CN1017237B - 氰化钠的生产方法 - Google Patents

氰化钠的生产方法

Info

Publication number
CN1017237B
CN1017237B CN88106890A CN88106890A CN1017237B CN 1017237 B CN1017237 B CN 1017237B CN 88106890 A CN88106890 A CN 88106890A CN 88106890 A CN88106890 A CN 88106890A CN 1017237 B CN1017237 B CN 1017237B
Authority
CN
China
Prior art keywords
nacn
resorber
crystallizer
naoh
hcn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN88106890A
Other languages
English (en)
Other versions
CN1032148A (zh
Inventor
珍妮特·玛丽·罗杰斯
哈罗德·费尔顿·波特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of CN1032148A publication Critical patent/CN1032148A/zh
Publication of CN1017237B publication Critical patent/CN1017237B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • C01D1/26Preparation from or via cyano compounds, e.g. cyanides, cyanamides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/10Simple alkali metal cyanides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种生产无水氰化钠晶体的方法,它是将含有氧化碳和水的氰化氢合成气吸收在氢氧化钠水溶液中,然后将通过吸收得到的氰化钠溶液进行结晶。在吸收过程中形成的碳酸钠在结晶前不必除去。

Description

本发明涉及无水氰化钠晶体的生产,方法是用含有二氧化碳的不纯的氰化氢气体直接中和氢氧化钠,然后进行结晶并分离该晶体。
氰化钠(NaCN)具有多种用途。例如,用于电镀、处理金属表面、由矿物萃取和回收金属以及化学应用。
在这些用途中氰化钠(NaCN)已知是通过所谓的湿法或氰化氢(HCN)与氢氧化钠(NaOH)的中和生产的。HCN以气体或液体的形式加入,而NaOH以水溶液的形式加入,从而形成NaCN水溶液。固体NaCN晶体在NaCN水溶液的蒸发过程中形成。可分离这些晶体并干燥以得到无水NaCN产品,该产品通常被压紧成易于装运和使用的坯块。
以往生产者通常是用基本上纯的无水HCN与基本上纯的NaOH反应,NaOH一般是以50%溶液的形式加入反应器的。美国专利2,708,151(MCMinn,Jr.)和美国专利2,726,139(Oliver)讲授了使用基本上纯的HCN的方法。
HCN采用本技术领域众所周知的各种方法进行工业生产。对于几种已知的方法(例如,美国专利1,934,838和1,957,749中介绍的催化反应甲烷、氨和空气的安德卢梭(Andrussow)法)。其合成产物是多种组分的混合物,包括所要求的HCN以及水,未反应的氨、氢、氮和氧化碳。在要求使用基本上纯的HCN时,为了提供令人满意的产品需要复杂和昂贵的精馏和分离工序。
如果省去纯化HCN所需要的精馏和分离工序,投资和操作费用将会大大降低,因此人们进行了许多尝试,试图用不纯的HCN气体生产易于通过蒸发结晶转化成无水NaCN的氰化物水溶液。当HCN合成气直接吸收在NaOH中时,所得的水溶液含有可测量的由不纯气体吸收的杂质。
在水溶液中的主要杂质之一是二氧化碳与NaOH中和剂反应所形成的碳酸钠。这样形成的碳酸钠在所形成的饱和NaCN溶液中可溶到约1.5%(重量)。在蒸发和NaCN的结晶过程中,碳酸钠将结晶并成为无水NaCN产品中的杂质。此外,由于碳酸钠在NaCN水溶液中具有反溶解度关系,所以随溶液温度的增加,碳酸钠在该溶液中的溶解度将下降。因此,碳酸钠会沉淀出来并堵塞表面温度高的换热器,例如,会沾污蒸发器加热表面。一旦加热表面结垢,热传导会变得更加困难,于是增加了操作费用。随着更多的污垢的积累,蒸发结晶器的操作最终将被迫中断。
Mann等人的美国专利3,619,132使用了不纯的HCN气。但其中是通过将不含有二氧化碳的不纯的HCN气吸收于碱氢氧化物中来避免生成碳酸钠。Mann等人使用特殊的彼此独立的步骤,就是在低于大气压下吸收和在更低的压力下结晶。
其它人已尝试过采用含有二氧化碳杂质的HCN,但是要在结晶以前除去碳酸钠。
Cain的美国专利2,616,782讲授了一种方法,其中将氧化钙以至少与HCN气体中的二氧化碳等当量的量加入NaOH中,并将温度控制在低于196°F(约91℃)。该方法旨在减少由于二氧化碳与NaOH反应所形成的碳酸钠而造成的污染。代替碳酸钠而形成的碳酸钙不溶于NaCN溶液,可以在结晶前滤除。
Mittasch等人的美国专利1,531,123也讲授了了一种使用含二氧化碳的HCN气体的方法。该方法采用浓NaOH、低温(最好低于40℃)并加入氨,这样便可 在结晶前沉淀所形成的碳酸钠。
除了存在与二氧化碳有关的问题以外,HCN合成气中的水造成了其它困难。该合成气一般含有大量的水,大部分水在一般的低吸收温度下被冷凝在吸收器中,这些冷凝水加入到水负荷(反应生成的水加NaOH水溶液的水)当中,这些水是结晶器所必需处理的。该冷凝的水加入结晶器必须使用的水负荷(反应的水加上NaOH水溶液的水)当在该结晶器中蒸发过量的水时,必须排出更多的水蒸气。增加水的排出量会从溶液中带走额外的HCN蒸气,其结果是破坏了中和反应的平衡。然后,NaCN与水反应产生HCN和NaOH,使反应逆向平衡。这就造成产率降低、除去蒸气中的HCN所要求的额外的气体洗涤,以及蒸发器(或结晶母液)中NaOH含量的增加。当结晶母液中的NaOH含量较高时,干燥的NaCN晶体会包上一层NaOH。由于NaOH比NaCN更易于吸水,所以无水产品的贮存和使用变得更加困难。为了避免水的吸收而从贮存和运输容器中除去空气变得甚至更加关键,并且如果发生水的吸收,例如会造成结块。
