CN113867463A - 一种电流源的一次性修调校准结构 - Google Patents

一种电流源的一次性修调校准结构 Download PDF

Info

Publication number
CN113867463A
CN113867463A CN202111171772.8A CN202111171772A CN113867463A CN 113867463 A CN113867463 A CN 113867463A CN 202111171772 A CN202111171772 A CN 202111171772A CN 113867463 A CN113867463 A CN 113867463A
Authority
CN
China
Prior art keywords
current source
trimming
current
fuse
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111171772.8A
Other languages
English (en)
Inventor
胡波
邵赐颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Qianhong Microelectronics Co ltd
Original Assignee
Shenzhen Qianhong Microelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Qianhong Microelectronics Co ltd filed Critical Shenzhen Qianhong Microelectronics Co ltd
Priority to CN202111171772.8A priority Critical patent/CN113867463A/zh
Publication of CN113867463A publication Critical patent/CN113867463A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种电流源的一次性修调校准结构,包括一次性可编程熔丝地址阵列、类DAC电流源和部分控制逻辑单元;所述一次性可编程熔丝地址阵列由多个可编程熔丝单元组成,每一个可编程熔丝单元对应一个可编程类DAC电流源地址位;所述可编程熔丝单元包括逻辑晶体管MN1A、修调晶体管MN1B以及用电阻符号标识的熔丝Fuse1组成。本发明线路结构简单,可对电流源进行一次性修调校准,不需额外的控制电路,从而降低了系统的复杂度。通过设置地址位数量与修调位权电流大小,可以对校准电流范围进行配置,具有较高的灵活性。

