CN101752096A - 用于湿电容中的阴极 - Google Patents

用于湿电容中的阴极 Download PDF

Info

Publication number
CN101752096A
CN101752096A CN200910252297A CN200910252297A CN101752096A CN 101752096 A CN101752096 A CN 101752096A CN 200910252297 A CN200910252297 A CN 200910252297A CN 200910252297 A CN200910252297 A CN 200910252297A CN 101752096 A CN101752096 A CN 101752096A
Authority
CN
China
Prior art keywords
zone
negative electrode
substrate
raising
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910252297A
Other languages
English (en)
Inventor
德克·德赖西格
巴拉特·拉瓦尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Avx Components Corp
Original Assignee
AVX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Corp filed Critical AVX Corp
Publication of CN101752096A publication Critical patent/CN101752096A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供了一种阴极,该阴极包括一个因火花阳极氧化而具有微粗糙化表面的金属基底。该表面是通过将上述基底与一电解质溶液接触并施加电压以形成一个电介质次氧化层而形成的。该电压上升至足够高来开始基底表面上的“阳极氧化”,这能够产生足以刻蚀掉该基底的局部表面高温。于是,形成了一个具有多个抬高区域的“微粗糙化”表面。这些抬高区域能够增加有效表面面积,从而对于给定尺寸能够形成具有更高阴极电容值的电容,和/或,对于给定的电容值能够形成更小尺寸的电容。这些抬高区域还能够对另外的电化学活性材料表现出很好的附着力,并在某些液态电解质中提供更好的稳定性。

