CN101814453B - 一种用于硅通孔互连中的硅片对准方法 - Google Patents

一种用于硅通孔互连中的硅片对准方法 Download PDF

Info

Publication number
CN101814453B
CN101814453B CN201010141746.6A CN201010141746A CN101814453B CN 101814453 B CN101814453 B CN 101814453B CN 201010141746 A CN201010141746 A CN 201010141746A CN 101814453 B CN101814453 B CN 101814453B
Authority
CN
China
Prior art keywords
silicon
silicon chip
chip
interconnected
stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201010141746.6A
Other languages
English (en)
Other versions
CN101814453A (zh
Inventor
王鹏飞
孙清清
丁士进
张卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201010141746.6A priority Critical patent/CN101814453B/zh
Publication of CN101814453A publication Critical patent/CN101814453A/zh
Priority to PCT/CN2011/000608 priority patent/WO2011124091A1/zh
Priority to US13/304,149 priority patent/US20120309118A1/en
Application granted granted Critical
Publication of CN101814453B publication Critical patent/CN101814453B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06593Mounting aids permanently on device; arrangements for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明属于高集成度封装技术领域,具体公开了一种用于硅通孔互连中的硅片对准方法。该方法包括在多个硅片进行堆叠互连时,采用电学方法对进行堆叠互连的上下硅片进行对准校正,这样,就可以提高硅片对准的精度,减小互连电阻。通过本发明所述方法制成的集成电路芯片具有高速度和低功耗的性能。

Description

一种用于硅通孔互连中的硅片对准方法
技术领域
本发明属于高集成度封装技术领域,具体涉及一种硅通孔互连封装方法。
背景技术
随着微电子技术的不断发展,芯片制造工艺细微化,促使集成电路封装技术不断发展,并逐渐形成一门相对独立的科技产业。现在,三维封装技术已被认为是未来集成电路封装的发展趋势,而且,三维封装技术已经由芯片级的堆叠芯片封装(stacked die)或者堆叠封装(package on package)技术发展到了晶圆级的硅通孔(Through Silicon Via,TSV)互连封装技术。
硅通孔互连技术是通过在硅片和硅片之间制作垂直通孔,然后在硅片正面和背面形成互连微焊点,这样,多个硅片就可以直接堆叠起来而不用外部引线互连。硅通孔互连技术可以分为先通孔式(via first)和后通孔式(via last)两种。先通孔式技术就是在硅片上集成电路制造完成之前形成互连通孔,这种技术可以是在芯片制造的最初几步内形成硅通孔互连,也可以是在BEOL(Back-end of Line)之前形成硅通孔互连。后通孔式技术则是在BEOL或者整个集成电路制造完成之后再进行硅通孔互连。硅通孔内的填充材料包括一个绝缘层和一个用于导电的金属层或者高掺杂的多晶硅。考虑到降低互连电阻,提高芯片工作频率,多传感系统的硅通孔三维封装中采用铜作为硅通孔互连金属比较有利。与以往的IC封装键合和使用凸点的堆叠技术不同,硅通孔互连技术能够使芯片在三维方向堆叠的密度最大,外形尺寸最小,并且大大改善了芯片速度和低功耗的性能。
作为当前最先进的晶圆级封装技术,硅通孔互连技术现在还处于开发的早期阶段,存在着不少技术难点,比如晶圆减薄技术、硅片对准技术、深孔刻蚀技术和深孔铜填充工艺和设备等都需要重新开发。进行堆叠时,硅片的对准与否会影响硅片之间的互连电阻,进而影响芯片的工作频率,从而使芯片的三维叠层不能在更广的领域中得到应用。
发明内容
本发明的目的在于提出一种用于硅通孔互连中的硅片对准方法,以减小堆叠时硅片之间的互连电阻,提高芯片的工作频率,使得芯片的三维叠层能够在更广的领域中得到应用。
为达到本发明的上述目的,本发明提出了一种采用电学方法对进行堆叠互连的上下硅片进行辅助对准的方法,具体步骤包括:
提供两个或多个完成通硅孔结构的硅片;
在所述硅片的正面和背面形成互连微焊点;
将所述硅片进行堆叠互连;
采用电学方法对堆叠互连的上下硅片进行对准校正。
进一步地,所述硅片的硅通孔结构包括至少一个导电层和一个将所述导电层和所述硅通孔表面隔离的绝缘层,所述的绝缘层为二氧化硅、氮化硅或者为他们之间相混合的绝缘物质,所述的导电层为铝、铜或者高掺杂的多晶硅。所述的电学方法为惠斯登电桥法或者其它电学方法。
本发明所提出的硅片对准方法,具有实施方法简单、可以提高硅片对准的精度、减小互连电阻等优点。采用本发明所述技术制成的集成电路芯片具有高速度和低功耗的性能。
附图说明
图1为已完成硅通孔结构和互连焊点的两个硅片。
图2为图1所示两个硅片接触后的示意图。
图3a至图3c为本发明提供的一种使用惠斯登电桥法对图2所示接触后的硅片进行校正对准的原理示意图。
具体实施方式
下面将参照附图对本发明的一个示例性实施方式作详细说明。参考图是本发明的理想化实施例的示意图,以下实施例仅是说明性的,本发明不受以下实施例的限制。
提供两个已完成硅通孔结构和互连焊点的硅片,图1为所提供硅片的侧视图。如图1所示,硅片2中,所示20为硅部分,所示21为硅通孔和互连焊点部分;硅片3中,所示30为硅部分,所示31为硅通孔和互连焊点部分。
接下来,将硅片2和和硅片3进行堆叠互连,如图2所示。
在硅片2和硅片3进行接触时,硅片2和硅片3可能会出现对准偏差,这样就会影响互连电阻,进而影响集成电路的性能。通过大家熟知的惠斯登电桥测量电阻的方法,可以对硅片2和硅片3进行对准校正。
在图2所示结构中引入测量节点a、b、c和d,则在节点a和节点b之间存在电阻R1,节点b和节点c之间存在电阻R2,节点a和节点d之间存在电阻R3,节点d和节点c之间存在电阻R4,如图3a所示,图3b为图3a所示结构的正视图。
在节点a和节点c之间加一个电源U和开关K,在节点b和节点d之间加电压测量计G,这样就构成了一个惠斯登电桥电路,其等效电路如图3c所示。
当硅片2和硅片3精确对准时,有R1*R4=R2*R3,根据惠斯登平衡电桥测量电阻的原理,此时节点b和节点d具有相同的电位。因此,通过调节硅片2和硅片3,使电压测量计G的测量值显示为零时,硅片2和硅片3可达到精确对准。
如上所述,在不偏离本发明精神和范围的情况下,还可以构成许多有很大差别的实施例。应当理解,除了如所附的权利要求所限定的,本发明不限于在说明书中所述的具体实例。