Description

一种电流源的一次性修调校准结构
技术领域
本发明涉及集成电路技术领域,具体涉及一种电流源的一次性修调校准结构。
背景技术
电流源是模拟或数模混合集成中重要的子单元结构,在电路中可以为某单元电路提供偏置电流;在信号放大电路中,由电流源拓展的电流镜也可以作为放大电路中的有源负载。
在某些高精度应用场合,例如传感器电流激励、精密运算放大器、精密电压参考或线性稳压器等,需要用到高精度且稳定的电流源。本专利所涉及的技术是一种通过一次性可编程熔丝,对电流源输出电流精度进行校准的线路实现方案。
最基础的电流源结构如图1所示,这种双晶体管的结构也是构成CMOS电流源或电流镜的基础结构。
在理想状态下,若MN1、MN2管的宽长比一致,那么输出电流iO可以理解为参考电流iI的镜像,此时:
iO=iI
同样在理想状态下,输出电流iO与参考电流iI的比例可近似等于晶体管的宽长比的比值。如下式所示:
iO/iI=(L1W2/W1L2);
然而在实际工程运用中,输出电流与镜像电流之间的比例难以满足理想状态。主要受到以下几种因素的影响:(1)沟道长度调制效应;(2)晶体管阈值电压偏差;(3)晶体管几何图形的失配。
为了改善电流源的性能,图1所示的基本电流源有多种派生的改进型结构。例如共源共栅电流源、威尔逊恒流源等。这些结构的出现改善了输出电流与参考电流的匹配性,提高了输出阻抗。为了提高输出电流的精度,参考电流通常由内部的带隙基准源产生;通过温度补偿,输出电流的温度稳定性可以进一步提升。这些技术在对于精度要求不苛刻的场合基本够用,本专利报告不再累述。
对于需要更高精度输出电流的场合,则必须要考虑半导体工艺加工过程中客观偏差所导致的输出电流误差。这种因工艺导致的误差往往带有随机性,无法在电路设计时予以预先消除或补偿;必须在芯片晶圆测试或最终测试阶段予以修调校准。
常规的修调校准方法有以下几种:(1)通过对芯片内部集成的金属薄膜电阻进行激光在线修调校准;(2)通过熔丝熔断的方式对关键电阻进行修调;(3)通过类DA转换器动态控制电流源输出校准,但这种方案在工程应用中却有一定局限。
金属薄膜电阻激光在线修调在较早时期的高精度模拟集成电路中应用较广。这种方案的特点在于利用激光修调设备对芯片上关键的金属薄膜电阻进行修调切割,通过控制激光修调的步进,可近似实现精度指标的线性修调校准,修调精度较高。但金属薄膜电阻的制备需要特殊的工艺,这种制备工艺通常是与早期的双极型(Bipolar)工艺相结合,目前较通行的CMOS工艺较少有对于金属薄膜电阻制备流程的支持。
熔丝熔断修调也是一种较为常规的修调方案。通常是将关键电阻设置为固定电阻与可修调电阻串连的方案。可修调电阻分为多段,每一段小电阻(修调步进电阻)通过熔丝首尾相连,在熔丝未熔断前,修调步进电阻短路于电路中。在芯片中测的阶段,根据测试摸底确定最小位步进电阻的修调范围,根据精度误差,对熔丝进行一次性熔断,从而将待修调的关键电阻阻值固化。这种修调方案优点在于不需要额外的工艺流程,但电阻只能单方向修调,且修调的精度受到最小步进位的影响;由于修调部分占用较多的芯片面积,修调位有限,从而影响修调精度与范围。
采用类DAC控制的加权电流源修调是一种相对较新的修调方案,这种结构有别于传统的电流输出型DA转换器,每一位的输出并不需要严格按照2n-1的加权模式。在实际的工程应用中,可以将修调位分别对应较大幅度、中等幅度、精准修调三个修调档位。这种修调方案具有较高的灵活性,可以在电路使用过程中动态监控精度变化,并通过更改输入控制码的方式,对输出精度进行动态校准。这种方案具有较高的灵活性,但需要增加额外的内部或外部控制电路;对于某些只需要一次性校准的场合,额外的控制电路增加了系统的复杂度,导致这种修调方案的使用受到了一定的局限。
发明内容
本发明所要解决的技术问题是提供一种电流源的一次性修调校准结构,其融合了熔丝熔断修调与类DA转换器控制电流源动态校准的优点;每一个熔丝单元对应类DA转换器校准单元的某一地址位,类DA转换器的修调电流分为大、中、小三个修调档;也可以根据实际工程需求设置不同的修调档;这种方案无需传统类DAC控制修调电路复杂的动态控制单元,修调精度又远高于熔丝熔断电阻修调的方案。
本发明电流源的一次性修调校准结构是通过以下技术方案来实现的:包括一次性可编程熔丝地址阵列、类DAC电流源和部分控制逻辑单元;
一次性可编程熔丝地址阵列由多个可编程熔丝单元组成,每一个可编程熔丝单元与可编程类DAC电流源的地址位相对应;可编程熔丝单元包括逻辑晶体管MN1A、修调晶体管MN1B以及用电阻符号标识的熔丝Fuse1组成;
作为优选的技术方案,类DAC电流源的位数与可编程熔丝地址阵列的位数相同并一一对应,且类DAC电流源包括由NMOS晶体管MNo1~MNox与晶体管MNin组成的比例恒流源以及二选一开关阵列S1~SX;比例恒流源通过设置的NMOS晶体管MNo1~MNox宽长比与MNin宽长比的比例,确定每一位修调电流io1~iox与参考电流iI的比例,从而确定每一位修调电流的电流值。
作为优选的技术方案,二选一开关阵列的每一位开关与一次性可编程熔丝地址阵列的熔丝单元相对应,开关通路的选择通过熔丝单元地址位adr1~adrx的输出逻辑控制。
作为优选的技术方案,可编程类DAC电流源的总输出电流itrim为熔丝单元熔断后的每一位输出电流的求和。作为优选的技术方案,逻辑控制单元通过地址位编程寻址,一次性熔断熔丝阵列对应地址位的单元的熔丝,从而固化类DAC电流源的输出电流itrim。
本发明的有益效果是:本发明可以在常规CMOS工艺中实现,比传统熔断多晶修调电阻的方案精度更高,灵活性更强;与采用类DAC电流实施校准的方案相比,本方案可实现电流源输出电流的一次性修调校准,不需额外的控制电路,应用更加方便简单。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的基础电流源结构图;
图2为本发明的基础熔丝单元熔丝熔断前结构示意图;
图3为本发明的基础熔丝单元熔丝熔断后结构示意图;
图4为本发明的可编程熔丝阵列图;
图5为本发明的类DAC电流源示意图;
图6为本发明的一次性修调校准电流源结构。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