Description

用于湿电容中的阴极
背景技术
湿电容因其容积效率、可靠性以及工艺兼容性而越来越多地被应用于电路设计中。与其它类型的电容相比,湿电容典型地具有更大的单位体积电容值,这使得它们在高电流、高功率、低频率电子电路中很有价值。开发出的一类湿电容为包括阀金属阳极、阴极和液体电解质的湿电解电容。由于阳极表面上电介质金属氧化物薄层的形成,这类电容的单元槽电压(unit cell voltage)通常较高。湿电解电容趋于提供高电容值与低泄漏电流的结合。另一类湿电容为阳极和阴极的结构和成分都类似的湿对称电容。由于高电压下电解质会不可避免地分解,这类电容的单元槽电压一般比较低。但是,无论是电解的还是对称的,湿电容的阴极都典型地包括一个基底和一个通过法拉第模式或非法拉第模式提供高电容值的涂层,为了提高这种涂层的附着力,上述基底有时需经过机械和/或化学刻蚀。但是,在某些情况下,例如在存在含水电解质时,该涂层还是会容易脱落。
因此,需要一种用于湿电容的改进的阴极。
发明内容
根据本发明的一个具体实施例,披露了一种湿电容,其中包括:一个阳极;一个阴极;布置于所述阳极与阴极之间的工作电解质。所述阴极包括一个涂覆有电化学活性材料的火花阳极氧化(sparki anodized)金属基底。所述基底具有一个包括多个抬高区域的微粗糙化(micro-roughened)表面。
根据本发明的另一具体实施例,披露了一种导电阴极,其中包括:一个涂覆有电化学活性材料的火花阳极氧化钽薄片(foil)。所述薄片具有一个包括多个抬高区域的微粗糙化表面,其中,所述多个抬高区域中的至少一部分的高度约为200至2500纳米。根据本发明的又一具体实施例,披露了一种用于形成阴极的方法。该方法包括:将一个金属基底浸入阳极氧化溶液;以及施加电压约为90至275伏特的电流,以开始火花阳极氧化,并在所述基底上形成一个具有多个抬高区域的微粗糙化表面。
在以下内容中将对本发明的其它方面和特征进行更加详细的描述。
附图说明
在本说明书其余部分,将参照附图来为本领域普通技术人员对本发明进行完整而可实施的披露,其中也包括其最佳方式,在这些附图中:
图1为根据本发明形成的微粗糙化基底的一个实施例的截面图;
图2为根据本发明形成的电容的一个实施例的截面图;
图3为在例2中形成的钽电极的截面的扫描电子显微镜照片(15kV,5,000×);
图4为在例2中形成的钽电极的截面的扫描电子显微镜照片(15kV,10,000×),与图3相比以更大的放大比率示出,以便更好地显示该微粗糙化表面的抬高区域;
图5为在例2中形成的钽电极的顶部的扫描电子显微镜照片(15kV,60×);
图6为在例2中形成的钽电极的顶部的扫描电子显微镜照片(20kV,2,500×),与图5相比以更大的放大比率示出,以便更好地显示该微粗糙化表面;
在说明书和附图中,重复使用的参考标记表示本发明中相同或相似的特征或元素。
具体实施方式
本领域的技术人员理解,这里的讨论只是对典型实施例的描述,其并不构成对本发明更广的方面的限制,这些更广的方面通过该典型实施例而具体化。
一般而言,本发明针对一种阴极,该阴极包括一个因火花阳极氧化而具有微粗糙化表面的金属基底。该表面是通过将上述基底与一电解溶液接触并施加电压以形成一个电介质次氧化层(sub-oxide layer)而形成的。该电压上升至足够高来开始基底表面上的“火花放电”,这能够产生足以刻蚀掉该基底的局部表面高温。于是,形成了一个具有多个抬高区域的“微粗糙化”表面。这些抬高区域能够增加有效表面面积,从而对于给定尺寸能够形成具有更高阴极电容值的电容,和/或,对于给定的电容值能够形成更小尺寸的电容。这些抬高区域还能够对另外的电化学活性材料表现出很好的附着力,并在某些液体电解质中提供更好的稳定性。
上述金属基底可以包括任何金属,例如钽、铌、铝、镍、铪、钛、铜、银、钢(例如,不锈钢)或其合金(例如,导电氧化物)等等。钽和铌金属及其合金,特别适用于本发明。基底的几何配置一般可如本领域人员公知地呈现出不同,形如一个容器、罐、薄片、薄板(sheet)、屏等等。进行火花阳极氧化之前的基底表面面积可约为0.05至5平方厘米,有些实施例中约为0.1至3平方厘米,有些实施例中约为0.5至2平方厘米。
任何技术都可以用于将基底与阳极氧化溶液相接触,例如浸渍、喷雾、涂覆等等。无论如何,阳极电镀溶液通常包含至少一种离子化合物(即,一种包含至少一种离子或能够在溶液中形成至少一种离子的化合物)来开始阳极氧化。适用的离子化合物包括,作为例子,无机酸,例如硫酸、磷酸、多磷酸、硼酸、含取代基的硼酸(boronic acid)等等;无机盐包括硫酸锂、过硫酸锂、硫酸钠、过硫酸钠、硫酸钾、过硫酸钾、硫酸氢锂、硫酸氢钠、硫酸氢钾、磷酸二氢锂、磷酸氢钠、磷酸钠、磷酸二氢钾、磷酸氢钾、磷酸钾,以及其组合等等。
化学化合物也可以用于促进氧化物薄层的分解。在一个实施例中,使用腐蚀性化合物(例如,酸或盐)来助于在介质次氧化物薄膜形成时将其溶解。这类腐蚀性氧化物例如:氢氟酸、氟化铵、缓冲氧化物刻蚀(一种氢氟酸与氟化铵的溶液)、氟化锂、氟化钠、氟化钾等及其任意组合。在使用中,腐蚀性化合物与离子化合物的重量比典型地约为0.2至5.0,在一些实施例中约为0.5至4.0,在一些例子中约为0.8至3.0。在一个特别的例子中,阳极氧化溶液可包括硫酸和磷酸。举例而言,硫酸在溶液中的量约为20vol.%至80vol.%,在一些例子中为30vol.%至70vol.%,在一些例子中为40vol.%至60vol.%(例如50vol.%)。同样,磷酸在该溶液中的量约为20vol.%至80vol.%,在一些例子中为30vol.%至70vol.%,在一些例子中为40vol.%至60vol.%(例如50vol.%)。
向上述溶液施加一个电流(例如,直流电流),其电压(例如,正电压)高于电介质的分解电压(“分解”阶段),用于基底开始火花阳极氧化。举例而言,这可能发生于一个恒定电流或一个脉冲电压。所述电介质分解电压通常大约介于90伏特至275伏特之间,在一些例子中大约介于100伏特至250伏特之间,在一些例子中大约介于115伏特至220伏特之间。电压的水平可能会变化(例如,增加)或保持不变。在一个实施例中,举例而言,电压渐进式地增加,例如,不超过当前电压的约50%,在一些例子中不超过当前电压的约25%,在一些例子中不超过当前电压的约10%。例如,该渐进式增加可以不超过当前电压约30伏特,在一些例子中不超过当前电压约15伏特,在一些例子中不超过当前电压约5伏特。应当理解,还可以使用已知的反向脉冲电压(reverse pulse voltage)技术,而非单纯地升高电压。
还可以通过控制其它参数来获得所需的基底表面粗糙程度。火花阳极氧化中的阳极氧化溶液的温度可以例如约10℃至约70℃,在一些例子中为约15℃至60℃,在一些例子中为约20℃至约55℃。电流密度典型地为约0.005至约1A/cm2,在一些例子中为约0.01至约0.7A/cm2,在一些例子中为约0.02至约0.5A/cm2。在火花阳极氧化过程中,温度和电流密度可以变化或保持恒定。
如果需要,基底还可以经历一个加热步骤,从而金属基底的氧化得以最小化。加热基底时的温度取决于阳极主体上各部件的类型。例如,基底典型地由一个加热炉来加热,该加热炉的工作温度为约200℃至1400℃,在一些例子中为约300℃至约1200℃,在一些例子中为约400℃至约1000℃。上述加热可持续约5至300分钟,在一些例子中约10至200分钟,在一些例子中约15至90分钟。上述加热处理还可以典型地在还原气氛(reducedatmosphere)中进行,例如在真空、惰性气体、氢气中等等。如果需要,还可以应用吸气材料,它能够吸附加热处理中移除的氧原子,从而进一步增强导电性,例如钽、铌、碳、镁等或其组合。
作为上述操作的结果,形成了一个具有包括多个抬高区域的微粗糙化表面的基底。参看图1,例如,示出了基底100的一个实施例,其包括一个微粗糙化表面110。如图所示,表面110包括多个抬高区域112,这些抬高区域112被多个凹点114隔开。所述多个抬高区域112的尺寸一般足以有效地增加基底的表面面积。对此,抬高区域112的平均高度(“H”)典型地为约200至约2500纳米,在一些例子中为约300至约2000纳米,在一些例子中为约500至约1500纳米。所述抬高区域112的形状也可以为圆形、管状、正方形、长方形、圆柱形等等。在所示的实施例中,举例而言,该抬高区域基本为圆柱形。该抬高区域112置于基底表面上的程度也是可变的。例如,在该表面上,抬高区域112可以采用在空间上相互分离的方式,从而形成一个“岛状”结构。通过这种方式,阴极涂层的构成将基本上置于这些相邻微粒的间隔之中,从而提高其对基底100的附着力。抬高区域112相互分离的程度也是可变的。例如,相邻的抬高区域可以相距一个约20至约500微米的“峰到峰”距离(“D”),在一些例子中为约30至约400微米,在一些例子中为约50至约200微米。抬高区域112数量可足够高以使得表面积的增加达到要求。例如,表面110每100平方微米上具有的抬高区域的数量可以1至20个,在一些例子中为2至15个,在一些例子中为3至10个。
无论抬高区域的具体构造如何,作为结果的微粗糙化表面的面积大于火花阳极氧化之前基底的面积。如上文中指出的,这样的增大了的有效表面积允许对于给定尺寸能够形成具有更高阴极电容值的电容,和/或,对于给定的电容值能够形成更小尺寸的电容。例如,经过微粗糙化的基底表面积与最初的基底表面积之比为约1.00中约5.00,在一些例子中为约1.05至约3.50,在一些例子中为约1.1.至约3.00。