Claims (4)

1.一种用于硅通孔互连中的硅片对准方法,其特征在于具体步骤包括:
提供两个或多个完成硅通孔结构的硅片;
在所述硅片的正面和背面形成互连焊点;
将所述硅片进行堆叠互连;
采用惠斯登电桥法对堆叠互连的上下硅片进行对准校正。
2.根据权利要求1所述的硅片对准方法,其特征在于,所述硅片的硅通孔结构包括至少一个导电层和一个将所述导电层和所述硅通孔表面隔离的绝缘层。
3.根据权利要求2所述的硅片对准方法,其特征在于,所述的绝缘层为二氧化硅、氮化硅或者为他们之间相混合的绝缘物质。
4.根据权利要求2所述的硅片对准方法,其特征在于,所述的导电层为铝、铜或者掺杂的多晶硅。
CN201010141746.6A 2010-04-08 2010-04-08 一种用于硅通孔互连中的硅片对准方法 Expired - Fee Related CN101814453B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201010141746.6A CN101814453B (zh) 2010-04-08 2010-04-08 一种用于硅通孔互连中的硅片对准方法
PCT/CN2011/000608 WO2011124091A1 (zh) 2010-04-08 2011-04-08 一种用于硅通孔互连中的硅片对准方法
US13/304,149 US20120309118A1 (en) 2010-04-08 2011-11-23 Silicon wafer alignment method used in through-silicon-via interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010141746.6A CN101814453B (zh) 2010-04-08 2010-04-08 一种用于硅通孔互连中的硅片对准方法

Publications (2)

Publication Number Publication Date
CN101814453A CN101814453A (zh) 2010-08-25
CN101814453B true CN101814453B (zh) 2012-03-21

Family

ID=42621661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010141746.6A Expired - Fee Related CN101814453B (zh) 2010-04-08 2010-04-08 一种用于硅通孔互连中的硅片对准方法

Country Status (3)

