CN101693628A - 纤维增强ZrC陶瓷基复合材料的制备方法 - Google Patents

纤维增强ZrC陶瓷基复合材料的制备方法 Download PDF

Info

Publication number
CN101693628A
CN101693628A CN200910024395A CN200910024395A CN101693628A CN 101693628 A CN101693628 A CN 101693628A CN 200910024395 A CN200910024395 A CN 200910024395A CN 200910024395 A CN200910024395 A CN 200910024395A CN 101693628 A CN101693628 A CN 101693628A
Authority
CN
China
Prior art keywords
matrix composite
zrc
composite
zrc ceramic
fiber strengthened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910024395A
Other languages
English (en)
Other versions
CN101693628B (zh
Inventor
王一光
成来飞
张立同
朱晓娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN2009100243958A priority Critical patent/CN101693628B/zh
Publication of CN101693628A publication Critical patent/CN101693628A/zh
Application granted granted Critical
Publication of CN101693628B publication Critical patent/CN101693628B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种纤维增强ZrC陶瓷基复合材料的制备方法,用于改善C/C复合材料的抗高温氧化性能。首先在碳纤维预制体上沉积热解碳,再将蒸馏水和聚乙烯醇搅拌加热条件下制成溶胶状,然后按比例加入Zr粉后,调和成粘稠状涂料,将涂料涂敷在C/C复合材料的表面,在高温下于保护气氛中进行熔体浸渗,制成纤维增强ZrC陶瓷基复合材料。由于采用熔体浸渗法,将高纯度的Zr粉与蒸馏水和聚乙烯醇按比例混合均匀后,涂敷在C/C复合材料的表面,在高温下于保护气氛中进行熔体浸渗,得到纤维增强ZrC陶瓷基复合材料。该方法通过控制涂敷涂料的厚度、热处理的温度和时间,制备出了纤维增强ZrC陶瓷基复合材料,且ZrC涂层的厚度由现有技术的几十微米提高到到几毫米。