在火花阳极氧化过程在基底表面沉积氧化薄层的范围内,该氧化薄层实际上非常薄,不会在表面上形成一个连续的涂层。也即,该表面由金属区域与涂覆了氧化物的金属区域共同定义。因此,微粗糙化表面仍能保持很高的导电性。导电性的范围可以体现为20℃时的“电阻率(resistivity)”,一般小于约1ohm-cm,在一些例子中小于约1×10-2ohm-cm,在一些在例子中小于约1×10-3ohm-cm,在一些例子中小于约1×10-4ohm-cm。虽然导电,基底还是要被涂覆额外的一个导电材料层,以进一步提高表面导电性。这类材料的例子可以包括金属,例如金、铂、钯、铜、银等等。
如果需要,一个可选的电化学活性材料将被用于该微粗糙化的表面,从而进一步增加供电解质在其上与基底进行电化学接触的有效表面面积。各种已知的电化学活性材料中任何一种通常都可以使用。在一个实施例中,举例而言,使用一种导电聚合物,例如聚吡咯(polypyrrole)、聚噻吩(polythiophene)例如聚(3,4-乙撑二氧噻吩)(PEDT)、聚苯胺、聚乙炔、聚苯,及其衍生物等等。如本领域所知的,这类导电聚合物可以由一种单体来形成,此单体聚合形成一种无定型的、非结晶形态,在扫描电子显微镜下观察,这种形态多少类似于网状。这表示生成的导电聚合物涂层具有一个高的表面积,因此增加了应用上述涂层的基底的有效表面积。
导电聚合物涂层可以包括至少一个导电聚合物层,并可由各种已知技术来形成。例如,网印、浸渍、电泳涂覆和喷雾都可以用来形成这一涂层。在一个实施例中,举例而言,首先可以将用于形成导电聚合物(例如PEDT)的单体与聚合催化剂混合形成分散体(dispersion)。一种适合的聚合催化剂为CLEVIOS C(拜耳公司),也即对甲苯磺酸铁(III)(iron(III)toluene-sulphonate and n-butanol)。CLEVIOS C作为一种商用催化剂可以用于CLEVIOS M,即3,4-乙撑二氧噻吩(3,4-ethylenedioxythiophene),一种也由拜耳公司出品的PEDT单体。一旦形成了分散体,就可以将基底浸入其中从而形成导电聚合物。作为另一种可选方式,催化剂和单体可以分开使用。例如,可以将催化剂溶解在溶剂(例如,丁醇)中,再将其用作浸渍溶液。尽管上文已经对多种方法做了介绍,应当理解,任何其它用于施加包括导电聚合物涂层在内的涂层的方法都是可以使用的。例如,施加上述包括至少一种导电聚合物的涂层的其它方法在Sakata等的美国专利Nos.5,457,862,5,473,503和5,729,428中,以及Kudoh等的美国专利No.5,812,367中都有描述,这些专利整体并入此处作为参考。
在导电聚合物之外,或作为其替代,还可以使用金属例如由以下所形成的金属微粒:钌、铱、镍、铑、铼、钴、钨、锰、钽、铌、钼、铅、钛、铂、钯、锇及其组合。在一个特别的实施例中,举例而言,电化学活性材料包括钯微粒。本发明中还可以使用非绝缘氧化物微粒。适合的氧化物将包括由以下所组成的组中所选择的一种金属:钌、铱、镍、铑、铼、钴、钨、锰、钽、铌、钼、铅、钛、铂、钯、锇及其组合。尤其适合的金属氧化物包括二氧化钌、氧化铌、二氧化铌、氧化铱和二氧化锰。具有所需导电性的碳材料也是可以使用的,例如活性碳、碳黑、石墨等。一些适合的活性碳形式和用于其形成的方法在Lvey等的美国专利5,726,118中,Wellen等的美国专利5,858,911中,以及Shinozaki等的已公开美国专利申请No.2003/0158342中有描述,这些专利和专利申请整体并入此处作为参考。
如果需要,有时可以用粘合物来帮助将电化学活性材料附着于基底。任何提供所需程度的附着强度的粘合物都可以使用。例如,合适的粘合物包括:聚四氟乙烯、聚偏二氟乙烯、羧甲基纤维素、氟烯烃共聚物交联聚合物(fluoroolefin copolymer crosslinked polymer)、聚乙烯醇、聚丙烯酸、聚酰亚胺、石油沥青、煤沥青以及酚醛树脂。在一些实施例中,还会使用一种导电填充物来进一步增强电化学活性材料的导电性。这类导电填充物特别适于抵消由于覆盖电化学活性材料表面的一部分的粘合物所带起的导电性损失。任何适合的导电填充物都可以使用,例如金属微粒(例如,银、铜、镍、铝等)和非金属颗粒(例如,碳黑、石墨等)。
通过本发明,可以形成具有相对较高的比电容的阴极。例如,阴极的比电容约为10毫法拉每平方厘米(“mF/cm2”)或者更高,在一些例子中为约15mF/cm2或者更高,在一些例子中为约25至约100mF/cm2,在5.0MH2SO4溶液中120Hz频率下确定。高电容值即使在总厚度相对较薄时仍能获得,如约100微米或更小,在一些例子中为约75微米或更小,在一些例子中为约10至约50微米。这类薄而具有高电容值的电极的有十分广泛的应用,包括对称和非对称湿电容、混成电容、电池等。在一个实施例中,举例而言,阴极用于一种非对称湿电解电容中,该电容包括一个阳极、阴极和一个置于阴极与阳极之间并与两极相接触的工作电解质。对此,能够根据本发明来形成的这种湿电解电容的不同实施例将在下文中详述。应当理解,以下的说明仅是示例性的,多种其它实施例也落入本发明的考虑之中。
湿电解电容的阳极通常由多种不同材料形成。例如,阳极由一种主要由阀金属(即,能够氧化的金属)组成的粉末形成,或者以阀金属作为成分的混合物。可以使用的合适的阀金属包括但不限于:钽、铌、铝、铪、钛以及这些金属的合金等。例如,阳极可以由一种阀金属的氧化物或氮化物(例如,氧化铌、氧化钽、氮化钽、氮化铌等),其通常被视为半导体或高导电性材料。尤其适用于阳极中的阀金属氧化物包括氧化铌,其中的铌与氧的原子比例1:不足2.5,在一些例子中为1:不足1.5,在一些例子中为1:不足1.1,在一些例子中为1:1.0±0.2。例如,氧化铌可以为Nb0.7,NbO1.0,NbO1.1和NbO2。这类阀金属氧化物的另外的例子在Fife的美国专利No.6,322,912中有介绍,该美国专利整体并入此处作为参考。阀金属的氮化物的例子在T.Tripp的“Tantalum Nitride:A New Substrate for SolidElectrolytic Capacitors”,以及Proceedings of CARTS 2000:20th Capacitor andResistor Technology Symposium,6-20 March 2000中有介绍。
各种制造过程可以用于形成上述阳极。例如,如本领域所公知的,该阳极可以形成为一个金属薄片,粉末压片。典型的粉末压片阳极在Fife等的美国专利No.7,099,143中有举例说明,该美国专利整体并入此处作为参考。作为另一可选方式,该阳极可以由化学还原为导电材料(例如,NbO,Ta)的陶瓷微粒(例如,Nb2O5,Ta2O5)来形成。例如,可首先形成包括陶瓷微粒的泥釉混合物(slip composition),并将其置于基底上形成一个薄层。如果需要,可以形成多层来为阳极达到目标厚度。一旦形成,这些层将经过加热处理来对陶瓷微粒进行还原处理,并形成导电阳极。这类泥釉形成(slipformed)阳极的厚度较薄,高宽比(宽度与厚度之比)大,密度均匀,从而提高了体积效率和等效串联电阻(“ESR”)。例如,阳极的厚度可以约为1500微米或更薄,在一些例子中约为1000微米或更薄,在一些例子中为约50至约500微米。同样,阳极的高宽比可以约为1或更大,在一些例子中约为5或更大,在一些例子中约为15或更大。
阳极可以具有需要的形状,例如正方形、长方形、圆形、卵形、三角形、圆柱形等等。由于其相对更大的表面面积,边数多于4的多边形(例如:六边形、八边形、七边形和五边形)尤其需要。阳极可以为“具有凹槽的”(fluted)形状,包括至少一个沟、槽、凹陷或缺口,从而增大面积与体积之比,最小化ESR并增大电容的频率响应。这类“具有凹槽的”阳极在Webber等的美国专利Nos.6,191,936中,Maeda等的美国专利5,949,639中,Bourgault等的美国专利3,345,545中,以及Hahn等的已公开的美国专利申请No.2005/0270725中有举例说明,这些专利/专利申请整体并入此处作为参考。
一旦形成,将对阳极进行阳极化处理,从而在阳极上和内部形成电介质薄层。例如,一个氧化铌(NbO)阳极可以通过阳极化处理从而形成五氧化铌(Nb2O5)。特别地,在一个具体实施例中,氧化铌阳极浸入到一弱酸溶液(例如,磷酸、聚磷酸或其混合物等)中,所述溶液的温度较高(例如,约85摄氏度),该温度由受控的电压和电流来提供,从而形成一个具有特定厚度的五氧化铌层。电源最初保持在一个恒定的电流上,直至达到了一个需要的形成电压。此后,电源保持在一个恒定的电压下,从而保证在阳极的表面上形成所需厚度的电介质。阳极化电压典型地为约10至约200伏特,在一些例子中为约20至约100伏特。除了在阳极的表面上形成以外,一部分电介质氧化物薄层还典型地形成于材料的孔隙中。应当理解,该电介质薄层还可以通过使用其他技术来由其它类型的材料来形成。
工作电解质为电活性材料,在阳极与阴极之间提供连接路径,通常为液态例如溶液(例如,水系或非水系)、分散体、凝胶等。例如,工作电解质可为一种酸(例如,硫酸、磷酸或硝酸)、碱(例如氢氧化钾)、盐(例如铵盐,如硝酸铵)的水系溶液,也可以为本领域已知的任何其它形式的适合的工作电解质,例如盐溶解在一种有机溶剂中(例如,铵盐溶解在基于乙二醇的溶液中)。多种其它电解质在Evans等的美国专利Nos.5,369,547和6,594,140中有描述,该美国专利整体合并于此作为参考。
在一个特别的实施例中,电解质相对中性,其PH值为约3.0至约8.0,在一些例子中为约4.0至约7.5,在一些例子中为约5.0至7.5。尽管具有中性的PH值,该电解质还是导电的。例如,该电解质的电导率为约10毫西门子每厘米(“mS/cm”)或更高,在一些例子中为约30mS/cm或更高,在一些例子中为约40mS/cm至约100mS/cm,在25℃下确定。该电导率的值可以由任何已知的电导率计(例如,Oakton Con系列11)来在25℃下获得。
工作电解质可以包括各种成分来优化其电导率、PH值以及在电容的存储和使用中的稳定性。例如,溶剂通常用做其它成分的载体。该溶剂可组成该电解质的约30wt.%至约90wt.%,在一些例子中为约40wt.%至约80wt.%,在一些例子中为约45wt.%至约70wt.%。各种溶剂或混合溶剂系统中任一种都可以使用,例如水(如,去离子水)、醚(如,二乙醚、四氢呋喃)、醇(如,甲醇、乙醇、乙二醇、正丙醇、异丙醇和丁醇);甘油三酯;酮(丙酮、甲基乙基酮(methyl ethyl ketone)、甲基异丁基酮);碳酸盐(如,碳酸二甲酯、碳酸乙烯、碳酸丙烯、碳酸丁烯酯);酯类(如,乙酸乙酯、乙酸丁酯、乙二醇醚醋酸酯、乙酸甲基丙酯);氨化物(如,二甲基甲酰胺、二甲基乙酰胺、二甲酯辛酸/葵酸酰胺(dimethylcaprylic/capricfatty acid amide)和N-烷基吡啶(N-alkylpyrrolidones));腈(如,乙腈、丙腈、丁腈和苯基腈);亚砜或砜(如,二甲亚砜(DMSO)和环丁砜);等等。尽管并不必需,仍常常需要水系溶剂(例如,水)来帮助将电解质的PH值维持在一个相对中性的水平。实际上,水可以组成用在电解液中的溶剂的约50wt.%或更多,在一些例子中为70wt.%或更多,在一些例子中为约90wt.%至100wt.%。
工作电解质的电导率可以来自于至少一种如上所述的离子化合物。通过选择离子化合物的浓度,在电导率与PH值之间实现所需的平衡。也即,可以使用强酸(如,磷酸)作为离子化合物,尽管其浓度典型地需要受到限制以保持所需的中性PH值。在使用强酸时,强酸一般组成电解质的约0.001wt.%至约5wt.%,在一些例子中为约0.01wt.%至约2wt.%,在一些例子中为约0.1wt.%至约1wt.%。另一方面,只要能够达到所需的电导率,也可以使用弱酸(如,醋酸)。在使用弱酸时,弱酸一般组成电解质的约1wt.%至约40wt.%,在一些例子中为约2wt.%至约30wt.%,在一些例子中为约5wt.%至约25wt.%。如果需要,可以在电解质中使用弱酸与强酸的混合物。离子化合物的总的浓度可以变化,但典型地由约1wt.%至约50wt.%,在一些例子中为约2wt.%至40wt.%,在一些例子中为约5wt.%至30wt.%。
如果需要,可以在电解质中使用基础的PH调整剂,其用量在PH上平衡了离子化合物的效果。适宜的基础PH调节剂包括但不限于:氨水;一烷基胺、二烷基胺和三烷基胺;一烷醇胺、二烷醇胺、三烷醇胺;碱金属和碱土金属的氢氧化物;碱金属和碱土金属的硅酸盐,以及它们的混合物。基础PH调节剂的特殊例子为:氨水;钠、钾、锂的氢氧化物;钠、钾、锂的偏硅酸盐;单乙醇胺;三乙胺;异丙醇胺;二乙醇胺和三乙醇胺。
为保证电解质在日常储存和使用时的稳定性,通常需要其凝固点为约-20℃或更低,在一些例子中为约-25℃或更低。如果需要,可使用至少一种凝固点降低剂,例如二元醇(如,乙二醇、丙二醇、丁二醇、三甘醇、己二醇、聚乙二醇、乙氧基乙二醇、二丙二醇等);乙二醇醚(如,乙二醇一甲醚、乙二醇乙醚、乙二醇异丙醚等),以及其他。尽管凝固点降低剂的浓度可变,它的量在电解质中仍典型地占约5wt.%至约50wt.%,在一些例子中为约10wt.%至约40wt.%,在一些例子中为约20wt.%至约30wt.%。应当注意,电解质的沸点典型地为85℃或更高,在一些例子中为100℃或更高,因此电解质在高温下仍能保持稳定。
还可以在工作电解质中使用去极剂,从而抑制电解电容阴极处的氢气释放,电解电容阴极出的氢气释放会导致电容膨胀甚至故障。在使用去极剂时,去极剂典型地在电解质中占每一百万份中的约1至约500份(“ppm”),在一些例子中为约10至约200ppm,在一些例子中为约20至约150ppm。
适宜的去极剂可包括硝基芳香化合物,例如2-硝基酚、3-硝基酚、4-硝基酚、2-硝基苯甲酸、3-硝基苯甲酸、4-硝基苯甲酸、2-硝基苯乙酮、3-硝基苯乙酮、4-硝基苯乙酮、2-硝基茴香醚、3-硝基茴香醚、4-硝基茴香醚、2-硝基苯甲醛、3-硝基苯甲醛、4-硝基苯甲醛、2-硝基苄醇、3-硝基苄醇、4-硝基苄醇、2-硝基邻苯二甲酸、3-硝基邻苯二甲酸、4-硝基邻苯二甲酸等等。本发明中特别适用的硝基芳香化合物去极剂为硝基苯甲酸,或其盐、酐,用至少一个烷基组(如,甲基、乙基、丙基、丁基等)来取代。这类烷基取代的硝基苯类化合物的特别例子包括,举例而言,2-甲基-3-硝基苯甲酸;2-甲基-6-硝基苯甲酸;3-甲基-2-硝基苯甲酸;3-甲基-4-硝基苯甲酸;3-甲基-6-硝基苯甲酸;4-甲基-3-硝基苯甲酸;及其盐或酐,等等。没有任何理论限定之目的地,在阴极的点位到达一个较低的区间或者槽电压较高时,相信烷基取代的硝基苯类化合物会在阴极表面上的活跃位置处被优先地电化学吸收,并且,当阴极电压上升或槽电压较低时,烷基取代的硝基苯类化合物又会从那里解吸附。这样一来,这些化合物就是“可电化学反转的”,从而可以有助于抑制氢气的产生。
电容的阳极、阴极和工作电解质的物理布置一般可以本领域公知的方式变化。参照图2,举例而言,示出了湿电解电容40的一个实施例,其中包括置于阳极20与阴极43之间的工作电解质44。阳极20包括一个电介质薄层21并嵌有一导线42(如,钽线)。阴极43由如上所述的微粗糙化阴极基底41和一个电化学活性材料49形成。虽未示出,一个隔离物可置于阴极43与阳极20之间,以避免阴极与阳极的直接接触,并允许工作电解质44的离子电流到达各电极。任何在已知的电解质中充当隔离物的材料都可以用作本发明中的隔离物。例如纸、塑料纤维、玻璃纤维、由这些纤维所制成的纸、多孔膜、离子渗透材料(如,NafionTM)。典型地,阳极和阴极间的距离为约10微米至约1000微米。在本例中,微粗糙化阴极基底41为一个附有盖子的圆柱形罐。一个密封23(例如,玻璃金属密封)可以用于将电阳极20与阴极43连接并密封。虽未示出,电容40可以还包括一个隔间物(spacer,未示出),其使阳极20在阴极43中保持稳定。举例而言,该隔间物可以由塑料制成,并可为垫圈形(washer-shaped)。
本发明的电解电容可以有多种应用,包括但不限于医疗器械,例如心脏去颤器、起搏器、复律器、神经刺激器、给药装置等;汽车应用;军用,例如雷达系统;消费类电子,例如收音机、电视机等,以及其它。在一个实施例中,举例而言,该电容用在用于为病人提供治疗性高电压(如,在接近500伏特与近850伏特之间,或者,令人满意地,在近600伏特与近800伏特之间)手段的植入式医疗器械中。该器械包括一个密封且具有生物惰性的容器或外壳。至少一根导线通过静脉电连接在该器械与病人的心脏之间。提供心脏电极来探测心脏活动和/或为心脏提供电压。导线的至少一部分(如,导线的一个末端部分)可以靠近或接触心脏中的至少一个心室和一个心房。该器械还包括一个电容器组,其典型地包括至少两个相互串联电容,这些电容还连接到该器械内部或外部的一个为该电容器组提供能量的电池。部分由于高电导率,本发明中的电容可以获得良好的电特性,因而适于用在植入式医疗器械的电容器组中。例如,等效串联电阻(“ESR”)-电容在电子电路中充放电时像一个电阻器一样工作的范围-小于约1500毫欧,在一些例子中小于约1000毫欧,在一些例子中小于约500毫欧,用频率为1000Hz的2伏特偏压和1伏特信号测得。
通过参照以下例子,可以更好地理解本发明。
例1
示出了根据本发明的形成钽电极的能力。最初,一个钽薄片(1平方厘米的表面积)点焊到一个钽线,并在Alconox(可生物降解的阴离子去垢剂和湿润剂)洗涤剂的水系溶液(去离子水中占重量的10%)中通过超声波浴去油污30分钟。随后用去离子水漂洗钽薄片并在环境温度下使其干燥。此后,将钽线点焊至一个不锈钢条以便通过弹簧夹来持住该钽薄片。再将钽薄片放入100毫升烧杯(beaker)中的包含60毫升1M H3PO4和40毫升1MH2SO4的电解质溶液中。使用上面所制备的钽薄片作为阳极,并将一片铂线作为阴极,制成了一个电化学槽。到阴极的连接点附着到一个点焊至该钽线的不锈钢条,以使得铂线与钽薄片之间的距离为一厘米。到阳极的电线连接点附着于该铂线。钽薄片的火花阳极氧化始于将一个直流电流通过该电化学槽,密度为0.05A/cm2。十分钟后,样本被移除。电源设定在400V和0.05A。在这些设定下,约六十秒后电压达到大约190V,并在火花阳极氧化的过程中保持相对恒定。在持续了10分钟的实验中,钽薄片附近的温度由25℃上升至50℃。
例2
钽电极如例1中那样形成,不过电解质溶液包括50毫升1M H3PO4和50毫升1M H2SO4,而铂线与钽薄片之间的距离为0.5厘米。在持续了10分钟的实验中,钽薄片附近的温度由29℃上升至50℃。所得到的电极的扫描电子显微镜照片如图2-5所示。一个抬高区域的面积如图4所示。更具体地,该面积使用以下用于圆柱体的公式进行计算:面积=πr2+2πh,其中,r(基圆半径)估算为2微米而h(高度)估算为1.3微米。如上,抬高区域的面积大致为28.9平方微米。
在不偏离本发明精神和范围的前提下,本领域的技术人员可以实行各种修饰或变形。此外,应理解到不同的实施方式间可以部分或全部代替互换。另外,本领域的技术人员应理解,上述实施方式只是示例性质,而不应限制本发明及权利要求书。