Country Link
US (1) US20120309118A1 (zh)
CN (1) CN101814453B (zh)
WO (1) WO2011124091A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814453B (zh) * 2010-04-08 2012-03-21 复旦大学 一种用于硅通孔互连中的硅片对准方法
KR102337617B1 (ko) 2013-01-23 2021-12-08 루돌프 테크놀로지스 인코퍼레이티드 Tsv 마이크로 제조 프로세스 및 제품들의 특성화
CN103500721B (zh) * 2013-10-21 2016-01-27 上海华力微电子有限公司 量测通孔与下层金属线对准偏差的方法
CN105742226B (zh) * 2014-12-09 2019-05-21 中国科学院微电子研究所 半导体器件制造方法
US9583490B2 (en) 2015-01-20 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Inverters and manufacturing methods thereof
US9406697B1 (en) 2015-01-20 2016-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and manufacturing methods thereof
US10163864B1 (en) * 2017-08-16 2018-12-25 Globalfoundries Inc. Vertically stacked wafers and methods of forming same
CN113823576B (zh) * 2020-06-18 2023-07-04 中芯国际集成电路制造(北京)有限公司 一种半导体测试结构及其形成方法
CN113611686A (zh) * 2021-07-06 2021-11-05 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 半导体测试结构及其制造方法、测试方法
CN115295524B (zh) * 2022-10-08 2023-02-03 合肥本源量子计算科技有限责任公司 一种硅通孔互联结构和量子计算机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525548B1 (en) * 1999-11-12 2003-02-25 Nec Corporation Check pattern for a semiconductor device
CN101295002A (zh) * 2007-04-24 2008-10-29 中芯国际集成电路制造(上海)有限公司 互连线失效检测方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69216223T2 (de) * 1992-07-15 1997-07-10 Sgs Thomson Microelectronics Verfahren zum Messen des Grades der Planheit einer dielektrischen Schicht in einer integrierten Schaltung und integrierter Schaltung mit einer Anordnung zur Durchführung dieses Verfahrens
KR100273317B1 (ko) * 1998-11-04 2000-12-15 김영환 반도체 소자 제조 공정에서 미스얼라이먼트 측정을 위한 테스트패턴의 구조와 그 측정방법
US7598523B2 (en) * 2007-03-19 2009-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Test structures for stacking dies having through-silicon vias
US8138577B2 (en) * 2008-03-27 2012-03-20 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Pulse-laser bonding method for through-silicon-via based stacking of electronic components
US7514276B1 (en) * 2008-08-12 2009-04-07 International Business Machines Corporation Aligning stacked chips using resistance assistance
US8492238B2 (en) * 2008-08-14 2013-07-23 Board Of Regents, The University Of Texas System Method and apparatus for fabricating piezoresistive polysilicon by low-temperature metal induced crystallization
US8932906B2 (en) * 2008-08-19 2015-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Through silicon via bonding structure
EP2341214A1 (en) * 2009-12-29 2011-07-06 Welltec A/S Thermography logging tool
CN101814453B (zh) * 2010-04-08 2012-03-21 复旦大学 一种用于硅通孔互连中的硅片对准方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525548B1 (en) * 1999-11-12 2003-02-25 Nec Corporation Check pattern for a semiconductor device
CN101295002A (zh) * 2007-04-24 2008-10-29 中芯国际集成电路制造(上海)有限公司 互连线失效检测方法

Also Published As

Publication number Publication date
WO2011124091A1 (zh) 2011-10-13
US20120309118A1 (en) 2012-12-06
CN101814453A (zh) 2010-08-25

Similar Documents

Publication Publication Date Title
CN101814453B (zh) 一种用于硅通孔互连中的硅片对准方法
US20210134731A1 (en) Embedded die on interposer packages
US11749606B2 (en) Embedded bridge substrate having an integral device
EP3430646B1 (en) Stairstep interposers with integrated shielding for electronics packages
CN102263089B (zh) 具有多芯片结构的半导体集成电路
Farooq et al. 3D integration review
EP3971961A1 (en) Direct bonding in microelectronic assemblies
CN101859745A (zh) 堆叠式半导体封装件
Trigg et al. Design and fabrication of a reliability test chip for 3D-TSV
CN117561599A (zh) 具有背侧管芯到封装互连的微电子组件
CN105702658A (zh) 半导体封装件及其制法
NL2029640B1 (en) Microelectronic structures including glass cores
CN101866908A (zh) 一种用硅通孔互连形成的电感环
EP3971964A2 (en) Capacitors and resistors at direct bonding interfaces in microelectronic assemblies
US11557489B2 (en) Cavity structures in integrated circuit package supports
Li et al. 3D Microelectronic Packaging: From Architectures to Applications
CN115458479A (zh) 一种高带宽裸片的制作方法及高带宽裸片
US9455190B2 (en) Semiconductor apparatus having TSV and testing method thereof
Riou et al. 3D TSV system in package (SiP) for aerospace applications
CN104766828A (zh) 晶圆三维集成的方法
CN104733437B (zh) 晶圆三维集成的方法
US20240079335A1 (en) Three-dimensional integration of dies in an integrated circuit device
US20230387027A1 (en) Via structure for embedded component and method for making same
CN107240579B (zh) 转接板的rdl封装成形方法
US20230178513A1 (en) Packaging architecture with intermediate routing layers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120321

Termination date: 20150408

EXPY Termination of patent right or utility model