Description

纤维增强ZrC陶瓷基复合材料的制备方法
技术领域
本发明涉及一种ZrC陶瓷基复合材料的制备方法,特别是一种纤维增强ZrC陶瓷基复合材料的制备方法。
背景技术
高超音速飞行器的前缘要耐更高的温度,现有的C/C和C/SiC复合材料均无法满足要求。为了改善C/C复合材料的抗高温氧化性能和提高C/SiC复合材料的使用温度,需要采用难熔金属碳化物来改性。通常采用的难熔金属碳化物为ZrC,从而制备出纤维增强ZrC陶瓷基复合材料。
文献1“碳化锆镀层的化学气相沉积.朱钧国,杜春飙,张秉忠,杨冰,彭新立.清华大学学报(自然科学版),2000,40(12):59-62”公开了一种以四氯化锆(ZrCl4)、丙烯(C3H6)、氢(H2)和氩(Ar)为反应体系,采用化学气相沉积制备ZrC涂层。采用此反应不但原料种类多且昂贵,而且反应产物对设备的腐蚀很严重,尾气的处理费用也很高,再加上制备周期长,这些因素使得此法的制备成本过高;此法制备只有在苛刻且不易控制的条件下才能制备出致密无孔隙、组织均匀、晶粒细小的ZrC镀层,可重复性差;ZrC镀层只分布在材料的表面或浅表面(深入表面几十微米)。
文献2“添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究.崔红,苏君明,李瑞珍,李贺军,康沫狂.西北工业大学学报,2000,18(4):669-673”公开了一种采用液相浸渍的制备方法。采用浸渍、碳化、烧结法,把研磨好的金属氧化物粉末利用超声振荡法使其均匀分散于树脂中,以此浸渍到一定密度的毡基C/C材料,经固化、炭化、烧结等工序,最终得到产物,一般需重复浸渍和炭化5~6次才可完成致密化过程,因此生产周期较长,并且工艺繁杂,制品易产生显微裂纹、分层等缺陷,且此法对C/C复合材料的纤维损伤较大,损害了材料的力学性能。
发明内容
为了克服现有技术制备出的纤维增强ZrC陶瓷基复合材料ZrC镀层分布浅、制备周期长、成本高的不足,本发明提供一种纤维增强ZrC陶瓷基复合材料的制备方法,采用熔体浸渗的制备方法,可以快速制备出ZrC镀层分布范围较大、成本低的纤维增强ZrC陶瓷基复合材料。
本发明解决其技术问题所采用的技术方案:一种纤维增强ZrC陶瓷基复合材料的制备方法,其特征在于包括下述步骤:
(a)取碳纤维编织成预制体,采用化学气相渗透或聚合物浸渍裂解方法在碳纤维预制体上沉积热解碳,制成密度是1.3~1.6g/cm3的C/C复合材料;
(b)分别称取质量百分比为94~99%的蒸馏水,质量百分比为1~6%的聚乙烯醇,混合后在磁力搅拌器加热至50~55℃搅拌成溶胶状;
(c)按照100重量份聚乙烯醇溶胶,加入10~15重量份Zr粉后,调和成粘稠状涂料;
(d)将步骤(c)制备的粘稠状涂料涂敷在步骤(a)制成的C/C复合材料的表面,放入高温炉中,以10~20℃/min升温速度将炉温从室温升至1900~2200℃,保温20~120分钟,关闭电源自然冷却至室温,整个过程通惰性气体保护。
本发明的有益效果是:由于采用熔体浸渗的制备方法,将高纯度的Zr粉与蒸馏水和聚乙烯醇按比例混合均匀后,涂敷在C/C复合材料的表面,在高温下于保护气氛中进行熔体浸渗,得到纤维增强ZrC陶瓷基复合材料。该方法制备迅速,产物的厚度范围较大(从几十微米到几毫米)。本发明还可通过控制涂敷时Zr粉混合物的厚度、热处理的温度和时间,制备C/C复合材料用抗氧化烧蚀的ZrC涂层。
下面结合附图和实施例对本发明作详细说明。
附图说明
图1是本发明方法实施例1所制备的三维针刺碳纤维增强ZrC陶瓷基复合材料切面扫描电镜照片。
图2是本发明方法实施例1所制备的三维针刺碳纤维增强ZrC陶瓷基复合材料表面研磨后的X射线衍射图谱。
图3是本发明方法实施例2所制备的三维针刺碳纤维增强ZrC陶瓷基复合材料表面研磨后的背散射电子照片。
具体实施方式
实施例1:取三维针刺碳预制体一块,纤维体积分数为35%。使用天然气为气源,在化学气相沉积炉中沉积热解碳,控制C/C复合材料的密度为1.3g/cm3
分别称取6g的聚乙烯醇和94g的蒸馏水,置于容器中,在磁力搅拌器加热温度为50℃下搅拌成溶胶状。
按照100重量份聚乙烯醇溶胶,加入10重量份Zr粉,Zr粉的纯度为99.5%、粒度为400目,用玻璃棒搅拌成粘稠状涂料,用木刷直接将粘稠状涂料涂敷在C/C复合材料的表层,厚度约为4mm。
待上述步骤制得的涂敷物烘干后,将其放入高温炉中,采用氩气为保护气,以10℃/min升温速度将炉温从室温升至1900℃,保温120分钟,关闭电源自然冷却至室温,降温过程通氩气保护。
将制备的纤维增强ZrC陶瓷基复合材料从中部垂直于涂敷方向切开,并将其中一半研磨光滑,用来观察浸渗深度、能谱分析及切面的扫描电镜分析。从图1扫描电镜照片中,可以看出单质Zr浸渗反应的深度大于3毫米。
将制备的纤维增强ZrC陶瓷基复合材料涂敷面研磨平整,用来进行X射线衍射分析。由图2X射线衍射图谱分析表明,本实施例所制备的材料为纤维增强ZrC陶瓷基复合材料。
实施例2:取二维碳预制体一块,纤维体积分数为35%。使用天然气为气源,在化学气相沉积炉中沉积热解碳,控制C/C复合材料的密度为1.4g/cm3
分别称取4g的聚乙烯醇和96g的蒸馏水,置于容器中,在磁力搅拌器加热温度为53℃下搅拌成溶胶状。
按照100重量份聚乙烯醇溶胶,加入13重量份Zr粉,Zr粉的纯度为99.5%、粒度为400目,用玻璃棒搅拌成粘稠状涂料,用木刷直接将粘稠状涂料涂敷在C/C复合材料的表层,厚度约为3mm。
待上述步骤制得的涂敷物烘干后,将其放入高温炉中,采用氩气为保护气,以15℃/min升温速度将炉温从室温升至2000℃,保温70分钟,关闭电源自然冷却至室温,降温过程通氮气保护。
将制备的纤维增强ZrC陶瓷基复合材料涂敷面研磨平整,在扫描电镜下进行背散射分析。从图3背散射电子照片分析表明,本实施例所制备的纤维增强ZrC陶瓷基复合材料外层中白色ZrC相分布在深灰色C相之中,形成了材料的多相结构,而且材料致密。
实施例3:取2.5维碳预制体一块,纤维体积分数为35%。使用天然气为气源,在化学气相沉积炉中沉积热解碳,控制C/C复合材料的密度为1.6g/cm3
分别称取1g的聚乙烯醇和99g的蒸馏水,置于容器中,在磁力搅拌器加热温度为55℃下搅拌成溶胶状。
按照100重量份聚乙烯醇溶胶,加入15重量份Zr粉,Zr粉的纯度为99.5%、粒度为400目,用玻璃棒搅拌成粘稠状涂料,用木刷直接将粘稠状涂料涂敷在C/C复合材料的表层,厚度约为3mm。
待上述步骤制得的涂敷物烘干后,将其放入高温炉中,采用氩气为保护气,以20℃/min升温速度将炉温从室温升至2200℃,保温20分钟,关闭电源自然冷却至室温,降温过程通氩气保护。
发明人在上述工艺条件范围内进行了多次实验,均取得了较好的效果。

Claims (1)

1.一种纤维增强ZrC陶瓷基复合材料的制备方法,其特征在于包括下述步骤:
(a)取碳纤维编织成预制体,采用化学气相渗透或聚合物浸渍裂解方法在碳纤维预制体上沉积热解碳,制成密度是1.3~1.6g/cm3的C/C复合材料;
(b)分别称取质量百分比为94~99%的蒸馏水,质量百分比为1~6%的聚乙烯醇,混合后在磁力搅拌器加热至50~55℃搅拌成溶胶状;
(c)按照100重量份聚乙烯醇溶胶,加入10~15重量份Zr粉后,调和成粘稠状涂料;
(d)将步骤(c)制备的粘稠状涂料涂敷在步骤(a)制成的C/C复合材料的表面,放入高温炉中,以10~20℃/min升温速度将炉温从室温升至1900~2200℃,保温20~120分钟,关闭电源自然冷却至室温,整个过程通惰性气体保护。
CN2009100243958A 2009-10-20 2009-10-20 纤维增强ZrC陶瓷基复合材料的制备方法 Active CN101693628B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100243958A CN101693628B (zh) 2009-10-20 2009-10-20 纤维增强ZrC陶瓷基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100243958A CN101693628B (zh) 2009-10-20 2009-10-20 纤维增强ZrC陶瓷基复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN101693628A true CN101693628A (zh) 2010-04-14
CN101693628B CN101693628B (zh) 2012-05-30

Family

ID=42092642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100243958A Active CN101693628B (zh) 2009-10-20 2009-10-20 纤维增强ZrC陶瓷基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN101693628B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103724039A (zh) * 2013-07-23 2014-04-16 太仓派欧技术咨询服务有限公司 一种可传输冷却液或气的C/C-ZrC陶瓷基复合材料及其制备方法
CN103806267A (zh) * 2013-12-21 2014-05-21 中国科学院上海硅酸盐研究所 一种在碳纤维表面制备碳化锆陶瓷界面相的方法
CN104987134A (zh) * 2015-07-29 2015-10-21 长安大学 一种在陶瓷表面利用原位还原法制备镍涂层的方法
CN106045550A (zh) * 2016-05-31 2016-10-26 西北工业大学 SiC‑ZrC梯度改性碳/碳复合材料的制备方法
CN108069724A (zh) * 2016-11-18 2018-05-25 航天特种材料及工艺技术研究所 一种制备C/SiC复合材料的方法
CN111099911A (zh) * 2020-01-02 2020-05-05 航天特种材料及工艺技术研究所 一种碳纤维增强碳-碳化硅-碳化锆复合材料及其制备方法
CN112142471A (zh) * 2020-09-21 2020-12-29 西北工业大学 一种碳化锆陶瓷前驱体及制备方法
CN115872748A (zh) * 2022-12-02 2023-03-31 无锡博智复合材料有限公司 一种钨改性ZrC骨架增强热解碳复合材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033137A (zh) * 2007-02-06 2007-09-12 西北工业大学 碳/碳-碳化硅陶瓷基复合材料的制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103724039A (zh) * 2013-07-23 2014-04-16 太仓派欧技术咨询服务有限公司 一种可传输冷却液或气的C/C-ZrC陶瓷基复合材料及其制备方法
CN103806267A (zh) * 2013-12-21 2014-05-21 中国科学院上海硅酸盐研究所 一种在碳纤维表面制备碳化锆陶瓷界面相的方法
CN103806267B (zh) * 2013-12-21 2016-03-23 中国科学院上海硅酸盐研究所 一种在碳纤维表面制备碳化锆陶瓷界面相的方法
CN104987134A (zh) * 2015-07-29 2015-10-21 长安大学 一种在陶瓷表面利用原位还原法制备镍涂层的方法
CN106045550A (zh) * 2016-05-31 2016-10-26 西北工业大学 SiC‑ZrC梯度改性碳/碳复合材料的制备方法
CN106045550B (zh) * 2016-05-31 2018-08-07 西北工业大学 SiC-ZrC梯度改性碳/碳复合材料的制备方法
CN108069724A (zh) * 2016-11-18 2018-05-25 航天特种材料及工艺技术研究所 一种制备C/SiC复合材料的方法
CN111099911A (zh) * 2020-01-02 2020-05-05 航天特种材料及工艺技术研究所 一种碳纤维增强碳-碳化硅-碳化锆复合材料及其制备方法
CN111099911B (zh) * 2020-01-02 2020-11-13 航天特种材料及工艺技术研究所 一种碳纤维增强碳-碳化硅-碳化锆复合材料及其制备方法
CN112142471A (zh) * 2020-09-21 2020-12-29 西北工业大学 一种碳化锆陶瓷前驱体及制备方法
CN115872748A (zh) * 2022-12-02 2023-03-31 无锡博智复合材料有限公司 一种钨改性ZrC骨架增强热解碳复合材料及其制备方法和应用
CN115872748B (zh) * 2022-12-02 2023-11-14 无锡博智复合材料有限公司 一种钨改性ZrC骨架增强热解碳复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN101693628B (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
CN101693628B (zh) 纤维增强ZrC陶瓷基复合材料的制备方法
CA2666042C (en) Process for manufacturing a part made of a ceramic matrix composite containing matrix phases for healing and deflecting cracks
CN101886680B (zh) 基于c/c复合材料的部件及其制造方法
Hu et al. In-situ fabrication of ZrB2–SiC/SiC gradient coating on C/C composites
CN103409732B (zh) 一种金刚石表面金属化的复合处理方法
CN100577892C (zh) 一种梯度硅酸钇涂层的水热电泳沉积方法
CN106977221B (zh) 一种SiCw-ZrB2-ZrC陶瓷复合粉体及其制备方法
CN103923601A (zh) 结构/吸波一体化复合材料的制备方法
CN105130506A (zh) 在球形石墨材料表面制备SiC涂层的方法
CN102503584B (zh) 一种碳/碳复合材料硅酸锆/碳化硅抗氧化涂层的制备方法
CN109183024B (zh) 一种氧化铝包覆氧化石墨烯/镁基材料表面的激光熔覆法
CN105350294B (zh) 一种镀碳化硅层的短切碳纤维及其制备方法
CN106192371B (zh) 一种耐高温3Al2O3-2SiO2-SiBNC碳纤维复合涂层的制备方法
CN111635241A (zh) 一种碳化硅陶瓷基复合材料结构/功能件的增材制造方法
CN108727049B (zh) 一种Cf/SiC-HfC超高温陶瓷基复合材料及其制备方法
CN101905979A (zh) 一种C/C-SiC复合材料自愈合抗氧化涂层的制备方法
CN106631161A (zh) 一种在碳基材料表面制备抗高温氧化复合涂层的方法
CN108083832A (zh) 一种C/C-HfC复合材料的高效低成本近净成形制备方法
CN108546157A (zh) 一种炭/炭复合材料的表面改性方法
CN108642439B (zh) 一种在金属钨表面渗铝制备高强度涂层的方法
CN108017413A (zh) 一种在C/SiC复合材料表面制备SiC纳米线的方法
CN109112533B (zh) 一种激光熔覆制备氧化石墨烯合金铝基表面耐磨层的方法
CN110158309A (zh) 一种制备表面具有碳化硅涂层的碳纤维的方法
CN108218474A (zh) 一种Cf/SiC复合材料表面光学涂层及其制备方法
Wang et al. Electrophoretic co-deposition of diamond/borosilicate glass composite coatings

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant