CN101740566B - 基于电流熔断的多晶熔丝电路 - Google Patents

基于电流熔断的多晶熔丝电路 Download PDF

Info

Publication number
CN101740566B
CN101740566B CN2009102544216A CN200910254421A CN101740566B CN 101740566 B CN101740566 B CN 101740566B CN 2009102544216 A CN2009102544216 A CN 2009102544216A CN 200910254421 A CN200910254421 A CN 200910254421A CN 101740566 B CN101740566 B CN 101740566B
Authority
CN
China
Prior art keywords
polycrystalline fuse
nmos pass
pass transistor
fuse
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009102544216A
Other languages
English (en)
Other versions
CN101740566A (zh
Inventor
刘帘曦
朱樟明
杨银堂
刘昌�
章娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN2009102544216A priority Critical patent/CN101740566B/zh
Publication of CN101740566A publication Critical patent/CN101740566A/zh
Application granted granted Critical
Publication of CN101740566B publication Critical patent/CN101740566B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)
  • Logic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供一种适用于半导体集成电路的电流熔断多晶熔丝电路,主要解决现有多晶熔丝电路面积过大的问题。它包括:多晶熔丝、熔断控制电路和输出变换器,该多晶熔丝串联在外部半导体集成电路电源与熔断控制结构之间;熔断控制电路由NMOS晶体管缓冲器和NMOS晶体管电平稳定器组成,串联在多晶熔丝与地之间,以产生熔断熔丝所需的大电流;输出变换器由反相器构成,输入端与熔断控制电路及多晶熔丝连接,输出端作为多晶熔丝电路的输出,以保证多晶熔丝电路输出标准数字逻辑电平。本发明减小了多晶熔丝电路面积,节省了芯片面积,降低了芯片成本,可用于半导体集成电路的修调。