Claims (29)

1.一种湿电容,包括:
一个阳极;
一个阴极,包括涂覆有电化学活性材料的火花阳极氧化金属基底,其中,所述基底具有一个包括多个抬高区域的微粗糙化表面;以及
布置在所述阴极和阳极之间的工作电解质。
2.根据权利要求1所述的湿电容,其中,所述金属基底包括钽。
3.根据权利要求1所述的湿电容,其中,所述金属基底为金属薄片。
4.根据权利要求1所述的湿电容,其中,所述多个抬高区域中的至少一部分的高度为约200至约2500纳米。
5.根据权利要求1所述的湿电容,其中,所述多个抬高区域中的至少一部分的高度为约500至约1500纳米。
6.根据权利要求1所述的湿电容,其中,所述微粗糙化表面上每100平方微米包括1至20个抬高区域。
7.根据权利要求1所述的湿电容,其中,所述微粗糙化表面上每100平方微米包括3至10个抬高区域。
8.根据权利要求1所述的湿电容,其中,所述基底导电。
9.根据权利要求1所述的湿电容,其中,所述电化学活性的材料包括导电聚合物。
10.根据权利要求1所述的湿电容,其中,所述电化学活性的材料包括金属微粒、金属氧化物微粒或其组合。
11.根据权利要求1所述的湿电容,其中,所述阳极包括钽、铌或钽、铌的导电氧化物。
12.根据权利要求1所述的湿电容,其中,所述阳极被阳极氧化并包括介质薄膜。
13.一种导电阴极,包括一个涂覆有电化学活性材料的火花阳极氧化钽薄片,其中,所述薄片具有一个包括多个抬高区域的微粗糙化表面,其中,所述多个抬高区域中的至少一部分的高度为约200至约2500纳米。
14.根据权利要求13所述的阴极,其中,所述多个抬高区域中的至少一部分的高度为约500至约1500纳米。
15.根据权利要求13所述的阴极,其中,所述微粗糙化表面上每100平方微米包括1至20个抬高区域。
16.根据权利要求13所述的阴极,其中,所述微粗糙化表面上每100平方微米包括3至10个抬高区域。
17.根据权利要求13所述的阴极,其中,所述电化学活性材料包括导电聚合物、金属微粒、金属氧化物微粒或其组合。
18.根据权利要求13所述的阴极,其中,所述阴极具有每平方厘米约25至约100毫法拉的比电容。
19.根据权利要求13所述的阴极,其中,所述阴极的厚度约100微米或更薄。
20.一种用于形成阴极的方法,包括:
将一个金属基底浸入阳极氧化溶液;以及
在约90至约275伏特的电压下施加电流,以开始火花阳极氧化,并在所述基底上形成一个具有多个抬高区域的微粗糙化表面。
21.根据权利要求20所述的方法,其中,所述阳极氧化溶液包括离子化合物和腐蚀性化合物。
22.根据权利要求21所述的方法,其中,所述离子化合物包括磷酸,且所述腐蚀性化合物包括硫酸。
23.根据权利要求22所述的方法,其中,在所述溶液中,硫酸的量为约4wt.%至约6wt.%,而磷酸的量为约3wt.%至约5wt.%。
24.根据权利要求20所述的方法,其中,所述电压为约115至约220伏特。
25.根据权利要求20所述的方法,其中,所述阳极氧化溶液的温度为约20℃至约55℃。
26.根据权利要求20所述的方法,其中,所述金属基底包括钽。
27.根据权利要求20所述的方法,其中,所述多个抬高区域中的至少一部分的高度为约500至约1500纳米。
28.根据权利要求20所述的方法,其中,所述微粗糙化表面每100平方微米包括3至10个抬高区域。
29.根据权利要求20所述的方法,还包括用电化学活性材料涂覆所述基底。
CN200910252297A 2008-12-09 2009-12-01 用于湿电容中的阴极 Pending CN101752096A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/330,943 2008-12-09
US12/330,943 US8279585B2 (en) 2008-12-09 2008-12-09 Cathode for use in a wet capacitor

Publications (1)

Publication Number Publication Date
CN101752096A true CN101752096A (zh) 2010-06-23

Family

ID=41129609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910252297A Pending CN101752096A (zh) 2008-12-09 2009-12-01 用于湿电容中的阴极

Country Status (6)