通常,采用干燥压缩法将NaCN制成坯块并运送给用户,用户一般将该NaCN溶于水中以制成各种不同用途的水溶液。例如,对于从矿物中萃取金属的应用,是将固体NaCN产品制成含有约23%(重量)NaCN的稀溶液。萃取器一般也加入一种碱以增加pH从而使氰化物的离子化作用减至最低程度,因此降低了氰化物蒸气的挥发。作为合格的产品,晶体必须具有足够高的NaCN浓度,这样当稀释时,NaCN的重量百分比对于所要求的用途是足够高的。例如,对于金属萃取,大约90~95%NaCN的试样将是合格的,只要其杂质不会影响晶体性质,特别是那些影响贮存和运输能力以及无水NaCN实施其所要求的用途的效果的性质。
本发明是一种制备合格的可有效地干燥并压制成坯块的无水NaCN晶体的方法,该方法是将含有氧化碳的HCN合成气直接吸收在NaOH水溶液中,无需增加辅助设备,即可沉淀NaOH与氧化碳反应所形成的碳酸钠。将所形成的NaCN溶液直接通到结晶器而不用除去任何所形成的碳酸钠。从结晶器排出的气体最好用NaOH洗涤以除去HCN,最好将其再循环到吸收器。该结晶器最好是一种分级结晶器,其中含有碳酸钠的小晶体升到上部,而较大的NaCN晶体的淤浆从底部排出。最好将较小的晶体再循环到吸收器。将由结晶器排出的NaCN晶体淤浆送入标准结构的固/液分离器以使该晶体脱水。然后将该脱水的晶体进行干燥,而且当结晶器是非分级结晶器时,将由分离器排出的部分或全部母液再循环到吸收器,当采用分级结晶器时,最好将该母液从分离器再循环到结晶器,而将小晶体的淤浆再循环到吸收器。另一个较好的实施方案是在一个单级吸收一结晶器中将不纯的HCN合成气同时吸收于NaOH水溶液中并进行结晶。
图1是实施本发明的设备与标准的非分级结晶器的合适组合的示意图。
图2是实施本发明的设备与分级结晶器的合适组合的示意图。
图3是实施本发明的设备的合适组合的示意图,该设备用于在一个单级主反应容器即吸收-结晶器中同时吸收和结晶。
本发明采用在NaOH水溶液中直接吸收HCN合成气,该合成气除其它组分外还包含水、氧化碳和惰性物质。该HCN合成气直接从HCN转化器通过废热锅炉送到吸收器。合成气的温度约70~600℃,但这要取决于废热锅炉的结构。该温度可以随需要而增加或降低。对于本发明的方法,HCN合成气的温度最好为70~300℃。
可以按HCN工艺进行操作以便将合成气原料各组分的浓度控制在一定范围内。最好控制该HCN合成气,使其氧化碳含量减至最低最好将此量控制在0.5~1.5%(重量)。
该过程可以间歇运行,但连续操作最好。
加入吸收器的NaOH水溶液可以是任何浓度,最好为50%(重量)或更高。为了防止HCN在吸收操作过程中发生聚合,必需在吸收的氰化物溶液中保持过量的碱性。连续操作允许将碱性控制在低水平。在连续吸收中,游离NaOH含量应尽可能的低以将二氧化碳吸收减至最低程度并允许碳酸钠与HCN反应,但应高到足以避免生成聚合物。当温度低以及体系中有碳酸钠时,可以采用较低的NaOH浓度。碱性应控制在使NaOH的百分比不低于0.1%(重量)。NaOH的百分比最好应控制在0.1~3%(重量),0.1~0.5%(重量)更好。NaOH浓度可通过pH进行控制。
在NaOH溶液中直接吸收合成气的操作最好在30~约80℃的温度下进行。保持低温将降低HCN聚合的趋势并将NaCN向氨和甲酸钠的分解降至最低程度,HCN聚合和NaCN分解都将造成产率的降低以及NaCN产品的污染。由于在较低温度下聚合趋势降低,所以为避 免聚合所需的过量碱性较少,因此可以生产较高纯度的NaCN溶液。
采用较高的吸收器温度,可以达到同样的节能效果,但预期杂质将会增加。本专业的技术人员不难基于纯度需要调节温度。而且,随着吸收温度增加,越来越多的水将与惰性组分一起被带出吸收器,最后带出的水与惰性组分将比进入的合成气、NaOH水溶液以及反应生成的水为多。随着吸收器内溶液变得饱和,在该吸收器中将形成NaCN晶体。在标准的吸收器例如填充塔或板式塔中,这是不能令人满意的,因为将发生堵塞。在这种情况下,最好将温度控制在产生接近饱和的NaCN溶液的水平。
在本发明的一个最佳实施方案中,吸收器具有这种结构以避免堵塞(例如,一种挡板塔)。在这种情况下,最好通过使吸收温度升到一定的温度而同时进行吸收和结晶,该温度将使与合成气或NaOH一起进入的或在中和反应中产生的水蒸发。该温度最好应为约70~100℃,更好为70~85℃。可以调整HCN合成操作以提供同时吸收和结晶的全部热量要求。
吸收器应该在接近大气压下操作。由于产生较少的甲酸酯以及所要求的较低的NaOH浓度,较低温操作将能防止聚合,所以要求低于大气压的压力。较低的NaOH浓度会降低二氧化碳的吸收。但由于压力低于大气压,预期排气系统会有操作困难。因此,较好的操作压力为0~5psig。
在吸收器中,不需要除碳酸钠用的添加剂,例如氧化钙。
由于经济和环境控制的原因,通过蒸发水蒸汽带出的HCN应该回收并再用于该过程。与水蒸汽一起带出的HCN应该被连续地置换,以保持平衡,从而避免蒸发器母液中NaOH浓度太高。而当NaCN与水反应生成HCN和NaOH时将造成母液中NaOH浓度较高。NaOH浓度高将造成苛性产率降低(产生的NaCN比基于NaOH初始浓度的理论值要少)、较低的产品纯度和更多的碳酸钠沉淀。碳酸钠沉淀多了将使蒸发加热器结垢而带来许多麻烦。
我们已经发现,将在分离器中与晶体分离的全部或部分结晶母液再循环到吸收器,而不是像在这类操作中的一般作法那样将其保留在蒸发结晶器系统中是有利的。将在溶液中的那部分碳酸钠再循环到吸收器,在吸收器中它将与氰化氢反应生成NaCN和碳酸氢钠。随后,吸收器中惰性气体的汽提作用使碳酸氢钠再转变成碳酸钠,同时吸收器排出气体中汽提的二氧化碳大量减少。
为了更充分的理解本发明可参考图1,其中采用了标准的吸收器,将母液再循环到吸收器并吸收来自蒸发器HCN蒸气,然后再循环到吸收器。
吸收器容器1有一个外部液体循环环路,包括泵7和换热器5。合成HCN气通过管线10进入吸收器1。由吸收器排出的蒸汽通过管线11排放到污染控制单元如废气燃烧烟道。通过管线12加入30~50%(重量)的NaOH水溶液。在一个操作模式中,将该NaOH换向到结晶器吸收器4以吸收由结晶器排出的水蒸汽中的HCN蒸汽。该NaOH与吸收的HCN一起通过管线14返回到吸收器1。另一方面,如果不打算吸收HCN蒸汽返回到吸收器,可以将该NaOH通过管线17直接加入吸收器1。在吸收器1中所产生的NaCN溶液从外部液循环环路的底部排出并以30~42%(重量)NaCN溶液的形式通过管线18送入蒸发结晶器2。从结晶器中排出的水蒸汽通过管线19排放到吸收器4,洗涤HCN并将无HCN的水蒸汽通过管线20排放,然后在冷凝器6中进行冷凝。冷凝液通过管线21排放。通过真空泵9将不可冷凝的气体压缩,它将保持结晶器中所需的压力(通常为50~100毫米汞柱(绝对)〕,然后通过管线23将废气排放到吸收器排气管线11,从此处到污染控制单元例如废气燃烧烟道。在结晶器2中所生成的结晶淤浆通过泵8和管线24输送到固/液分离器3。晶体通过管线26由分离器3排放到产物干燥系统。将母液通过管线25返回到吸收器1,此处将过量的NaOH中和并将所含的碳酸钠反应生成NaCN(另一方面,全部或部分母液可返回到结晶器)。冷却水或其它冷却剂分别通过管线28和27供给到换热器5和6。蒸汽通过管线29进入结晶器2排管。
本发明的另一个一般是最佳的实施方案采用分级结晶器。分级结晶器具有一个蒸发部分和分级部分。较小的晶体从分级部分的顶部排出,而较大的晶体从分级部分的底部排出。可以预期NaCN晶体的物理性质会得到改善,即晶体较大并且易于脱水和压紧。除了改善晶体的物理性质外,该分级特点是回收在浓缩过程中形成的在吸收器中的固相碳酸钠,在此处它将溶解并转化成NaCN,而不是与部分无水NaCN产物一起被分离。这是可能的,因为无水碳酸钠晶体小易于与较大的NaCN晶体产物分离。
当采用分级结晶器时,在分离器中与晶体分离 的母液最好通过结晶器再循环到吸收器,与细小的NaCN晶体一起将溶解的及固相的碳酸钠带到吸收器。
参考图2可以更好地理解分级结晶器中掺入细小颗粒破坏特性。该图表示了母液从分离器通过结晶器再循环回到吸收器。
分级结晶器2由在其顶部的蒸发器部分以及底部的晶体分级器部分组成。晶体淤浆由吸收器1通过泵7和管线18并由结晶器的分级器部分采用泵8通过排管33进行循环,此处在进入结晶器2的蒸发器部分以前将其加热。只含有小晶体级分(它含有小的NaCN晶体和碳酸钠晶体)的液流由结晶器2的分级部分的顶部附近借助泵30通过管线31排出。然后通过管线32返回到吸收器1的循环环路。由分离器3排出的母液通过管线25返回到结晶器的分级部分。
本发明的另一实施方案合并了所有的功能包括吸收合成气中的氰化氢,蒸发和结晶出无水NaCN,而这些过程在一个加工步骤中就可完成,在这一步骤中只需一个主加工器即吸收-结晶器。该吸收-结晶器必须具有敞开式设计例如挡板塔。为了进行同时吸收和结晶,必需在足够高的温度下操作吸收-结晶器,以蒸发随NaOH或HCN合成气进入该容器的水和反应生成的水。另一方面,该温度又应该尽可能的低以便使生成的甲酸钠尽量的少。当吸收器压力接近大气压并且合成气中含有大量水时,将需要约70~100℃的温度。可以通过改变HCN合成气的温度进行控制。如果温度高于足于除去存在的水所需的温度,则可以降低温度或可加入更多的水。然而,一般不希望加入水,因为这将会从该系统汽提更多的HCN,而且较高的温度将增加杂质例如甲酸钠。同时吸收和结晶可节约很多的投资和操作费用,但通常对产品纯度和晶体的物理性质有些影响。
参考图3将对同时吸收和结晶有更充分的理解。吸收器1是敞开式设计的容器。例如,它可以是挡板塔。淤浆通过泵3和管线6进行循环。为提供蒸发热而控制在一定温度下的合成气通过管线4引进,而NaOH水溶液通过管线5送入循环环路6。NaCN淤浆通过管线7送入固/液分离器2,例如过滤器或离心机。将母液通过管线8返回到吸收器。分离的晶体通过管线9送去干燥。
下列是操作实例。它们是间歇式的实验室操作,用来确定是否能由HCN合成气制备合格的晶体以及该产品是否能用于矿物的金属萃取。没有作使产品纯度达到最高的尝试。没有进行母液到吸收器的再循环或HCN蒸汽由结晶器到吸收器的吸收和再循环。
实施例1
在一个工业化设备中制备HCN,方法是通过Andr-ussow方法在转化器中使空气、氨和天然气进行反应。分析该转化气,发现含有:
氢氰酸    9.2%(重量)
水    18.2%(重量)
氨    1.8%(重量)
甲烷    0.1%(重量)
氢    1.3%(重量)
氦    62.2%(重量)
一氧化碳    4.6%(重量)
二氧化碳    1.5%(重量)
将该转化气在约150℃下送入间歇式吸收器。该间歇式吸收器直径6英寸、高4英尺4英寸。将一根可移动的吸水管插入该吸收器20英寸以提供内部循环。该吸收器有一个水冷却夹套以除去转化气的热量和反应热。调节流过该夹套的水以控制吸收器的温度。该吸收器装有表1所示的30~50%(重量)NaOH溶液。HCN转化气以约30磅/小时的速度鼓泡通过NaOH溶液。吸收器的温度如表1所示为30-70℃。样品通过活塞密封贴合的底阀以吸收器的底部排出。用硝酸银滴定分析样品中NaCN百分率并用下面讨论的方法分析NaOH百分比。在大多数NaOH与氢氰酸反应以后(最终NaOH浓度在表1中给出),将NaCN溶液从吸收器排出。所生成的氰化钠溶液为28.0~46.4%(重量)。
用下列方法测定NaOH和碳酸钠的百分比。进行两个滴定,一个是对游离NaOH,一个对NaOH加碳酸钠。在两种情况下,首先通过加入稍微过量的硝酸银将氰化物固定为银络合物。将该样品摇振半小时以建立平衡条件,将等分的样品用氯化钡稀释以使碳酸盐沉淀为碳酸钡。该等分部分(不含碳酸盐的NaOH)和剩余的样品(含有NaOH及碳酸盐)用硫酸滴定到酚酞终点。通过差值可测定碳酸钠的百分比。
测定甲酸钠的百分比,方法是首先用氯化锌处理样品然后滤除干扰离子OH-、CO 3和CN-。滤液用冰醋酸、醋酸钠和氯化贡缓冲。当加热时,氯化贡被甲酸钠还原为氯化亚贡,将其分离、干燥并称重。然后计算甲酸钠的百分比。
实施例2
将实施例1中所制备的NaCN溶液在实验室结晶 器中进行结晶。选择实施例1试验1中所制备的NaCN溶液作为本实施例各试验的代表。该实验室结晶设备由装有一个外部加热套、两个冷凝器、一个冷凝液烧瓶和一个真空泵的四升四颈的烧瓶组成。试验1原料的结晶根据下列方法重复三次。本实施例中的数据是三次结晶所得数据的平均值。将约1700毫升(ml)NaCN溶液放入结晶器中。进料烧瓶装有1000mlNaCN溶液并以10ml/分的速度送入结晶器。起动真空泵并在约90mmHg压力下操作该结晶器。将排出结晶器的冷凝液冷凝并以约7ml/分的流速收集在冷凝液烧瓶中。让氰化钠晶体在该实验室结晶器中生长约1小时。在完全结晶以后,沉淀的固体在该结晶器中的浓度约为15%(体积)。将该晶体从结晶器中排出并表征粒度分布、过滤性质、化学组成和结晶形态。
用结晶领域中的技术人员所熟知的标准Coulter计数器粒度分析测定粒度分布。该粒度分布如下所示。
槽宽(微米)    槽中的体积%
小于    64.0    0.0
64.0-80.6    0.1
80.6-101.6    0.9
101.6-128.0    3.1
128.0-161.3    8.0
161.3-203.2    17.0
203.2-256.0    28.8
256.0-322.6    27.0
322.6-406.4    9.7
406.4-512.0    5.0
512.0-645.1    0.4
大于    645.1    0.0
平均粒度(50TH百分分布)=242.9微米
用本专业工艺的技术人员熟知的标准滤叶试验测定晶体的过滤性质。将一个标准的0.01平方英尺滤叶试样浸渍在来自实验室结晶器的600mlNaCN淤浆中。在506mmHg的压力、每5秒钟采集一次滤饼,1.5英寸滤饼厚度和60秒的滤饼脱水时间下进行过滤试验。将湿的滤饼在烘箱中干燥以测定脱水后的滤饼湿度。用本专业技术人员所熟知的常规方法计算比滤饼阻力。脱水后的滤饼温度为17%而比滤饼阻力为4.1×107米/公斤(m/kg)。