Description

基于电流熔断的多晶熔丝电路
技术领域
本发明涉及半导体集成电路技术领域,尤其涉及基于电流熔断的多晶熔丝电路,用于对半导体集成电路的修调。
背景技术
随着现代通讯技术和信号处理技术的发展,对高速高精度半导体集成电路的需求越来越大。半导体芯片生产过程中存在种种不理想的因素,生产出的半导体芯片性能往往很难在保证高速信号处理的同时满足高精度的信号处理要求。出于对成本的考虑,使用更先进的生产技术减少生产过程中的不理想因素并非是上上之选。而基于现有技术对集成电路芯片进行修调往往能同时满足性能和成本的要求。
通过熔丝对集成电路修调是常用的修调技术。这种技术主要用于需要永久修调的半导体集成电路,可对一处或多处进行修调。现有的熔丝电路按熔断方式主要有激光熔断和电流熔断两种。其中,激光熔断多晶熔丝电路需要使用激光熔断多晶熔丝;电流熔断多晶熔丝电路在芯片测试过程中通过探针提供电流熔断多晶熔丝。电流熔断多晶熔丝电路需要在熔丝两端放置供探针接触和提供电流通路的压焊点(PAD)。因而需要较大的面积,造成芯片成本较高,特别是在使用较多熔丝时问题尤其严重。
发明内容
本发明的目的在于克服上述已有电流熔断多晶熔丝电路的不足,提供一种基于电流熔断的多晶熔丝电路,以有效减小电流熔断多晶熔丝电路面积,降低芯片制造成本,有效实现熔丝电路熔断。
实现本发明目的的技术方案是:设置多晶熔丝熔断的控制控制电路和输出变换器,将多晶熔丝的一端与电源连接,另一端与熔断控制电路和输出变换器连接,该熔断控制电路主要由NMOS晶体管缓冲器M1和NMOS晶体管电平稳定器M2并联组成,用于产生熔断熔丝所需的大电流并保证输出电平稳定;该输出变换器主要由反相器构成,用于保证多晶熔丝电路输出电平是标准数字逻辑电平。
所述的NMOS晶体管缓冲器M1的漏极与多晶熔丝连接,栅极与熔丝熔断控制信号CONTROL连接,源极和衬底与地电平连接,该熔丝熔断控制信号控制NMOS晶体管缓冲器M1的开启,以产生熔断熔丝所需的大电流,并提供熔断熔丝的大电流到地电平之间的通路,使熔丝熔断。
所述的NMOS晶体管电平稳定器M2的漏极与多晶熔丝及NMOS晶体管缓冲器M1的漏极连接,栅极与偏置电压Vbias连接,源极和衬底与地电平连接,多晶熔丝电路开始工作后,该偏置电压控制NMOS晶体管电平稳定器M2一直开启,以保证熔断的多晶熔丝电路或未熔断的多晶熔丝电路输出均稳定。
所述的反相器的输入端与NMOS晶体管缓冲器M1的漏极、NMOS晶体管电平稳定器M2的漏极及多晶熔丝连接,输出端作为多晶熔丝电路的输出。
所述反相器由PMOS晶体管M3与NMOS晶体管M4串联组成,该两管的宽长比相匹配。
根据上述方案,芯片修调熔断熔丝只需将熔丝熔断控制信号CONTROL置为高电平,开启NMOS晶体管缓冲器M1,产生熔断熔丝的200~500毫安电流。在该电流作用下,多晶熔丝熔断。
本发明与现有技术相比具有如下优点:
本发明由于设置了多晶熔丝熔断的控制电路,避免了现有技术中熔断熔丝需使用压焊点的缺陷,减小多晶熔丝电路面积,节省芯片面积,降低芯片成本。同时由于本发明设置了多晶熔丝熔断电路输出变换器,通过该电路输出标准数字逻辑电平,控制开关、寄存器可以实现半导体集成电路的修调和编程。
附图说明
图1为本发明的电路原理图;
图2为本发明的反相器电路原理图。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明实施例做进一步详细地说明。在此,本发明的示意性实施例及说明用于解释本发明,但并不作为对本发明的限定。
首先,对本发明所涉及的专业术语进行说明:
NMOS:N-channel metal oxide semiconductor FET,N沟道金属氧化物半导体场效应晶体管。
PMOS:P-channel metal oxide semiconductor FET,P沟道金属氧化物半导体场效应晶体管。
参见图1,本发明主要由多晶熔丝、熔断控制电路和输出变换器组成,其中,多晶熔丝10,串联在外部半导体集成电路电源与熔断控制结构之间,是多晶熔丝电路的主要结构;熔断控制电路20,由NMOS晶体管缓冲器M1和NMOS晶体管电平稳定器M2组成,NMOS晶体管缓冲器M1的漏极与多晶熔丝连接,栅极与熔丝熔断控制信号CONTROL连接,源极和衬底与地电平连接;NMOS晶体管电平稳定器M2的漏极与多晶熔丝及NMOS晶体管M1的漏极连接,栅极与偏置电压Vbias连接,源极和衬底与地电平连接,熔断控制电路20串联在多晶熔丝10与地之间,用于产生熔断熔丝所需的大电流并保证输出电平稳定;输出变换器30,由PMOS晶体管M3与NMOS晶体管M4串联组成的反相器构成,如图2所示。PMOS晶体管M3的栅极与NMOS晶体管M4的栅极相连构成反相器输入端,PMOS晶体管M3的漏极与NMOS晶体管M4的漏极相连构成反相器输出端,其中,PMOS晶体管M3的漏极与反相器输出端连接,栅极与反相器输入端连接,源极和衬底与电源电平连接,NMOS晶体管M4的漏极与反相器输出端连接,栅极与反相器输入端连接,源极和衬底与地电平连接,反相器的输入端与NMOS晶体管缓冲器M1的漏极、NMOS晶体管电平稳定器M2的漏极及多晶熔丝10连接,输出端作为多晶熔丝电路的输出,用于保证多晶熔丝电路输出电平是标准数字逻辑电平。PMOS晶体管M3的宽长比与所述NMOS晶体管M4的宽长比设置是匹配的,该反相器的阈值电压是电源电压的一半,因此输出变换器30可以输出标准数字逻辑电平。