在本发明的描述中,需要理解的是,术语“一端”、“另一端”、“外侧”、“上”、“内侧”、“水平”、“同轴”、“中央”、“端部”、“长度”、“外端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本发明使用的例如“上”、“上方”、“下”、“下方”等表示空间相对位置的术语是出于便于说明的目的来描述如附图中所示的一个单元或特征相对于另一个单元或特征的关系。空间相对位置的术语可以旨在包括设备在使用或工作中除了图中所示方位以外的不同方位。例如,如果将图中的设备翻转,则被描述为位于其他单元或特征“下方”或“之下”的单元将位于其他单元或特征“上方”。因此,示例性术语“下方”可以囊括上方和下方这两种方位。设备可以以其他方式被定向,并相应地解释本文使用的与空间相关的描述语。
在本发明中,除非另有明确的规定和限定,术语“设置”、“套接”、“连接”、“贯穿”、“插接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的一种电流源的一次性修调校准结构,包括一次性可编程熔丝地址阵列、类DAC电流源和部分控制逻辑单元;
如图4所示,一次性可编程熔丝地址阵列由多个可编程熔丝单元组成,每一个可编程熔丝单元与可编程类DAC电流源的地址位相对应。在进行系统设计时,可以根据系统需求设置x的值,在图4中,未在图中标识的第4位~第x-1位单元,用省略号表示。
此时图4中所标识的每一位熔丝单元均为熔丝未熔断之前的状态,熔丝熔断后的单元参考图3;如图2所示,熔断前可编程熔丝单元包括逻辑晶体管MN1A、修调晶体管MN1B以及用电阻符号标识的熔丝Fuse1组成;在熔丝未熔断时,熔丝电阻Fuse1处于导通状态,由于电阻阻值极小,所以输出电压接近电源电压VDD,地址位输出Adr1为高电平;当需要对该单元进行修调时,控制逻辑Fuse_ctr1变为高电平,辅助的修调晶体管MN1B导通;熔丝电阻Fuse1通过较低内阻的晶体管MN1B直接接地,在大电流情况下熔丝断路,Fuse1此时成开路状态,地址位输出Adr1输出从接近VDD变为接近GND,从高电平输出变为低电平;熔丝熔断后修调单元的线路结构如图3所示,这是一次性不可逆修调。
本实施例中,类DAC电流源的位数与可编程熔丝地址阵列的位数相同并一一对应,在图5中,iI是参考电流,也称之为最小标称位电流,参考电流由芯片内部的偏置支路产生,通常包含带隙基准结构,以产生对温度变化不敏感的偏置电流;类DAC电流源包括由NMOS晶体管MNo1~MNox与晶体管MNin组成的比例恒流源以及二选一开关阵列S1~SX;比例恒流源通过设置的NMOS晶体管MNo1~MNox宽长比与MNin宽长比的比例,确定每一位修调电流io1~iox与参考电流iI的比例,从而确定每一位修调电流的电流值。
可编程类DAC电流源的线路结构如图5所示;这种结构与由比例恒流源组成的电流输出型DAC有一定相似,最主要的差别在于每一位的电流无需按照从低位到高位电流按照2n-1加权模式设置。
本实施例中,二选一开关阵列的每一位开关与一次性可编程熔丝地址阵列的熔丝单元相对应,开关通路的选择通过熔丝单元地址位adr1~adrx的输出逻辑控制;以第一位熔丝单元为例:在熔丝Fuse1未熔断前,地址位输出adr1为高电平,对应开关S1置于0位,这一档位电流输出为“0”,即是校准电流io1未接入类DAC电流源输出itrim;若熔丝Fuse1熔断,地址位输出adr1为低电平,对应开关S1置于1位,这一档位电流输出为“1”,此时校准电流io1作为分支电流累加至类DAC电流源总输出电流itrim。
将图4所示的一次性可编程熔丝地址阵列与图5所示的可编程类DAC电流源相对应,对应关系及熔丝熔断前后电流源输出由表1(表中省略了第4位~第x-1位)所示;表1准确地记录了熔丝地址阵列每一位与类DAC电流源每一位输出之间的对应关系。
表1熔丝修调单元与类DAC电流源对应关系表
Figure BDA0003293506930000071
Figure BDA0003293506930000081
图5中所示的可编程类DAC电流源的总输出电流itrim为每一位输出电流的求和,在熔丝未熔断前,输出电流为0;熔丝全部熔断后,itrim此时得到校准电流的最大值。
本实施例中,一次性编程熔断熔丝阵列对应地址位的熔丝单元的熔丝,从而确定类DAC电流源的输出电流itrim,逻辑控制单元完成熔丝熔断校准并控制电流源输出。
如图6所示,图中的Fuse Array单元对应图4所述结构,DAC current Source单元对应图5所示结构,电路实现中需要增加控制逻辑单元,控制逻辑单元可以通过多种接口协议进行控制(例如SPI、I2C等),也通过外部FPGA或EPROM进行控制;常规的方案是通过使能控制、移位寄存器和地址寻址单元。在修调时将串行数据码转换成控制熔丝阵列FuseArray对应地址位熔丝单元的熔断指令,从而固化电流源DAC current Source输出。通过一次性编程熔断熔丝阵列中对应地址位的熔丝单元熔丝,固化类DAC电流源的总输出电流itrim,从而完成熔丝熔断校准并控制电流源输出;输出电流itrim可以作为独立的电流源输出,也可以与外部的电流累加,这取决于系统设计需求。
基于本专利所阐述的修调技术,列举一个8位的修调校准电路。即在图4与图5中,x=8。图5中的类DAC电流源包含了三个电流档位,分别与参考电流iI的比例为1:1、2:1、4:1。其中第1~3位比例为1:1,第4~6位比例为2:1,第7~8位比例为4:1。此时熔丝地址阵列与类DAC电流源的每一位之间的对应关系如表2所示,表2在表1基础上,基于本文阐述的8位修调校准电路的应用实例。
表2 8位修调校准电路应用实例
Figure BDA0003293506930000091
Figure BDA0003293506930000101
通过表2所示,这一种列举的8位的修调校准电路;校准输出电流范围itrim为0~17*iI;通过选择不同的地址位熔断,itrim的输出电流范围在0至17倍参考电流之间。
上述8位修调校准电路只是本专利所阐述修调方案的一个实例;基于本专利所阐述的技术,通过设置不同的修调校准位数x,以及在图5所示的类DAC电流源结构中设置与每一位电流输出与参考电流iI的比例关系,最终的修调范围和精度都能进一步调整;这种调整可以根据实际工程应用需求设置。
工作原理如下:
芯片中测前,首先确认最小修调档位及其它修调档位修调的幅度,即各档位电流增量;在中测及修调阶段,测量电流源输出与设计值之间的偏差,这部分电流增量即是通过修调校准后类DAC电流源输出电流;根据已确认的各个修调档位在熔丝熔断后的电流增量,确认熔丝阵列中需熔断熔丝单元的地址位;通过一次性熔断对应地址位单元的熔丝,则地址位被一次性固化,类DAC电流源输出校准电流值也同样被一次性固化;这种方案无需传统类DAC控制修调电路复杂的动态控制单元,修调精度又远高于熔丝熔断电阻修调的方案。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (5)

1.一种电流源的一次性修调校准结构,其特征在于:包括一次性可编程熔丝地址阵列和类DAC电流源;
所述一次性可编程熔丝地址阵列由多个可编程熔丝单元组成,每一个可编程熔丝单元对应一个可编程类DAC电流源地址位;所述可编程熔丝单元包括逻辑晶体管MN1A、修调晶体管MN1B以及用电阻符号标识的熔丝Fuse1组成。
2.根据权利要求1所述的电流源的一次性修调校准结构,其特征在于:所述类DAC电流源的位数与可编程熔丝地址阵列的位数相同并一一对应,且类DAC电流源包括由NMOS晶体管MNo1~MNox与晶体管MNin组成的比例恒流源以及二选一开关阵列S1~SX;所述比例恒流源通过设置的NMOS晶体管MNo1~MNox宽长比与MNin宽长比的比例,确定每一位修调电流io1~iox与参考电流iI的比例,从而确定每一位修调电流的电流值。
3.根据权利要求2所述的电流源的一次性修调校准结构,其特征在于:所述所述二选一开关阵列的每一位开关与一次性可编程熔丝地址阵列的熔丝单元相对应,开关通路的选择通过地址位adr1~adrx的输出逻辑控制。
4.根据权利要求1所述的电流源的一次性修调校准结构,其特征在于:所述可编程类DAC电流源的总输出电流itrim为熔丝单元熔断后的每一位输出电流的求和。
5.根据权利要求1所述的电流源的一次性修调校准结构,其特征在于:逻辑控制单元通过一次性校准,熔断熔丝阵列对应地址位的熔丝单元,从而确定类DAC电流源的输出电流itrim。
CN202111171772.8A 2021-10-08 2021-10-08 一种电流源的一次性修调校准结构 Pending CN113867463A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111171772.8A CN113867463A (zh) 2021-10-08 2021-10-08 一种电流源的一次性修调校准结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111171772.8A CN113867463A (zh) 2021-10-08 2021-10-08 一种电流源的一次性修调校准结构

Publications (1)

Publication Number Publication Date
CN113867463A true CN113867463A (zh) 2021-12-31

Family

ID=79001868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111171772.8A Pending CN113867463A (zh) 2021-10-08 2021-10-08 一种电流源的一次性修调校准结构

Country Status (1)

Country Link
CN (1) CN113867463A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138671A (en) * 1977-02-14 1979-02-06 Precision Monolithics, Inc. Selectable trimming circuit for use with a digital to analog converter
US20070146182A1 (en) * 2005-12-23 2007-06-28 Hsin-Hung Chen Self-calibrating current source arrays
US7514989B1 (en) * 2007-11-28 2009-04-07 Dialog Semiconductor Gmbh Dynamic matching of current sources
CN101740566A (zh) * 2009-12-21 2010-06-16 西安电子科技大学 基于电流熔断的多晶熔丝电路
US20140132814A1 (en) * 2012-11-12 2014-05-15 Sony Corporation Semiconductor integrated circuit, current control method, ad converter, solid-state imaging device, and electronic system
CN104617953A (zh) * 2015-02-05 2015-05-13 成都振芯科技股份有限公司 一种适用于多通道分段式电流舵型数模转换器中电流源阵列的校准系统及方法
US9843336B1 (en) * 2016-08-01 2017-12-12 Yuan-Ju Chao System and method of minimizing differential non-linearity (DNL) for high resolution current steering DAC
US9991900B1 (en) * 2017-08-02 2018-06-05 Nxp Usa, Inc. Digital to analog (DAC) converter with current calibration
US20200089265A1 (en) * 2018-09-18 2020-03-19 Ampliphy Technologies Limited Multi-bit digitally controlled accurate current source circuit
CN110958021A (zh) * 2019-12-26 2020-04-03 北京时代民芯科技有限公司 一种高速高精度电流舵数模转换器自校准系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138671A (en) * 1977-02-14 1979-02-06 Precision Monolithics, Inc. Selectable trimming circuit for use with a digital to analog converter
US20070146182A1 (en) * 2005-12-23 2007-06-28 Hsin-Hung Chen Self-calibrating current source arrays
US7514989B1 (en) * 2007-11-28 2009-04-07 Dialog Semiconductor Gmbh Dynamic matching of current sources
CN101740566A (zh) * 2009-12-21 2010-06-16 西安电子科技大学 基于电流熔断的多晶熔丝电路
US20140132814A1 (en) * 2012-11-12 2014-05-15 Sony Corporation Semiconductor integrated circuit, current control method, ad converter, solid-state imaging device, and electronic system
CN104617953A (zh) * 2015-02-05 2015-05-13 成都振芯科技股份有限公司 一种适用于多通道分段式电流舵型数模转换器中电流源阵列的校准系统及方法
US9843336B1 (en) * 2016-08-01 2017-12-12 Yuan-Ju Chao System and method of minimizing differential non-linearity (DNL) for high resolution current steering DAC
US9991900B1 (en) * 2017-08-02 2018-06-05 Nxp Usa, Inc. Digital to analog (DAC) converter with current calibration
US20200089265A1 (en) * 2018-09-18 2020-03-19 Ampliphy Technologies Limited Multi-bit digitally controlled accurate current source circuit
CN110958021A (zh) * 2019-12-26 2020-04-03 北京时代民芯科技有限公司 一种高速高精度电流舵数模转换器自校准系统及方法

Similar Documents

Publication Publication Date Title
US7319346B2 (en) Circuit and method for trimming integrated circuits
US7891869B2 (en) Temperature sensor circuit and calibration method thereof
US6433714B1 (en) Apparatus and method for precision trimming of a semiconductor device
CN110767152B (zh) 一种led显示屏驱动芯片的恒流源产生方法
CN110708809B (zh) 一种共阳led显示屏驱动芯片的恒流源产生电路
WO2010100683A1 (ja) 基準電流トリミング回路および基準電流トリミング回路を備えたa/d変換器
TWI334071B (en) Circuit and method for producing trimmed voltage using d/a converter circuit
US6586989B2 (en) Nonlinear digital differential amplifier offset calibration
EP4106202A1 (en) On-chip resistor correction circuit
CN113867463A (zh) 一种电流源的一次性修调校准结构
CN117013975A (zh) 熔丝修调方法和熔丝修调电路
CN114420044B (zh) 一种恒流源驱动电路、驱动芯片、电子设备
CN115166492A (zh) 一种芯片参数采集电路
EP3582061B1 (en) Current source with variable resistor circuit
JP2003042870A (ja) センサ用温度特性補正回路装置及びセンサの温度特性補正方法
CN109992898B (zh) 一种具有温度补偿功能的对数流转压电路
CN115865088B (zh) Dac增益校准电路
US20240201723A1 (en) Apparatus comprising a bias current generator
US11940831B2 (en) Current generator for memory sensing
CN220401717U (zh) 一种可修调的放大器结构
KR20240095036A (ko) 바이어스 전류 생성기를 포함하는 장치
CN114499459B (zh) 电子设备及其信号驱动芯片
US11914410B2 (en) Accuracy trim architecture for high precision voltage reference
JP2005116634A (ja) 複数の基準電圧発生回路を含む半導体装置及びその製造方法
CN118017946A (zh) 运算放大器的数字修调装置、方法以及数字修调系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211231