Country Link
US (1) US8279585B2 (zh)
JP (1) JP2010141323A (zh)
KR (1) KR20100066400A (zh)
CN (1) CN101752096A (zh)
DE (1) DE102009043507A1 (zh)
GB (1) GB2466095A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403135A (zh) * 2010-09-16 2012-04-04 Avx公司 湿式电解电容器阴极的形成技术
CN102403132A (zh) * 2010-09-16 2012-04-04 Avx公司 用于湿式电解电容器的经喷砂的导电聚合物阴极
CN103310986A (zh) * 2012-03-16 2013-09-18 Avx公司 包含由胶态悬浮体阳极电化学聚合形成的导电涂层的湿式电容器阴极
CN103310989A (zh) * 2012-03-16 2013-09-18 Avx公司 湿式电解电容器的喷砂阴极
CN103310987A (zh) * 2012-03-16 2013-09-18 Avx公司 包含导电共聚物的湿式电容器阴极
CN104051159A (zh) * 2013-03-15 2014-09-17 Avx公司 用于高温环境的湿式电解电容器
CN109074960A (zh) * 2016-03-25 2018-12-21 松下知识产权经营株式会社 电解电容器及其制造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2661469A1 (en) * 2008-04-11 2009-10-11 Andre Foucault Leg rehabilitation apparatus
US8734667B2 (en) 2010-04-06 2014-05-27 Cardiac Pacemakers, Inc. Electrolyte for high voltage electrolytic capacitors and methods
US8824121B2 (en) 2010-09-16 2014-09-02 Avx Corporation Conductive polymer coating for wet electrolytic capacitor
US8259435B2 (en) 2010-11-01 2012-09-04 Avx Corporation Hermetically sealed wet electrolytic capacitor
US8514547B2 (en) 2010-11-01 2013-08-20 Avx Corporation Volumetrically efficient wet electrolytic capacitor
US8687347B2 (en) 2011-01-12 2014-04-01 Avx Corporation Planar anode for use in a wet electrolytic capacitor
US8477479B2 (en) 2011-01-12 2013-07-02 Avx Corporation Leadwire configuration for a planar anode of a wet electrolytic capacitor
US8451586B2 (en) 2011-09-13 2013-05-28 Avx Corporation Sealing assembly for a wet electrolytic capacitor
US9105401B2 (en) 2011-12-02 2015-08-11 Avx Corporation Wet electrolytic capacitor containing a gelled working electrolyte
GB2498066B (en) 2011-12-20 2015-09-23 Avx Corp Wet electrolytic capacitor containing an improved anode
US9076592B2 (en) 2012-03-16 2015-07-07 Avx Corporation Wet capacitor cathode containing a conductive coating formed anodic electrochemical polymerization of a microemulsion
US9324503B2 (en) 2013-03-15 2016-04-26 Avx Corporation Solid electrolytic capacitor
GB2512486B (en) 2013-03-15 2018-07-18 Avx Corp Wet electrolytic capacitor
US9183991B2 (en) 2013-09-16 2015-11-10 Avx Corporation Electro-polymerized coating for a wet electrolytic capacitor
US10403444B2 (en) 2013-09-16 2019-09-03 Avx Corporation Wet electrolytic capacitor containing a composite coating
US9165718B2 (en) 2013-09-16 2015-10-20 Avx Corporation Wet electrolytic capacitor containing a hydrogen protection layer
US9620293B2 (en) 2014-11-17 2017-04-11 Avx Corporation Hermetically sealed capacitor for an implantable medical device
US9786440B2 (en) 2014-12-17 2017-10-10 Avx Corporation Anode for use in a high voltage electrolytic capacitor
US9620294B2 (en) 2014-12-30 2017-04-11 Avx Corporation Wet electrolytic capacitor containing a recessed planar anode and a restraint
CN105761937B (zh) * 2016-02-25 2019-02-15 深圳新宙邦科技股份有限公司 一种铝电解质电容器及其制备方法
CN105761938B (zh) * 2016-02-25 2019-02-15 深圳新宙邦科技股份有限公司 一种铝电解质电容器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180695A (zh) * 2005-05-24 2008-05-14 Avx公司 湿式电解电容器
CN101271768A (zh) * 2007-03-20 2008-09-24 Avx公司 包含多个薄的粉烧成型阳极的湿式电解电容器