将结晶器的NaCN淤浆脱水并在真空烘箱中干燥至恒重。固体NaCN的纯度为84-92%,通过用硝酸银滴定进行分析。
用扫描电子显微镜测定晶体的形态。将该晶体过滤并用异丙醇洗涤以除去晶体表面的母液。根据粒度分布和晶体的形态,我们预料在干燥或把NaCN晶体压成块时不会有什么问题。
实施例3(对比)
在本实验中使用来自生产设备的氰化钠溶液,该设备将99.5%纯的液体氢氰酸与NaOH反应。由生产单元所得的NaCN溶液的组成为:
氰化钠    43.75%(重量)
氢氧化钠    1.90%(重量)
碳酸钠    0.23%(重量)
甲酸钠    1.06%(重量)
水    53.06%(重量)
通过加入约615ml蒸馏水将约6000mlNaCN溶液稀释到约39%NaCN。将该溶液稀释以消除存在任何小晶体的可能性。将约1700ml该39%NaCN放入实施例2所讨论的相同的实验室结晶器中。进料烧瓶装有1000mlNaCN溶液。在与实施例2相同的条件下结晶NaCN。所得晶体也用同样的方法表征。所得晶体的粒度分布为:
槽宽(微米)    槽中的体积%
小于    50.8    0.0
50.8-64.0    0.2
64.0-80.6    0.0
80.6-101.6    0.7
101.6-128.0    2.5
120.8-161.3    5.8
161.3-203.2    13.0
203.2-256.0    20.3
256.0-322.6    31.0
322.6-406.4    20.8
406.4-512.0    5.6
512.0-645.1    0.2
大于    645.1    0.0
平均粒度(50TH百分分布)=272.2微米
采用实施例2中所用相同的方法测定所得晶体的过滤性质。脱水后的滤饼湿度为17%,而比滤饼阻力为2.6×107m/kg。
比较起来,来自实际工厂结晶器的晶体的平均粒度为109微米、脱水后的滤饼湿度为21%,而比滤饼阻力为4×107m/kg。
实施例4
将与实施例1基本相同组成的HCN转化气送入与实施例1相同的间歇式吸收器。该吸收器首先装有25磅50%(重量)NaOH。该HCN转化气以约30磅/小时的速度鼓泡通过NaOH。调节冷却水水流以将吸收器内的液体温度保持在约78℃。与实施例1中相同进行NaOH和NaCN百分比的滴定,以测定该反应什么时候完成。将约3加仑NaCN淤浆排出吸收器,具有下列组成。
氰化钠    49.46%
氢氧化钠    0.91%
碳酸钠    3.23%
甲酸钠    0.56%
用与实例2相同的方法测定该淤浆的过滤性质。脱水后的滤饼湿度为20.9%。比滤饼阻力为8.9×107m/kg。
将该NaCN淤浆过滤、干燥至恒重发现纯度为89%。用Microtrac 粒度分析仪测试的该淤浆的粒度分布为:
槽宽(微米)    槽中的体积%
3.3-4.7    6.6
4.7-6.6    1.2
6.6-9.4    1.3
9.4-13    0.8
13-19    1.6
19-27    6.2
27-38    10.9
38-53    14.3
53-75    17.7
75-106    20.0
106-150    13.6
150-212    2.7
212-300    2.4
平均粒度(50TH百分分布)=60.0微米
实施例5
为了测定由本发明的方法所制备的NaCN是否能有效地从矿物中溶解金,将由实施例1试验8所制备的NaCN晶体与在实际工厂中把纯HCN溶解于纯NaOH所制备的NaCN晶体相比。将足够的0.1当量NaOH加入于搅拌的烧杯中的340ml去离子水中,从而使烧杯的内容物的pH由5.7升到10.6。然后加入由试验8中所得的NaCN溶液在实验室结晶器中制备的NaCN晶体(0.48克)。将0.0073克方形的金箔浸渍在该搅拌的烧杯中。在1.5、2.3和3.3小时后测量箔重,结果如下:
时间(小时)    箔重(克)    溶液量%
0.0    0.0073    -
1.5    0.0050    21.5
2.3    0.0037    49.3
3.3    0.0019    74.0
这些结果与用工厂原料进行的同样试验相比。结果为:
时间(小时)    箔重(克)    溶解量%
0.0    0.0099    -
1.33    0.0078    21.2
2.33    0.0054    45.5
3.16    0.0034    65.7
实施例6~8
此处引用实例6、7、8的目的在于说明分别在图1,2,3所描述的过程在每小时的产生5000磅NaCN(根据干燥基准)的试验工厂是如何进行的实例6、7和8假设,通过改变Andrussow    HCN法中的气体比例,在离开转化器的合成气中可达到较低的二氧化碳浓度。在每个实施例中,HCN合成气设想具有下列组成:
氢氰酸    6.9%(重量)
水    18.7%(重量)
氨    1.1%(重量)
二氧化碳    1.1%(重量)
惰性组分    72.2%(重量)
实例6
向图1所述的设备加入不纯的HCN合成气应形成表2所示的物料流速。表2中的参考数字相应于图1中的参考数字。将吸收器控制在70℃和1psig,将结晶器控制在70℃和100mmHg。计算干燥NaCN晶体产物为:95.6%(重量)NaCN、3.8%(重量)Na2CO3、0.2%(重量)NaOH和0.4%(重量)NaCOOH。
实施例7
向图2所述的设备加入不纯的HCN合成气应形成表3所示的物料流速。表3中的参考数字相应于图2中的参考数字。将吸收器控制在70℃和1psig,将结晶器控制在70℃和100mmHg。计算干燥NaCN晶体产物为:97.1%(重量)NaCN、2.3%。(重量)Na2CO3、0.1%(重量)NaOH和0.5%(重量)NaCOOH。
实施例8
向图3所述的设备加入不纯的HCN合成气应形成表4所示的物料流速。表4中的参考数字相应于图3中的参考数字。在87℃和1psig下操作吸收-结晶器。 计算干燥NaCN晶体产物为:94.2%(重量)NaCN、3.7%(重量)Na2CO3、0.2%(重量)NaOH和1.9%(重量)NaCOOH。
表1
直接吸收式中型试验装置数据汇总
操作    液体    开始    最后溶液组成
编号    温度    NaOH
℃ 磅 重量% %NaCN %NaOH %Na2CO3%NaCOOH
1    70    18.8    50    46.35    0.22    2.53    0.36
2    70    18.8    32    29.17    5.94    1.06    0.27