由上述结构可知,要熔断多晶熔丝10,仅需将CONRTROL信号变为高电平,此时NMOS晶体管缓冲器M1导通,NMOS晶体管电平稳定器M2导通。NMOS晶体管缓冲器M1宽长比为300~600,产生熔断熔丝所需的大电流。NMOS晶体管电平稳定器M2宽长比为1~10,流过电流为2~3微安,与NMOS晶体管缓冲器M1产生电流相比可以忽略。在NMOS晶体管缓冲器M1产生的电流作用下,熔丝被熔断,这一过程仅在半导体集成电路中测时持续3~5微秒。
本发明的工作原理介绍如下:
在正常工作中,被熔断的熔丝多晶熔丝电路,NMOS晶体管缓冲器M1截止,NMOS晶体管电平稳定器M2工作在线性区,熔丝被熔断,所在支路开路。此时,NMOS晶体管缓冲器M1和NMOS晶体管电平稳定器M2漏极电位没有上拉通路,低于输出变换器阈值电压,输出变换器30输出高电平,即多晶熔丝电路输出高电平。
在正常工作中,未熔断的多晶熔丝电路,CONRTROL信号一直为低电平,NMOS晶体管缓冲器M1截止,NMOS晶体管电平稳定器M2由偏置电压Vbias偏置,工作在饱和区。此时,NMOS晶体管缓冲器M1和NMOS晶体管电平稳定器M2漏极电位由熔丝电阻与NMOS晶体管电平稳定器M2导通电阻分压决定,其电位高于输出变换器30阈值电压,由于该漏极电位不是标准数字逻辑电平,必须要经过输出变换器30变换,使多晶熔丝电路输出地电平。
在半导体集成电路芯片上电或是受到干扰时,无论多晶熔丝10熔断与否,NMOS晶体管缓冲器M1和NMOS晶体管电平稳定器M2的漏极电位都会发生改变。当该电位上升时,在偏置电压Vbias控制下,NMOS晶体管电平稳定器M2一直开启,NMOS晶体管缓冲器M1和NMOS晶体管电平稳定器M2的漏极电位被迅速拉低;反之,当该电位下降时,在偏置电压Vbias控制下,NMOS晶体管电平稳定器M2一直开启,NMOS晶体管缓冲器M1和NMOS晶体管电平稳定器M2的漏极电位被迅速抬高。这样,NMOS晶体管电平稳定器M2保证了NMOS晶体管缓冲器M1和NMOS晶体管电平稳定器M2的漏极电位的稳定,进而保证了多晶熔丝电路输出稳定。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种基于电流熔断的多晶熔丝电路,包括多晶熔丝(10),其特征在于,所述多晶熔丝(10)的一端与电源(VDD)连接,另一端连接有熔断控制电路(20)和输出变换器(30);
该熔断控制电路(20)主要由NMOS晶体管缓冲器(M1)和NMOS晶体管电平稳定器(M2)并联组成;
所述NMOS晶体管缓冲器(M1)的漏极与所述多晶熔丝(10)连接,栅极与熔丝熔断控制信号CONTROL连接,源极和衬底与地电平连接,该熔丝熔断控制信号控制NMOS晶体管缓冲器(M1)的开启,以产生熔断所述多晶熔丝(10)所需的大电流,并提供熔断所述多晶熔丝(10)的大电流到地电平之间的通路,使所述多晶熔丝熔断(10);
所述NMOS晶体管电平稳定器(M2)的漏极与所述多晶熔丝(10)及NMOS晶体管缓冲器(M1)的漏极连接,栅极与偏置电压(Vbias)连接,源极和衬底与地电平连接,所述多晶熔丝电路开始工作后,该偏置电压控制NMOS晶体管电平稳定器(M2)一直开启,以保证所述多晶熔丝电路中的多晶熔丝(10)无论是否熔断,多晶熔丝电路输出均稳定;
该输出变换器(30)主要由反相器构成,用于保证所述多晶熔丝电路的输出电平是标准数字逻辑电平。
2.根据权利要求1所述的多晶熔丝电路,其特征在于所述NMOS晶体管缓冲器(M1)宽长比为300~600。
3.根据权利要求1所述的多晶熔丝电路,其特征在于NMOS晶体管电平稳定器(M2)的宽长比为1~10。
4.根据权利要求1所述的多晶熔丝电路,其特征在于所述NMOS晶体管电平稳定器(M2)的工作电流设为2~3微安。
5.根据权利要求1所述的多晶熔丝电路,其特征在于所述反相器的输入端与NMOS晶体管缓冲器(M1)的漏极、NMOS晶体管电平稳定器(M2)的漏极及所述多晶熔丝(10)连接,所述反相器的输出端作为所述多晶熔 丝电路的输出。
6.根据权利要求1~5中任一项所述的多晶熔丝电路,其特征在于所述反相器由PMOS晶体管(M3)与NMOS晶体管(M4)串联组成,该两管的宽长比相匹配。 
CN2009102544216A 2009-12-21 2009-12-21 基于电流熔断的多晶熔丝电路 Expired - Fee Related CN101740566B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102544216A CN101740566B (zh) 2009-12-21 2009-12-21 基于电流熔断的多晶熔丝电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102544216A CN101740566B (zh) 2009-12-21 2009-12-21 基于电流熔断的多晶熔丝电路

Publications (2)

Publication Number Publication Date
CN101740566A CN101740566A (zh) 2010-06-16
CN101740566B true CN101740566B (zh) 2011-11-02

Family

ID=42463766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102544216A Expired - Fee Related CN101740566B (zh) 2009-12-21 2009-12-21 基于电流熔断的多晶熔丝电路

Country Status (1)

Country Link
CN (1) CN101740566B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825601B (zh) * 2012-11-15 2017-01-11 东莞赛微微电子有限公司 一种熔丝修调电路
CN103473390B (zh) * 2013-08-13 2017-08-08 深圳市天微电子股份有限公司 集成电路参数修调电路及其修调模块、修调方法
CN106158042B (zh) * 2015-04-16 2020-02-11 中芯国际集成电路制造(上海)有限公司 熔丝单元电路
CN106057783B (zh) * 2016-05-27 2019-07-12 上海路虹电子科技有限公司 一种熔断电路
CN106443399B (zh) * 2016-09-08 2020-11-13 上海华岭集成电路技术股份有限公司 一种防止芯片熔丝误熔断的方法
CN107169219A (zh) * 2017-05-26 2017-09-15 北京伽略电子股份有限公司 一种高灵活度的熔丝修调电路及其使用方法
CN107547081B (zh) * 2017-09-29 2023-12-29 宗仁科技(平潭)股份有限公司 一种用于熔断熔丝的电路和装置
CN109756209B (zh) * 2017-11-01 2023-05-02 中芯国际集成电路制造(上海)有限公司 一种熔丝单元及具有该熔丝单元的半导体器件和电子装置
CN107994894B (zh) * 2017-11-23 2022-01-28 成都华微电子科技股份有限公司 多晶熔丝预修调电路
CN113189477B (zh) * 2020-09-03 2022-10-28 深圳利普芯微电子有限公司 一种芯片修调电路及修调方法
CN112562769B (zh) * 2020-11-23 2023-07-25 电子科技大学 一种具有预修调功能的数字修调系统
CN113867463A (zh) * 2021-10-08 2021-12-31 深圳市乾鸿微电子有限公司 一种电流源的一次性修调校准结构

Also Published As

Publication number Publication date
CN101740566A (zh) 2010-06-16

Similar Documents

Publication Publication Date Title
CN101740566B (zh) 基于电流熔断的多晶熔丝电路
US7969191B2 (en) Low-swing CMOS input circuit
CN103856205B (zh) 电平转换电路、用于驱动高压器件的驱动电路以及相应的方法
CN106128508B (zh) 一种ic参数一次可编程熔丝修调电路
CN102074271B (zh) 一种电流熔断型多晶熔丝电路
CN102749575B (zh) 电子熔丝状态读取装置
CN105425887A (zh) 一种带上电复位的可校正低功耗电压基准源
TWI415388B (zh) 電晶體免於高電壓應力並可操作在低電壓之電位轉換電路
EP2892154B1 (en) Level shifter circuit
US20090231016A1 (en) Gate oxide protected i/o circuit
CN101153880A (zh) 负电压检测器
JP2013090278A (ja) 出力回路
US10200042B2 (en) IO interface level shift circuit, IO interface level shift method and storage medium
CN103269217A (zh) 输出缓冲器
CN108233701B (zh) 一种升降压电压转换电路
KR20000020484A (ko) 반도체 집적 회로 장치의 입력 회로
US8283947B1 (en) High voltage tolerant bus holder circuit and method of operating the circuit
CN105099428B (zh) 微处理器装置、集成电路以及选择基底偏压的方法
TWI521821B (zh) 湧流補償電路及比較器模塊
CN103312313B (zh) 一种轨到轨使能信号的控制方法、电路及电平转换电路
CN110333750A (zh) 一种高压偏置电路的启动电路
Kumar et al. Power sequence free 400Mbps 90µW 6000µm 2 1.8 V–3.3 V stress tolerant I/O buffer in 28nm CMOS
CN113285706B (zh) 一种电压电平转换电路
CN108566085B (zh) 一种高压器件控制电路的负电源产生电路
CN102957305B (zh) 高效能驱动电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111102

Termination date: 20141221

EXPY Termination of patent right or utility model