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345545A (en) 1964-11-27 1967-10-03 Johnson Matthey & Mallory Ltd Solid electrolytic capacitor having minimum anode impedance
GB1338392A (en) 1970-03-05 1973-11-21 Plessey Co Ltd Manufacture of electrode foil for electrolytic capacitors
US3956080A (en) 1973-03-01 1976-05-11 D & M Technologies Coated valve metal article formed by spark anodizing
GB8426264D0 (en) 1984-10-17 1984-11-21 Alcan Int Ltd Porous films
US4584067A (en) 1985-02-28 1986-04-22 Sprague Electric Company Etching of aluminum electrolytic capacitor foil
US4992910A (en) 1989-11-06 1991-02-12 The Evans Findings Company, Inc. Electrical component package
US5098485A (en) 1990-09-19 1992-03-24 Evans Findings Company Method of making electrically insulating metallic oxides electrically conductive
GB9112211D0 (en) 1991-06-06 1991-07-24 Alcan Int Ltd Treating a1 sheet
GB9216647D0 (en) 1992-08-05 1992-09-16 Isis Innovation Cold cathodes
US5400211A (en) 1992-10-01 1995-03-21 The Evans Findings Company, Inc. Packaged electrical component
US6594140B1 (en) 1993-03-22 2003-07-15 Evans Capacitor Company Incorporated Capacitor
US5754394A (en) 1993-03-22 1998-05-19 Evans Capacitor Company Incorporated Capacitor including a cathode having a nitride coating
US5369547A (en) 1993-03-22 1994-11-29 The Evans Findings Co., Ltd. Capacitor
US5469325A (en) 1993-03-22 1995-11-21 Evans Findings Co. Capacitor
US5982609A (en) 1993-03-22 1999-11-09 Evans Capacitor Co., Inc. Capacitor
JP2765462B2 (ja) 1993-07-27 1998-06-18 日本電気株式会社 固体電解コンデンサおよびその製造方法
US5435874A (en) 1993-11-01 1995-07-25 Wilson Greatbatch Ltd. Process for making cathode components for use in electrochemical cells
JPH07135126A (ja) 1993-11-10 1995-05-23 Nec Corp 固体電解コンデンサ及びその製造方法
US5543249A (en) 1995-03-01 1996-08-06 Wilson Greatbatch Ltd. Aqueous blended electrode material for use in electrochemical cells and method of manufacture
JP3068430B2 (ja) 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US5726118A (en) 1995-08-08 1998-03-10 Norit Americas, Inc. Activated carbon for separation of fluids by adsorption and method for its preparation
US5786980A (en) 1996-02-02 1998-07-28 Evans Capacitor Company, Incorporated Electrical component package and packaged electrical component
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US5714000A (en) 1996-05-06 1998-02-03 Agritec, Inc. Fine-celled foam composition and method
JP3863232B2 (ja) 1996-09-27 2006-12-27 ローム株式会社 固体電解コンデンサに使用するコンデンサ素子の構造及びコンデンサ素子におけるチップ体の固め成形方法
US6599580B2 (en) 1997-05-01 2003-07-29 Wilson Greatbatch Ltd. Method for improving electrical conductivity of a metal oxide layer on a substrate utilizing high energy beam mixing
US5894403A (en) 1997-05-01 1999-04-13 Wilson Greatbatch Ltd. Ultrasonically coated substrate for use in a capacitor
US5920455A (en) 1997-05-01 1999-07-06 Wilson Greatbatch Ltd. One step ultrasonically coated substrate for use in a capacitor
US5926362A (en) 1997-05-01 1999-07-20 Wilson Greatbatch Ltd. Hermetically sealed capacitor
US5776628A (en) 1997-06-30 1998-07-07 Wilson Greatbatch Ltd. Flat-folded, multi-plate electrode assembly
US5973913A (en) 1997-08-12 1999-10-26 Covalent Associates, Inc. Nonaqueous electrical storage device
US6951576B1 (en) 1997-10-21 2005-10-04 Wilson Greatbatch Ltd. Wound element electrode assembly design for use in prismatic case electrochemical cells
EP0935265A3 (en) 1998-02-09 2002-06-12 Wilson Greatbatch Ltd. Thermal spray coated substrate for use in an electrical energy storage device and method
JP3902883B2 (ja) 1998-03-27 2007-04-11 キヤノン株式会社 ナノ構造体及びその製造方法
US6402793B1 (en) 1998-04-03 2002-06-11 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with cathode/case electrical connections
US6388866B1 (en) 1998-04-03 2002-05-14 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with tailored anode layers
US6493212B1 (en) 1998-04-03 2002-12-10 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with porous gas vent within electrolyte fill tube
US6477037B1 (en) 1998-04-03 2002-11-05 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with miniaturized epoxy connector droplet
US6208502B1 (en) 1998-07-06 2001-03-27 Aerovox, Inc. Non-symmetric capacitor
US6037077A (en) 1998-07-08 2000-03-14 Wilson Greatbatch Ltd. Electrode assembly for high energy devices
US6110622A (en) 1998-07-22 2000-08-29 Wilson Greatbatch Ltd. Chemically machined current collector design
EP0989572B1 (en) 1998-08-28 2007-01-03 Wilson Greatbatch Ltd. Electrolyte for use in a capacitor
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6096391A (en) 1998-10-16 2000-08-01 Wilson Greatbatch Ltd. Method for improving electrical conductivity of metals, metal alloys and metal oxides
US6094339A (en) 1998-12-04 2000-07-25 Evans Capacitor Company Incorporated Capacitor with spiral anode and planar cathode
US6332900B1 (en) 1999-02-08 2001-12-25 Wilson Greatbatch Ltd. Physical vapor deposited electrode component and method of manufacture
US6245436B1 (en) 1999-02-08 2001-06-12 David Boyle Surfacing of aluminum bodies by anodic spark deposition
US6678559B1 (en) 1999-03-23 2004-01-13 Medtronic, Inc. Implantable medical device having a capacitor assembly with liner
US6191936B1 (en) 1999-04-12 2001-02-20 Vishay Sprague, Inc. Capacitor having textured pellet and method for making same
US6706059B2 (en) 1999-12-01 2004-03-16 Cardiac Pacemakers, Inc. Reforming wet-tantalum capacitors in implantable medical devices
US6283985B1 (en) 1999-12-01 2001-09-04 Cardiac Pacemakers, Inc. Reforming wet-tantalum capacitors in implantable defibrillators and other medical devices
US7110240B2 (en) 2000-03-20 2006-09-19 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with differing sized anode and cathode layers
US6461759B1 (en) 2000-06-09 2002-10-08 Wilson Greatbatch, Ltd. Cathode assembly with bare current collector regions to facilitate winding
DE60113195T2 (de) 2000-06-27 2006-07-06 Asahi Glass Co., Ltd. Aktivkohlematerial, Verfahren zu dessen Herstellung und elektrischer Doppelschichtkondensator, welcher dieses verwendet
US6420066B1 (en) 2000-07-03 2002-07-16 Wilson Greatbatch Ltd. Variable density cathode assembly which facilitates winding
US6387818B1 (en) 2000-07-21 2002-05-14 Advanced Micro Devices, Inc. Method of porous dielectric formation with anodic template
US6743547B2 (en) 2000-11-17 2004-06-01 Wilson Greatbatch Ltd. Pellet process for double current collector screen cathode preparation
US6620306B2 (en) * 2000-11-29 2003-09-16 Matsushita Electric Industrial Co., Ltd. Method of manufacturing electrode foil for aluminum electrolytic capacitor and AC power supply unit
US6893777B2 (en) 2001-02-15 2005-05-17 Wilson Greatbatch Ltd. Current collector having non-symmetric grid pattern converging at a common focal point
US6790561B2 (en) 2001-03-15 2004-09-14 Wilson Greatbatch Ltd. Process for fabricating continuously coated electrodes on a porous current collector and cell designs incorporating said electrodes
EP1411151A4 (en) 2001-07-18 2007-06-06 Showa Denko Kk METALLIC TAPE CONSISTING OF AN ACID-EARTH METAL ALLOY AND CAPACITOR WITH THE SAME RIBBON
US6576524B1 (en) 2001-07-20 2003-06-10 Evans Capacitor Company Incorporated Method of making a prismatic capacitor
US7314685B2 (en) 2001-07-30 2008-01-01 Greatbatch Ltd. Oxidized titanium as a cathodic current collector
US20030047505A1 (en) 2001-09-13 2003-03-13 Grimes Craig A. Tubular filter with branched nanoporous membrane integrated with a support and method of producing same
US6727022B2 (en) 2001-11-19 2004-04-27 Wilson Greatbatch Ltd. Powder process for double current collector screen cathode preparation
US7000297B2 (en) 2001-11-28 2006-02-21 Wilson Greatbatch Technologies, Inc. Electrochemical cell current collector having openings of progressively larger sizes converging at a tab
US6652729B2 (en) 2001-12-10 2003-11-25 Kemet Electronics Corporation Electrolyte for very high voltage electrolytic capacitors
US7079250B2 (en) 2002-01-08 2006-07-18 Fuji Photo Film Co., Ltd. Structure, structure manufacturing method and sensor using the same
US6802951B2 (en) 2002-01-28 2004-10-12 Medtronic, Inc. Methods of anodizing valve metal anodes
US6687117B2 (en) 2002-01-31 2004-02-03 Wilson Greatbatch Technologies, Inc. Electrolytes for capacitors
US6721169B2 (en) 2002-06-19 2004-04-13 Kemet Electronics Corporation Electrolytic capacitor and separator papers therefor
WO2004015792A2 (en) * 2002-08-13 2004-02-19 Hydrogenics Corporation Corrosion resistant terminal plate and method for producing same
AU2003265173A1 (en) 2002-08-30 2004-03-19 Showa Denko K.K. Metal foil for capacitor, solid electrolytic capacitor using the foil and production methods of the foil and the capacitor
US7079377B2 (en) 2002-09-30 2006-07-18 Joachim Hossick Schott Capacitor and method for producing a capacitor
US7002790B2 (en) 2002-09-30 2006-02-21 Medtronic, Inc. Capacitor in an implantable medical device
US20040240152A1 (en) 2003-05-30 2004-12-02 Schott Joachim Hossick Capacitor and method for producing a capacitor
US7342774B2 (en) 2002-11-25 2008-03-11 Medtronic, Inc. Advanced valve metal anodes with complex interior and surface features and methods for processing same
JP4018613B2 (ja) 2002-11-29 2007-12-05 本田技研工業株式会社 電気二重層コンデンサ
JP2004221551A (ja) 2002-12-16 2004-08-05 Wilson Greatbatch Technologies Inc デュアルアノードキャパシタの相互接続構造
US6859353B2 (en) 2002-12-16 2005-02-22 Wilson Greatbatch Technologies, Inc. Capacitor interconnect design
US7917217B2 (en) 2003-05-07 2011-03-29 Medtronic, Inc. Wet tantalum reformation method and apparatus
US6801424B1 (en) 2003-05-30 2004-10-05 Medtronic, Inc. Electrolytic capacitor for use in an implantable medical device
US6807048B1 (en) 2003-05-30 2004-10-19 Medtronic, Inc. Electrolytic capacitor for use in an implantable medical device
US6995971B2 (en) 2003-05-30 2006-02-07 Medtronic, Inc. Capacitors including interacting separators and surfactants
US7256982B2 (en) 2003-05-30 2007-08-14 Philip Michael Lessner Electrolytic capacitor
US6859354B2 (en) 2003-05-30 2005-02-22 Kemet Electronic Corporation Low freezing electrolyte for an electrolytic capacitor
US6819544B1 (en) 2003-05-30 2004-11-16 Medtronic, Inc. Dual-anode electrolytic capacitor for use in an implantable medical device
US6788523B1 (en) 2003-05-30 2004-09-07 Kemet Electronics Electrolyte for electrolytic capacitor
US6842328B2 (en) 2003-05-30 2005-01-11 Joachim Hossick Schott Capacitor and method for producing a capacitor
US20040243183A1 (en) 2003-05-30 2004-12-02 Norton John D. Wet tantalum capacitor usable without reformation and medical devices for use therewith
US7242572B2 (en) 2003-05-30 2007-07-10 Medtronic, Inc. Methods of applying separator members to an electrode of a capacitor
US6721170B1 (en) 2003-06-11 2004-04-13 Evans Capacitor Company, Inc. Packaged hybrid capacitor
US6888717B2 (en) 2003-06-13 2005-05-03 Kemet Electronics Corporation Working electrolyte for electrolytic capacitors
US6986838B2 (en) 2003-08-14 2006-01-17 Johnson Research & Development Co., Inc. Nanomachined and micromachined electrodes for electrochemical devices
US7116547B2 (en) 2003-08-18 2006-10-03 Wilson Greatbatch Technologies, Inc. Use of pad printing in the manufacture of capacitors
US7168142B2 (en) 2003-09-15 2007-01-30 Greatbatch-Globe Tool, Inc. Method of manufacturing a shaped titanium article
US7169284B1 (en) 2003-09-22 2007-01-30 Pacesetter, Inc. High surface area cathode for electrolytic capacitors using conductive polymer
US7684171B2 (en) 2003-10-23 2010-03-23 Medtronic, Inc. Capacitors based on valve metal alloys for use in medical devices
US7687102B2 (en) 2003-10-23 2010-03-30 Medtronic, Inc. Methods and apparatus for producing carbon cathodes
US20050089711A1 (en) 2003-10-23 2005-04-28 Joachim Hossick-Schott Methods of producing carbon layers on titanium metal
US7224576B2 (en) 2003-10-23 2007-05-29 Medtronic, Inc. High capacitance electrode and methods of producing same
US6965510B1 (en) 2003-12-11 2005-11-15 Wilson Greatbatch Technologies, Inc. Sintered valve metal powders for implantable capacitors
EP1560237A1 (en) 2004-01-28 2005-08-03 Wilson Greatbatch Technologies, Inc. Capacitor interconnect design
US7555339B2 (en) 2004-02-06 2009-06-30 Medtronic, Inc. Capacitor designs for medical devices
US7038901B2 (en) 2004-02-13 2006-05-02 Wilson Greatbatch Technologies, Inc. Silicate additives for capacitor working electrolytes
US7085126B2 (en) 2004-03-01 2006-08-01 Wilson Greatbatch Technologies, Inc. Molded polymeric cradle for containing an anode in an electrolytic capacitor from high shock and vibration conditions
US7435488B2 (en) * 2004-03-23 2008-10-14 Fujifilm Corporation Fine structural body and method of producing the same
EP1592031B1 (en) 2004-04-19 2016-04-13 Greatbatch Ltd. Flat back case for an electrolytic capacitor
US7116548B2 (en) 2004-04-23 2006-10-03 Kemet Electronics Corporation Fluted anode with minimal density gradients and capacitor comprising same
US20060091020A1 (en) 2004-10-29 2006-05-04 Medtronic, Inc. Processes and systems for formation of high voltage, anodic oxide on a valve metal anode
US20070235342A1 (en) 2004-10-01 2007-10-11 Canon Kabushiki Kaisha Method for manufacturing nanostructure
US7736802B1 (en) 2004-11-12 2010-06-15 Greatbatch Ltd. Electrochemical cell current collector comprising solid area for coated film measurements
US7271994B2 (en) 2005-06-08 2007-09-18 Greatbatch Ltd. Energy dense electrolytic capacitor
US7092242B1 (en) 2005-09-08 2006-08-15 Greatbatch, Inc. Polymeric restraints for containing an anode in an electrolytic capacitor from high shock and vibration conditions
US7072171B1 (en) 2006-02-13 2006-07-04 Wilson Greatbatch Technologies, Inc. Electrolytic capacitor capable of insertion into the vasculature of a patient
US7785741B2 (en) 2006-02-28 2010-08-31 Medtronic, Inc. Flat electrochemical cells and method for manufacture
US7480130B2 (en) 2006-03-09 2009-01-20 Avx Corporation Wet electrolytic capacitor
US7511943B2 (en) 2006-03-09 2009-03-31 Avx Corporation Wet electrolytic capacitor containing a cathode coating
US7402183B1 (en) 2006-07-19 2008-07-22 Pacesetter, Inc. High capacitance cathode foil produced by abrasion process using titanium nitride powder
EP1903584A1 (en) 2006-09-20 2008-03-26 Greatbatch Ltd. Flat sealing of anode/separator assembly for use in capacitors
US7697187B2 (en) * 2006-09-29 2010-04-13 Sony Corporation Electrowetting device and varifocal lens, optical pickup device, optical recording/reproduction device, droplet operation device, optical element, zoom lens, imaging device, light modulating device, and display device using the same
US7968817B2 (en) 2006-10-11 2011-06-28 Greatbatch Ltd. Laser weld process for seam welded electrochemical devices
US7483260B2 (en) 2006-12-22 2009-01-27 Greatbatch Ltd. Dual anode capacitor with internally connected anodes
US20080232032A1 (en) 2007-03-20 2008-09-25 Avx Corporation Anode for use in electrolytic capacitors
US7460356B2 (en) 2007-03-20 2008-12-02 Avx Corporation Neutral electrolyte for a wet electrolytic capacitor
US7554792B2 (en) 2007-03-20 2009-06-30 Avx Corporation Cathode coating for a wet electrolytic capacitor
US20090117457A1 (en) 2007-11-02 2009-05-07 Greatbatch Ltd. Electrochemical Cells And Method Of Manufacturing Same
US8023250B2 (en) * 2008-09-12 2011-09-20 Avx Corporation Substrate for use in wet capacitors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180695A (zh) * 2005-05-24 2008-05-14 Avx公司 湿式电解电容器
CN101271768A (zh) * 2007-03-20 2008-09-24 Avx公司 包含多个薄的粉烧成型阳极的湿式电解电容器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403135A (zh) * 2010-09-16 2012-04-04 Avx公司 湿式电解电容器阴极的形成技术
CN102403132A (zh) * 2010-09-16 2012-04-04 Avx公司 用于湿式电解电容器的经喷砂的导电聚合物阴极
CN102403132B (zh) * 2010-09-16 2015-11-25 Avx公司 用于湿式电解电容器的经喷砂的导电聚合物阴极
CN103310986A (zh) * 2012-03-16 2013-09-18 Avx公司 包含由胶态悬浮体阳极电化学聚合形成的导电涂层的湿式电容器阴极
CN103310989A (zh) * 2012-03-16 2013-09-18 Avx公司 湿式电解电容器的喷砂阴极
CN103310987A (zh) * 2012-03-16 2013-09-18 Avx公司 包含导电共聚物的湿式电容器阴极
CN103310989B (zh) * 2012-03-16 2018-04-24 Avx公司 湿式电解电容器的喷砂阴极
CN103310987B (zh) * 2012-03-16 2018-09-28 Avx公司 包含导电共聚物的湿式电容器阴极
CN104051159A (zh) * 2013-03-15 2014-09-17 Avx公司 用于高温环境的湿式电解电容器
CN104051159B (zh) * 2013-03-15 2018-06-12 Avx公司 用于高温环境的湿式电解电容器
CN109074960A (zh) * 2016-03-25 2018-12-21 松下知识产权经营株式会社 电解电容器及其制造方法
CN109074960B (zh) * 2016-03-25 2020-09-01 松下知识产权经营株式会社 电解电容器及其制造方法

Also Published As

Publication number Publication date
US8279585B2 (en) 2012-10-02
US20100142124A1 (en) 2010-06-10
JP2010141323A (ja) 2010-06-24
DE102009043507A1 (de) 2010-06-10
KR20100066400A (ko) 2010-06-17
GB0913582D0 (en) 2009-09-16
GB2466095A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
CN101752096A (zh) 用于湿电容中的阴极
CN101673620B (zh) 用于湿化电容的基底
CN103310986B (zh) 包含由胶态悬浮体阳极电化学聚合形成的导电涂层的湿式电容器阴极
CN102592843B (zh) 用于湿式电解电容器的平板式阳极
CN102568863B (zh) 体积高效的湿式电解电容器
CN103310985B (zh) 包含烷基取代聚(3,4‑乙烯二氧噻吩)的湿式电容器阴极
US7460356B2 (en) Neutral electrolyte for a wet electrolytic capacitor
US8223473B2 (en) Electrolytic capacitor containing a liquid electrolyte
CN102592829B (zh) 用于湿式电解电容器的平板式阳极的引线结构
CN102403132B (zh) 用于湿式电解电容器的经喷砂的导电聚合物阴极
JP5323372B2 (ja) 湿式電解コンデンサ用のカソードコーティング
US8968423B2 (en) Technique for forming a cathode of a wet electrolytic capacitor
CN103000388B (zh) 湿式电解电容器的密封组件
CN103310984A (zh) 包含微乳液阳极电化学聚合的导电涂层的湿式电容器阴极
JP5801538B2 (ja) 高電圧電解コンデンサ
CN103177879A (zh) 带有改进的阳极的湿式电解电容器
CN103310989A (zh) 湿式电解电容器的喷砂阴极
CN104465107B (zh) 包含氢保护层的湿式电解电容器
JP2825975B2 (ja) 電解重合用通電コネクタ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20100623

C20 Patent right or utility model deemed to be abandoned or is abandoned