3    70    18.8    32    31.81    1.70    1.51    0.29
4    70    18.8    32    33.82    2.01    2.01    0.33
5    55    25.0    30    30.34    1.26    1.84    0.28
6    30    25.0    40    27.99    1.08    1.61    0.30
7    37    25.0    45    31.12    0.75    1.91    0.10
8    64    25.0    40    31.62    0.60    2.14    0.20
9    40    25.0    50    30.88    0.99    1.81    0.12
10    36    25.0    50    30.88    1.01    2.02    0.12
11    49    25.0    50    32.84    0.60    2.34    0.16
12    38    25.0    50    31.91    0.86    2.06    0.15
表2
再循环到吸收器的结晶器
基准:5000磅/小时NaCN
参考数字    进料速率(磅/小时)
No. 说明 总量 NaCN Na2CO3NaOH NaCOOH H2O
10    Andrussow
合成气
41,673    -    -    -    -    7,800
11    吸收器排出气
33,935    -    -    -    -    2,958
12    苛性苏打
进料    8,512    -    -    4,256    -    4,256
13    进入结晶吸收器
的苛性苏打
8,512    -    -    4,256    -    4,256
14    进入吸收器的苛
性苏打    8,677    291    -    4,036    -    4,350
15    吸收器循环液
500,000    -    -    -    -    -
17    冷却循环液
491,327    -    -    -    -    -
18    结晶器进料
52,233    20,430    740    246    700    31,112
19    结晶器水蒸汽
-    -    -    -    -    11,034
20    涤气器水蒸汽
-    -    -    -    -    10,940
21    结晶器冷凝液
-    -    -    -    -    10,890
23    不可凝气体
-    -    -    -    -    50
24    加入过滤器的
淤浆    42,000    20,429    738    188    562    20,083
25    再循环滤液
35,883    15,429    538    180    538    19,198
26    进入干燥器的
湿晶体    6,117    5,000    200    8    24    885
表3
分级结晶器
基准:5000磅/小时NaCN
参考数字    进料速率(磅/小时)
No. 说明 总量 NaCN Na2CO3NaOH NaCOOH H2O
10    Andrussow
合成气
41,673    -    -    -    -    7,800
11    吸收器排出气
33,970    -    -    -    -    2,958
12    50%苛性苏打
进料    8,386    -    -    4,193    -    4,193
13    进入结晶吸收器
的苛性苏打
8,386    -    -    4,193    -    4,193
14    进入吸收器的苛
性苏打    8,596    292    -    3,954    -    4,350
15    吸收器循环液
500,000    -    -    -    -    -
17    冷却循环液
491,862    -    -    -    -    -
18    结晶器进料
83,734    33,840    1,520    410    2,035    45,929
19    结晶器水蒸汽
-    -    -    -    -    11,044
20    涤气器水蒸汽
-    -    -    -    -    10,887
21    结晶器冷凝液
-    -    -    -    -    10,837
23    不可凝气体
-    -    -    -    -    50
24    进料过滤器的
淤浆    46,630    22,642    735    210    1,255    21,788
25    进入结晶器的滤液
41,030    17,642    615    205    1,230    21,337
26    进入干燥器的
湿晶体    5,600    5,000    120    5    25    450
32    再循环的细小
晶体    67,000    28,880    1,400    335    2,010    34,435
34    结晶器循环淤浆
2,500,00    -    -    -    -    -
表4
同时吸收和结晶
基准:5000磅/小时NaCN
参考数字    进料速率(磅/小时)
No. 说明 总量 NaCN Na2CO3NaOH NaCOOH H2O
4    Andrussow
合成气
42,112    -    -    -    -    7,862
10    到废气燃烧通
道的排出气    45,158    -    -    -    -    13,842
5    苛性苏打进料
8,616    -    -    4,308    -    4,308
6    循环淤浆
1,000,000    -    -    -    -    -
7    进料过滤器的
淤浆    50,000    22,436    854    447    4,022    22,241
8    再循环滤液
43,590    17,436    654    436    3,923    21,141
9    到干燥器的湿
晶体    6,410    5,000    200    11    99    1,100

Claims (2)

1、一种生产无水氰化钠晶体的方法,该方法包括:
a.在30-80℃温度和大气压力条件下,在含有过量氢氧化钠的吸收器中将含有氧化碳和水的不纯的氰化氢合成气吸收在氢氧化钠水溶液中,形成氰化钠溶液,在此步骤中,不需加入除去碳酸钠的辅助设备,并且不需要除掉在吸收过程中形成的碳酸钠;
b.将所述氰化钠溶液送入一个蒸发-结晶器,其操作条件为50-90℃,压力40-300毫米Hg,生成NaCN晶体的淤浆;
c.将淤浆的NaCN晶体与母液分离;
d.将来自该蒸发-结晶器的蒸气中的氰化钠吸收,并再循环至所述吸收器;
e.将所述母液再循环至所述吸收器。
2、一种生产无水氰化钠晶体的方法,该方法包括:
a.在含有循环的晶体淤浆的吸收-结晶器中将含有氧化碳和水的不纯的氰化氢合成气吸收于氢氧化钠水溶液中,同时进行蒸发和结晶;
b.将该淤浆中的氰化钠晶体和母液分离;
c.将该母液再循环到该吸收-结晶器。
CN88106890A 1987-09-24 1988-09-24 氰化钠的生产方法 Expired CN1017237B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/100,731 US4847062A (en) 1987-09-24 1987-09-24 Process for production of sodium cyanide
US100,731 1987-09-24

Publications (2)

Publication Number Publication Date
CN1032148A CN1032148A (zh) 1989-04-05
CN1017237B true CN1017237B (zh) 1992-07-01

Family

ID=22281243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88106890A Expired CN1017237B (zh) 1987-09-24 1988-09-24 氰化钠的生产方法

Country Status (9)

Country Link
US (1) US4847062A (zh)
EP (1) EP0309126A1 (zh)
KR (1) KR890004986A (zh)
CN (1) CN1017237B (zh)
AU (1) AU605911B2 (zh)
BR (1) BR8804899A (zh)
NZ (1) NZ226308A (zh)
PT (1) PT88584A (zh)
ZA (1) ZA887099B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2036441B1 (es) * 1991-05-16 1994-04-01 Aragonesas Ind Y En S A Procedimiento para obtener cianuro sodico cirstalizado, exento de hidroxido sodico o con contenidos regulables del mismo.
US5364605A (en) * 1991-06-05 1994-11-15 Fmc Corporation Recovery of cyanide from precious metal tailings
DE4240576C2 (de) * 1992-12-04 1996-04-18 Degussa Alkalicyanid-Granulate und Verfahren zu ihrer Herstellung
US5882618A (en) * 1997-04-28 1999-03-16 Air Liquide America Corporation Process for cyanic acid production
US6162263A (en) * 1998-08-04 2000-12-19 Mining Services International Method for producing and shipping metal cyanide salts
EP1129031B1 (en) * 1998-10-08 2002-08-21 L'air Liquide, S.A. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Improved process for cyanic acid production
US6183710B1 (en) 1999-04-08 2001-02-06 E. I Du Pont De Nemours And Company Sodium cyanide paste composition
US6669837B1 (en) * 2002-12-17 2003-12-30 Sunbelt Chlor Alkali Partnership Alkali metal hydroxide evaporator system
US6896863B2 (en) * 2003-04-01 2005-05-24 E. I. Du Pont De Nemours And Company Sodium cyanide process
KR100645598B1 (ko) 2004-11-10 2006-11-15 동서석유화학주식회사 고순도 시안화나트륨의 제조방법
DE102005026326A1 (de) * 2005-06-07 2006-12-14 Basf Ag Verfahren zur Herstellung von Salzen der Blausäure
EP1984532B1 (de) * 2006-02-03 2010-05-12 Basf Se Bereitstellung von metallcyanid enthaltenden wässrigen lösungen für die cyanidlaugerei zur gold- und silbergewinnung
US8894961B2 (en) * 2009-05-22 2014-11-25 E I Du Pont De Nemours And Company Sodium cyanide process
CN102502708B (zh) * 2011-10-21 2013-11-13 重庆紫光天化蛋氨酸有限责任公司 一种高纯度、高收率的碱金属或碱土金属氰化物的制备方法
CN103086401B (zh) * 2013-02-07 2014-09-10 无锡贝塔医药科技有限公司 一种碳同位素标记碱金属氰化物的合成方法
DE102014207848B4 (de) * 2014-04-25 2015-12-24 Siemens Aktiengesellschaft Aufbereitungseinheit und Verfahren zur Aufbereitung für ein mit Schwefeloxiden und/oder Stickoxiden verunreinigtes Waschmedium sowie eine Abscheidevorrichtung
DE102015211231A1 (de) * 2015-06-18 2016-12-22 Epc Engineering Consulting Gmbh Weiterentwickelte Anlage zur Herstellung von Natriumcyanid
DE102015211233A1 (de) * 2015-06-18 2016-12-22 Epc Engineering Consulting Gmbh Effizientes Verfahren zum Entgiften von cyanidhaltigen Abgasen und Abwässern in einem Verfahren zur Herstellung von Alkalimetallcyaniden
CN109646974A (zh) * 2017-10-10 2019-04-19 中国石油化工股份有限公司 一种生产氰化钠的蒸发结晶装置和方法
CN116096676B (zh) * 2020-07-14 2024-04-16 赛安可公司 改进的碱金属氰化物生产
CN113044857B (zh) * 2020-12-30 2023-05-23 重庆柒兴克米科技有限公司 高收率制取高纯氰化钠或氰化钾的生产工艺
WO2023237537A1 (de) 2022-06-10 2023-12-14 Cyplus Gmbh Anlage und verfahren zum herstellen eines alkalimetallhydroxid enthaltenden alkalimetallcyanid-feststoffproduktes

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA537744A (en) * 1957-03-05 E.I. Du Pont De Nemours And Company Manufacture of sodium cyanide
US1531123A (en) * 1924-03-05 1925-03-24 Basf Ag Manufacture of alkali-metal cyanide
US2616782A (en) * 1950-08-16 1952-11-04 Freeport Sulphur Co Production of sodium cyanide
US2726139A (en) * 1953-05-25 1955-12-06 Monsanto Chemicals Production of anhydrous sodium cyanide
US2708151A (en) * 1953-06-18 1955-05-10 Monsanto Chemicals Production of alkali metal cyanides
US2993754A (en) * 1958-01-02 1961-07-25 Du Pont Process for producing alkali metal cyanide
NL133600C (zh) * 1963-03-30
DE1592328A1 (de) * 1967-04-22 1970-12-10 Degussa Verfahren und Vorrichtung zur Herstellung von Alkalicyanid
BE793869Q (fr) * 1967-10-27 1973-05-02 Degussa Procede de production de cyanures alcalins
US4083935A (en) * 1976-08-09 1978-04-11 E. I. Du Pont De Nemours And Company Sodium cyanide crystallization process control

Also Published As

Publication number Publication date
NZ226308A (en) 1990-01-29
AU605911B2 (en) 1991-01-24
BR8804899A (pt) 1989-05-02
PT88584A (pt) 1989-07-31
US4847062A (en) 1989-07-11
ZA887099B (en) 1990-05-30
EP0309126A1 (en) 1989-03-29
CN1032148A (zh) 1989-04-05
KR890004986A (ko) 1989-05-11
AU2271188A (en) 1989-04-06

Similar Documents

Publication Publication Date Title
CN1017237B (zh) 氰化钠的生产方法
CN1223400C (zh) 具有增强的阳离子交换性能的沸石及沸石混合物的制备方法
CN1082030C (zh) 花瓣状多孔质羟基磷灰石微粒子及其制造方法
CN85105637A (zh) 溶解氟的吸附处理法
CN1106345C (zh) 铯盐的制备方法
CN1921941A (zh) 钼的回收方法和催化剂的制造方法
CN1993295A (zh) 分离和纯化铪和锆的方法
CN1781606A (zh) 废水的处理方法以及催化剂洗涤再生方法
CN1269737C (zh) 稳定水铝钙石类物质的方法
CN1761617A (zh) 回收纯碳酸氢钠和硫酸铵的方法
CN1795143A (zh) 层状双氢氧化物的生产
CN1008118B (zh) 锌矿全湿法制取硫酸锌及活性氧化锌
CN85109003A (zh) 制备磷酸和硫酸钙的连续过程
CN1090152C (zh) 人造铜明矾化合物及其生产方法
CN1177759C (zh) 回收纯硫酸铵溶液的方法
CN1156397C (zh) 碳酸氢钠和硫酸钾的配置方法
CN1310868C (zh) 反式-1,4-环己烷二羧酸的生产方法
CN1413169A (zh) 二氧化硅粒子、合成石英粉、合成石英玻璃的合成方法
CN1344677A (zh) 附聚和交换锂的x和lsx沸石的制备方法
CN85105753A (zh) 制备特高纯度山梨醇糖浆的方法
CN1204118C (zh) 综合利用胱氨酸母液生产单一氨基酸及消除污染的方法
CN1135743A (zh) 无水氯化镁
CN1017985B (zh) 稀土氟化物的制取方法
CN1057297C (zh) 喹啉酮衍生物的无水物结晶和其3/2水合物的结晶方法
CN1313424C (zh) 生产亚烷基衍生物的方法和用于生产亚烷基衍生物的催化剂再生方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned