (2)

Publication Number Publication Date
CN101821216A CN101821216A (zh) 2010-09-01
CN101821216B true CN101821216B (zh) 2014-04-09

Family

ID=39247233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880110627.5A Active CN101821216B (zh) 2007-10-08 2008-10-07 快速烧结方法在用于合成和稠化碘代磷灰石中的应用

Country Status (9)

Country Link
US (1) US20100276634A1 (zh)
EP (1) EP2200950B1 (zh)
JP (1) JP5562857B2 (zh)
KR (1) KR20100087284A (zh)
CN (1) CN101821216B (zh)
AT (1) ATE525337T1 (zh)
CA (1) CA2702021A1 (zh)
FR (1) FR2921919A1 (zh)
WO (1) WO2009047246A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2957913B1 (fr) * 2010-03-26 2012-06-08 Commissariat Energie Atomique Nouvelle iodoapatite, son procede de preparation et ses utilisations
JP6362868B2 (ja) * 2014-01-21 2018-07-25 国立大学法人京都大学 高効率ペロブスカイト型太陽電池の製造方法
CN110291592B (zh) * 2017-01-06 2023-12-01 乔罗克国际股份有限公司 用于处理流体废物的方法
CN106971764B (zh) * 2017-04-13 2019-04-30 中国工程物理研究院材料研究所 一种惰性基弥散燃料芯块的快速制备工艺
KR102150764B1 (ko) * 2018-11-23 2020-09-02 한국과학기술원 할로겐 함유 소달라이트 소결체 및 이의 제조방법
JPWO2021020425A1 (zh) * 2019-07-29 2021-02-04
CN111584114B (zh) * 2020-04-07 2022-08-19 西南科技大学 高放废物的固化方法
FR3131296A1 (fr) 2021-12-23 2023-06-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Matériau inorganique, particulaire et poreux, à base d’un vanadate ou phosphovanadate de plomb, utile pour la capture d’iode gazeux, son procédé de préparation et ses utilisations
CN114773050B (zh) * 2022-03-24 2023-04-07 中国科学院上海硅酸盐研究所 一种钒磷酸铅陶瓷材料及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5711016A (en) * 1994-12-07 1998-01-20 Commissariat A L'energie Atomique Process for the conditioning of radioactive iodine, particularly iodine 129, using an apatite as the confinement matrix

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251057A (ja) * 1997-01-08 1998-09-22 Asahi Optical Co Ltd リン酸カルシウム系セラミックスの焼結方法
US20040244826A1 (en) * 2002-06-19 2004-12-09 Jfe Steel Corporation Beta-iron disilicate thermoelectric transducing material and thermoelectric transducer
JP4297417B2 (ja) * 2003-07-16 2009-07-15 三菱重工業株式会社 放射性元素の固定化方法
ES2435771T3 (es) * 2004-07-19 2013-12-23 Smith & Nephew, Inc. Sinterización por corriente pulsada para superficies de implantes médicos

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5711016A (en) * 1994-12-07 1998-01-20 Commissariat A L'energie Atomique Process for the conditioning of radioactive iodine, particularly iodine 129, using an apatite as the confinement matrix

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特開2005-37165A 2005.02.10

Also Published As

Publication number Publication date
EP2200950B1 (fr) 2011-09-21
JP5562857B2 (ja) 2014-07-30
WO2009047246A1 (fr) 2009-04-16
FR2921919A1 (fr) 2009-04-10
EP2200950A1 (fr) 2010-06-30
JP2011501728A (ja) 2011-01-13
ATE525337T1 (de) 2011-10-15
CA2702021A1 (fr) 2009-04-16
CN101821216A (zh) 2010-09-01
US20100276634A1 (en) 2010-11-04
KR20100087284A (ko) 2010-08-04

Similar Documents

Publication Publication Date Title
CN101821216B (zh) 快速烧结方法在用于合成和稠化碘代磷灰石中的应用
CN111533557B (zh) 一种焦绿石型高熵氧化物固化体及其制备方法
Huang et al. Method using water-based solvent to prepare Li7La3Zr2O12 solid electrolytes
CN106129466B (zh) 降低与金属锂电极界面电阻的固态电解质及其制备方法
CN110734283B (zh) 新型磷酸盐复合陶瓷固化体材料的制备方法
CN102779561A (zh) 一种烧绿石型稀土锆酸盐固化锕系核素的方法
Shichalin et al. Reaction synthesis of SrTiO3 mineral-like ceramics for strontium-90 immobilization via additional in-situ synchrotron studies
CN108002828A (zh) 一种等离子喷涂用ysz陶瓷造粒粉及其制备方法
Zhao et al. Comparison of microstructure and chemical durability of Ce0. 9Gd0. 1PO4 ceramics prepared by hot-press and pressureless sintering
EP3539925A1 (en) Lithium-containing zirconium phosphate, calcined powder of same, and method for producing sintered body
CN110204332A (zh) 一种电场辅助下低温快速固化核素的方法
Orlova et al. Praseodymium and neodymium phosphates Ca 9 Ln (PO 4) 7 of whitlockite structure. Preparation of a ceramic with a high relative density
CN114835492A (zh) 一种稀土基锆铪复合陶瓷材料及其制备方法和应用
CN107210077B (zh) 用于产生放射性同位素的辐照靶、其制备方法以及该辐照靶的用途
CN115368130A (zh) 一种a2b2o7型高熵陶瓷粉末和屏蔽伽马射线的复合涂层及制备方法
Xie et al. Self-propagating high-temperature synthesis of Sm and Zr Co-doped Gd2Ti2O7 pyrochlore ceramics as nuclear waste forms
Zhang et al. Immobilization of iodine waste via moderate temperature sintering of (Ag) iodosodalite
KR20210154642A (ko) 이트리아가 첨가된 중성자 흡수 소결체 및 이의 제조방법
CN116332638B (zh) 高熵氧化物粉末材料、放射性废物固化基材及制备方法
US20030139281A1 (en) Ceramic with hollandite structure incorporating cesium usable for packaging of radioactive cesium and its synthesis processes
Stewart et al. Titanate wasteforms for Tc-99 immobilization
Ma et al. Comparison of the powderization effect of non-equilibrium plasma oxidation and thermochemical oxidation powders of uranium dioxide solids for actinide analysis
JP3487106B2 (ja) 燃料再処理廃棄物の処理方法
Shichalin et al. Synthesis of La2Ti2O7 Nanoscale Powder and Ceramics Based on It by Sol–Gel Synthesis and Spark Plasma Sintering
JP3309796B2 (ja) 核燃料再処理廃棄物の処理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant