CN101681820B - 形成浅接合的技术 - Google Patents

形成浅接合的技术 Download PDF

Info

Publication number
CN101681820B
CN101681820B CN2008800152420A CN200880015242A CN101681820B CN 101681820 B CN101681820 B CN 101681820B CN 2008800152420 A CN2008800152420 A CN 2008800152420A CN 200880015242 A CN200880015242 A CN 200880015242A CN 101681820 B CN101681820 B CN 101681820B
Authority
CN
China
Prior art keywords
semiconductor wafer
described semiconductor
formation according
ion beam
shallow joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008800152420A
Other languages
English (en)
Other versions
CN101681820A (zh
Inventor
爱德温·A·阿雷瓦洛
克里斯多夫·R·汉特曼
安东尼·雷诺
乔纳森·吉罗德·英格兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Semiconductor Equipment Associates Inc
Original Assignee
Varian Semiconductor Equipment Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Semiconductor Equipment Associates Inc filed Critical Varian Semiconductor Equipment Associates Inc
Publication of CN101681820A publication Critical patent/CN101681820A/zh
Application granted granted Critical
Publication of CN101681820B publication Critical patent/CN101681820B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26593Bombardment with radiation with high-energy radiation producing ion implantation at a temperature lower than room temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2001Maintaining constant desired temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明揭示形成浅接合的技术。在一个特定示范性实施例中,技术可被实现为形成浅接合的方法。此方法可包括生成包括分子离子的离子束,分子离子基于由下列各物所构成的群族中选出的一种或多种物质:二锗烷(Ge2H6)、氮化锗(Ge3N4)、锗-氟化合物(GeFn,其中n=1、2或3),以及其它含锗化合物。此方法亦可包括使离子束冲击半导体晶片。

Description

形成浅接合的技术
技术领域
本揭示内容大体而言有关于半导体制造,且更特定而言,有关于形成浅接合(shallow junction)的技术。 
背景技术
离子注入(Ion implantation)是一种藉由利用受激离子(energizedion)直接轰击基板而向基板内沈积化学物质(chemical species)的工艺。在半导体制造中,离子注入机(ion implanter)主要用于掺杂工艺(doping process),掺杂工艺改变目标材料的传导类型和水准。在集成电路(integrated circuit,IC)基板和其薄膜结构中的精确掺杂分布对于正常的IC效能常常是至关重要的。为了达成所要的掺杂分布,可能以不同的剂量和在不同的能量注入一种或多种离子物质。 
图1描绘了一种传统的离子注入机系统100,其中可根据本揭示内容的一实施例来实施低温离子注入的技术。如大多数离子注入机系统的典型情况,离子注入机系统100设于高真空环境中,离子注入机系统100可包括离子源102,其藉由电源101偏压至一定电位;以及,复合系列的束线组件(complex series of beam-line component),离子束10穿过复合系列的束线组件。该系列的束线组件可包括(例如)提取电极(extraction electrode)104、90磁分析仪(90magnet analyzer)106、第一减速(D1)阶段(first deceleration(D1)stage)108、70磁准直仪(70magnetcollimator)110以及第二减速(D2)阶段(second deceleration(D2)stage)112。很像操纵光束的光学透镜系列,束线组件可在使离子束10朝向目标晶片转向之前过滤并 聚焦离子束10。在离子注入期间,目标晶片通常安装于压板114上,压板114可藉由有时被“台板(roplat)”的装置在一个或多个维度(例如,平移、旋转和倾斜)移动。 
随着半导体元件的持续小型化,对超浅接合的需求不断增加。举例而言,已做出巨大的努力来产生更好地活化、更浅且更陡的源极-漏极延伸接合(source-drain extension junction)来满足现代互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)元件的需要。 
为了在结晶硅晶片(crystalline silicon wafer)中产生陡的超浅接合,例如,可能会需要晶片表面的非晶化。一般而言,相对较厚的非晶硅(amorphous silicon)层可能是较佳的,因为薄非晶硅层可允许更显著的沟道效应(channeling)和因此更深的注入态掺杂剂原子深度分布(as-implanted dopant atoms depth distribution)和在超过非晶-结晶界面的末端(end-of-range,EOR)区中的更严重的注入后损伤。因此,更薄的非晶层可能会导致更深的接合深度,陡峭程度更低的掺杂分布、掺杂剂的不充分活化以及退火后更多的末端缺陷,其皆表示在现代CMOS元件小型化中的主要障碍,尤其是对于源极-漏极延伸掺杂。可利用预先非晶化注入(pre-amorphization implant,PAI)工艺来达成硅晶片的非晶化。至今,已在PAI工艺中使用了硅、锗或惰性气体原子离子以及某些外来分子离子物质(exotic molecular ion species)。 
为了进一步确保形成浅且陡的接合,通常执行低热预算退火(low-thermal-budget anneal)作为较佳的注入后工艺,其中晶片的温度在非常短的时间斜坡上升(ramp up)至较高的水准(例如,在5秒内上升到1000℃)。亦可采用激光器或闪光灯进行注入后退火。然而,只使用无扩散退火(diffusion-less anneal)可能不足以防止所有经离子注入的掺杂剂向晶片内更深处扩散。一种被称作暂态增强扩散(transient enhanced diffusion,TED)的工艺可使大量特定掺杂剂(例如,硼、磷)进一步扩散至晶片内,该工艺藉由在掺杂剂注入期间所产生的过量硅间隙而驱动。可能暂时地以数量级增加离子注入掺杂剂的扩散系数(diffusion coefficient)直至退火消除(anneal out)注入损伤。已发现诸如碳(C)和氟(F)的特定物质可藉由减小间隙与掺杂剂原子之间的相互作用而减轻TED效应。一种现有办法采用丛集注入工艺(cluster implantation process)来将碳置放于硅晶片内以便减轻TED效应。然而,此办法不仅需要专属丛集注入设备(proprietary cluster implantation equipment),而且还需要外来专属烃分子(exotic,proprietary hydrocarbon molecule)作为馈料。另一种办法使用原子物质作为共同注入材料。 
鉴于上文所述,需要提供形成浅接合的技术,其克服上述不足和缺点。 
发明内容
本发明揭示了形成浅接合的技术。在一个特定示范性实施例中,该技术可实现为形成浅接合的方法。此方法可包括生成包括分子离子的离子束,分子离子基于由下列各物所构成的群族中选出的一种或多种物质:氮化锗(Ge3N4)以及锗-氟化合物(GeFn,其中n=1、2或3)。此方法亦可包括使离子束冲击半导体晶片以在掺杂剂被离子注入至半导体晶片内之前非晶化半导体晶片的至少一部份。 
根据此特定示范性实施例的其它方面,此方法还可包括以下步骤:在半导体晶片上执行第一离子注入以将掺杂剂置入至半导体晶片的非晶化部份内,以及在半导体晶片上执行第二离子注入以将一种或多种共同注入物质置放于半导体晶片中,利用分子离子来注入该或该等共同注 
根据此特定示范性实施例的另外的方面,此方法还可包括以下步骤:在半导体晶片上执行第一离子注入以将一种或多种共同注入物质置放于半导体晶片中,利用分子离子注入该或该等共同注入物质,分子离子是基于由下列各物所构成的群族中选出的一种或多种物质:CF、CF2、ZnCxFy以及CxHyZn,其中Z表示除了碳或氢之外的一种或多种原子物质,x、y和n各为正整数;以及,在半导体晶片上执行第二离子注入以将掺杂剂置入于半导体晶片的非晶化部份内。 
根据此特定示范性实施例的额外方面,此方法还可包括在半导体晶片上执行离子注入以将掺杂剂置入至半导体晶片的非晶化部份内,其中,至少在离子注入开始时,半导体晶片的温度实质上低于室温。半导体晶片的温度可低于摄氏零度。可在离子注入之前将半导体晶片预冷至实质上低于室温。或者,在离子注入的至少一部份期间,可将半导体晶片的温度维持在实质上低于室温。 
在另一特定示范性实施例中,技术可被实现为形成浅接合的方法。此方法可包括生成包括分子离子的离子束,分子离子基于ZnCxFy,其中Z表示除了碳或氢之外的一种或多种离子物质,x、y和n各为正整数。此方法还可包括使离子束冲击半导体晶片以在掺杂剂被离子注入至半导体晶片内之前非晶化半导体晶片的至少一部份。 
根据此特定示范性实施例的其它方面,藉由离子束的冲击还可使由碳和氟所构成的群族中选出的一种或多种共同注入物质置放于半导体晶片的一或多个预定部位内。 
根据此特定示范性实施例的另外的方面,此方法还可包括在半导体晶片上执行低温离子注入以将掺杂剂置入至半导体晶片的非晶化部份内。
在又一特定示范性实施例中,该技术可实现为形成浅接合的装置。该装置可包括离子源组件(ion source assembly),其用以生成包括分子离子的离子束,分子离子基于由下列各物所构成的群族中选出的一种或多种物质:氮化锗(Ge3N4)以及锗-氟化合物(GeFn,其中n=1、2或3)。该装置还可包括一或多个束线组件,其用以使离子束冲击半导体晶片以在将掺杂剂离子注入至半导体晶片内之前非晶化半导体晶片的至少一部份。 
根据此特定示范性实施例的其它方面,该装置还可经组合为一种状态以在半导体晶片上执行低温离子注入以将掺杂剂置入至半导体晶片的非晶化部份内。 
在再一特定示范性实施例中,技术可被实现为形成浅接合的装置。该装置可包括离子源组件,其用以生成包括分子离子的离子束,分子离子基于ZnCxFy,其中Z表示除了碳或氢之外的一种或多种离子物质,x、y和n各为正整数。该装置亦可包括一或多个束线组件以使离子束冲击半导体晶片以在将掺杂剂离子注入至半导体晶片内之前非晶化半导体晶片的至少一部份。 
根据此特定示范性实施例的其它方面,藉由离子束的冲击还可使由碳和氟构成的群族中选出的一种或多种共同注入物质置放于半导体晶片中的一或多个预定部位中。 
根据此特定示范性实施例的另外的方面,该装置还可经组合为一种状态以在半导体晶片上执行低温离子注入来将掺杂剂置入至半导体晶片的非晶化部份内。 
在另外的特定示范性实施例中,技术可被实现为形成浅接合的方法。此方法可包括生成包括分子离子的离子束,分子离子基于一种或多种含碳或含氟分子,含碳或含氟分子由下个各物所构成的群族中选出:CF、CF2、ZnCxFy以及CxHyZn,其中x、y和n各为正整数,且其中Z表示除了碳、氟或氢之外的一种或多种原子物质。此方法还可包括使离子束冲击半导体晶片以将由碳和氟所构成的群族中选出的一种或多种共同注入物质置放于半导体晶片中的预定部位。 
根据此特定示范性实施例的其它方面,此方法还可包括在半导体晶片上执行低温离子注入以将掺杂剂置入至半导体晶片内。 
现将参看如附图所示的本发明的示范性实施例来更详细地描述本揭示内容。虽然在下文中参看示范性实施例来描述本揭示内容,但应了解本揭示内容并不限于此。可使用本文的教示内容的本领域技术人员将认识到如本文所述的本揭示内容的范畴内的额外的实施方式、修改和实施例,以及其它的使用领域,而且关于此等方面有效地利用本揭示内容。 
附图说明
图1展示了传统离子注入机系统。 
图2展示了说明根据本揭示内容的一实施例形成浅接合的示范性方法的流程图。 
图3展示了根据本揭示内容的一实施例形成浅接合的另一示范性方法的流程图。 
图4展示了根据本揭示内容的一实施例在硅晶片经历示范性处理步骤时硅晶片的一部份。 
具体实施方式
本揭示内容的实施例可通过一种或多种辅助离子注入工艺来减少离子注入掺杂剂的不当迁移。在掺杂剂注入之前,可利用自一种或多种含锗分子所生成的分子离子束来在目标晶片上执行预先非晶化离子注 入(pre-amorphization implantation,PAI)。除了掺杂剂注入之外,含碳分子离子或含氟分子离子可经共同注入以将碳或氟物质置放到目标晶片的所要部份内以减轻TED效应。在某些实施例中,若采用适当分子离子物质,PAI和共同注入步骤可合并为一个步骤。 
本文所揭示的技术并不限于束线离子注入机,而是可适用于其它类型的离子注入机,诸如彼等用于电浆掺杂(plasma doping,PLAD)或电浆浸没离子注入(plasma immersion ion implantation,PIII)的离子注入机。 
参看图2,其展示了说明根据本揭示内容的一实施例形成浅接合的示范性方法的流程图。 
在步骤202,可生成基于二锗烷(digermane,Ge2H6)、氮化锗(germanium nitride,Ge3N4)或其它类似的含锗和/或含硅化合物的分子离子。此等分子离子的生成可发生于间热式阴极(indirectly-heated cathode,IHC)离子源或另一种离子源中。然后可提取分子离子以形成分子离子束。Ge2H6和/或Ge3N4较佳地优于常用的氟化锗(GeF4),因为后者倾向于造成离子源维护问题或缩短离子源寿命。 
在步骤204,利用分子离子束在目标晶片(例如,结晶硅晶片)上执行预先非晶化注入(PAI),分子离子束包含锗或含硅物质。可控制分子离子束的能量和剂量以便非晶化目标晶片的一部份。非晶化部份可自目标晶片的表面延伸至预定深度。PAI步骤打破了目标晶片的非晶化部份中的结晶结构,藉以减轻离子注入掺杂剂的沟道效应。亦可使用PAI步骤来控制目标晶片中的损伤分布,而损伤分布可能会影响注入后扩散、掺杂剂活化和成品元件效能的其它方面,诸如漏电流(leakage current)。利用分子离子束的PAI可能优于利用原子离子束的PAI,此归因于更高的生产率(由于更高的有效束电流(effective beam current)或更少的处理步骤的结果)、更快的损伤累积以及其它处理优势。 
在步骤206,可执行离子注入以将掺杂剂物质置入至目标晶片内。掺杂剂注入可涉及一种或多种掺杂剂物质和不同配方(recipe)(即,能量、剂量、角度)。掺杂剂通常被注入至目标晶片的非晶化部份内。 
视情况,在步骤210,可冷却或预冷目标晶片以适应掺杂剂的低温注入。举例而言,可实施温度管理系统(temperature management system)以在掺杂剂注入期间保持目标晶片实质上低于室温。选择性地或此外,可在掺杂剂注入开始之前将目标晶片和/或其压板预冷至较低温度。 
在步骤208,可共同注入含碳分子或含氟分子以将碳或氟(“共同注入物质”)置放于目标晶片内。较佳地,此等共同注入物质位于末端区域附近以形成EOR损伤与掺杂剂原子之间的障壁。因此经共同注入的共同注入物质可帮助防止TED效应向目标晶片内更深处驱动掺杂剂。 
含碳或含氟共同注入物质可包括(但不限于):CF、CF2、ZnCxFy以及CxHyZn,其中x、y和n各为正整数。其中,Z可表示单个原子或一组原子(诸如,N、Si、NH4)。CxHyZn的实例可包括C9H14Si和C7H17N。选择Z是因为其对于整个离子注入工艺具有益或因为其对于该工艺并没有作用。若Z对该工艺造成任何损害,但若该损害可藉由其它优势弥补,则仍可选择Z。选择特定Z元素/组合物的一个标准在于改良离子束生成,诸如允许在标准离子源中操作而不是需要专门的源极。 
藉由与掺杂剂物质分开注入,可优化共同注入物质的分布。举例而言,碳硼烷(carborane,C2B10H12)注入(利用500eV的硼等效能量(boron equivalent energy))具有非常类似于硼分布的注入态碳分布(as-implanted carbon profile)。若执行更高能量(例如,6keV)的第二碳注入以将碳置放于硼掺杂剂与自PAI步骤的EOR损伤之间,则可达成退火后硼分布的进一步减少。 
根据其它实施例,可有利地选择包含共同注入物质与所要掺杂剂物质的馈料分子。举例而言,在馈料ZnCxFy或CxHyZn中,若Z原子或原子组 经选择包含诸如硼(B)的掺杂剂原子,则共同注入步骤亦将使掺杂剂原子同时注入,藉此可能减少掺杂剂注入步骤。 
还应注意的是,步骤206并不是必须在步骤208之前。共同注入步骤(步骤208)可与掺杂剂注入步骤(步骤206)同时发生或在掺杂剂注入步骤(步骤206)之前发生,或根本就不发生。 
在步骤212中,可执行目标晶片的注入后处理。注入后处理通常涉及快速热退火(rapid thermal anneal)或脉冲雷射退火(pulsed laser anneal)。注入后退火可修复由PAI步骤所造成的晶体损伤且同时活化离子注入掺杂剂。 
图3展示了根据本揭示内容的一实施例形成浅接合的另一示范性方法的流程图。 
在步骤302,可生成基于ZnCxFy、CxHyZn或其它类似分子(其中x、y和n各为正整数)的分子离子。馈料ZnCxFy或CxHyZn可经选择具有足够的分子量且包含碳或氟物质中的至少一者。此等分子离子的生成可较佳地发生于现有离子源中,诸如IHC离子源,但亦可使用其它类型的离子源。CxHyZn的一个实例为碳硼烷(C2B10H12)。然后可提取分子离子以形成分子离子束。 
在步骤304,可利用分子离子束在目标晶片(例如,结晶硅晶片)上执行预先非晶化注入(PAI)。可控制分子离子束的能量和剂量使得目标晶片的一部分被非晶化。此外,分子离子束可同时使碳或氟物质(“共同注入物质”)置放于目标晶片中以便减轻TED效应。即,可将PAI步骤和共同注入步骤有效地组合为一个步骤(步骤304)。或者,可利用分子离子束的不同剂量、能量和/或角度以两个或两个以上的步骤执行PAI工艺,以便可达成所要的共同注入物质分布。 
在步骤306,可执行离子注入以将掺杂剂物质置入至目标晶片内。掺杂剂注入可涉及一种或多种掺杂剂物质和不同的配方(即,能量、剂 量、角度)。掺杂剂通常被注入于目标晶片的非晶化部份内。视情况,在步骤308,可冷却或预冷目标晶片以适应掺杂剂的低温注入。 
最后,在步骤310,可执行目标晶片的注入后处理以修复晶格损伤并活化掺杂剂。 
图4展示了在硅晶片402经历根据本揭示内容的一实施例的示范性处理步骤时硅晶片402的一部份。图4中的(a)展示了在进行任何离子注入之前的硅晶格402,其中硅晶格可能是完整的。硅晶片402藉由图案化光阻层401遮蔽以屏蔽无需掺杂的区域。图4中的(b)展示了在预先非晶化注入(PAI)之后的硅晶片402,(例如)藉由包含硅、锗或如上文所述的其它分子化合物的分子离子束进行预先非晶化注入(PAI)。由于PAI步骤的结果,硅晶片402的一部份可能已变得非晶化,产生非晶硅区域404。图4中的(c)展示了在硅晶片402进一步经历掺杂剂注入步骤和碳共同注入步骤之后的硅晶片402。如图所示,掺杂剂注入步骤已将掺杂剂406置入至非晶硅区域404内,掺杂剂注入步骤可基于原子离子束或分子离子束。此外,基于上述的含碳共同注入物质的碳共同注入步骤已将含碳物质408置放于靠近非晶硅区域404与下面的硅晶片402的结晶硅区域之间的边界处。图4中的(d)展示了在硅晶片402经受注入后无扩散退火步骤之后的硅晶片402。无扩散退火步骤将非晶硅区域404恢复到结晶态。掺杂剂406可变得活化并扩散。共同注入碳物质408可帮助限制掺杂剂406在浅表面区域(404)。 
根据本揭示内容的实施例,如上文所述,许多烃物质(CnHm,其中n和m为正整数)可适用于PAI或共同注入工艺(或PAI加上共同注入的组合工艺)。至今,自电子冲击型离子源(electron-impact type ion source)所产生的某些外来专属烃分子已被用作低能量碳注入的馈料。然而,更佳地,可在标准离子源(诸如IHC型、Bernas型、或Freeman型离子源)中生成所要的烃分子离子(CnHm)。或者可使用射频(radio frequency, RF)或微波动力离子源(microwave powered ion source)来生成所要的烃分子离子。 
如本文所描述的形成浅接合的技术可有利地与低温离子注入技术组合。举例而言,可预冷或持续地冷却目标晶片使得在PAI、共同注入以及掺杂剂注入步骤中的任何步骤期间其温度实质上保持低于室温。 
本揭示内容并不限于本文所描述的具体实施例的范畴。实际上,通过前文的描述与附图,除了本文所描述的彼等内容之外的本揭示内容的各种实施例和修改对于一般本领域技术人员将显而易见。因此,此等其它实施例和修改预期属于本揭示内容的范畴内。另外,虽然出于特定目的,在特定环境中特定实施例的情形下描述了本揭示内容,但本领域一般技术人员将认识到,其并不用于限制本揭示内容为该等实施例并且可出于多种目的在多种环境下有益地实施本揭示内容。因此,应考虑到如本文所描述的本揭示内容的全部范畴与精神来理解本文所陈述的申请专利范围。 

Claims (29)

1.一种形成浅接合的方法,包括:
生成包括分子离子的离子束,所述分子离子基于由氮化锗以及GeFn所构成群族中选出的一种或多种物质,其中n=1、2或3;以及
使所述离子束冲击半导体晶片。
2.根据权利要求1所述的形成浅接合的方法,其中所述离子束的冲击在掺杂剂被离子注入至所述半导体晶片内之前非晶化所述半导体晶片的至少一部份。
3.根据权利要求1所述的形成浅接合的方法,还包括:
在所述半导体晶片上执行第一离子注入,以将掺杂剂置入至所述半导体晶片内;以及
在所述半导体晶片上执行第二离子注入,以将一或多个共同注入物质置放于所述半导体晶片中,利用所述分子离子来注入所述一或多个共同注入物质,所述分子离子基于由CF、CF2、ZnCxFy以及CxHyZn所构成的群族中选出的一种或多种物质,其中Z表示除了碳或氢之外的一或多个原子物质;x、y和n各为正整数。
4.根据权利要求1所述的形成浅接合的方法,还包括:
在所述半导体晶片上执行第一离子注入,以将一或多个共同注入物质置放于所述半导体晶片中,利用所述分子离子来注入所述一或多个共同注入物质,所述分子离子基于由CF、CF2、ZnCxFy以及CxHyZn所构成群族中选出的一种或多种物质,其中Z表示除了碳或氢之外的一或多个原子物质,x、y和n各为正整数;以及
在所述半导体晶片上执行第二离子注入,以将掺杂剂置入至所述半导体晶片内。
5.根据权利要求1所述的形成浅接合的方法,还包括在所述半导体晶片上执行离子注入,以将掺杂剂置入至所述半导体晶片内,其中至少在所述离子注入开始时,所述半导体晶片的温度低于室温。
6.根据权利要求5所述的形成浅接合的方法,其中所述半导体晶片的所述温度低于摄氏零度。
7.根据权利要求5所述的形成浅接合的方法,其中在进行所述离子注入之前,预冷所述半导体晶片的所述温度至低于室温。
8.根据权利要求5所述的形成浅接合的方法,其中在所述离子注入的至少一部份期间将所述半导体晶片维持在低于室温。
9.根据权利要求1所述的形成浅接合的方法,其中在所述离子束的冲击期间,所述半导体晶片在低于室温的温度范围。
10.一种形成浅接合的方法,包括:
生成包括分子离子的离子束,所述分子离子基于ZnCxFy,其中Z表示除了碳或氢之外的一或多个原子物质,x、y和n各为正整数;以及
使所述离子束冲击半导体晶片。
11.根据权利要求10所述的形成浅接合的方法,其中所述离子束的冲击在掺杂剂被离子注入至所述半导体晶片内之前非晶化所述半导体晶片的至少一部份。
12.根据权利要求11所述的形成浅接合的方法,其中所述离子束的冲击还使由碳和氟所构成的群族中选出的一或多个共同注入物质置放于所述半导体晶片中的一或多个预定部位中。
13.根据权利要求11所述的形成浅接合的方法,还包括在所述半导体晶片上执行低温离子注入,以将所述掺杂剂置入至所述半导体晶片的非晶化部份内。
14.根据权利要求10所述的形成浅接合的方法,其中所述离子束的冲击使一或多个共同注入物质置放于所述半导体晶片内。
15.根据权利要求14所述的形成浅接合的方法,其中所述一或多个共同注入物质是由碳和氟所构成的群族中选出的。
16.根据权利要求15所述的形成浅接合的方法,其中所述一或多个共同注入物质被置放于所述半导体晶片内的末端区域中。
17.根据权利要求10所述的形成浅接合的方法,在所述离子束的冲击期间,所述半导体晶片在低于室温的温度范围。
18.一种形成浅接合的装置,包括:
离子源组件,用以生成包括分子离子的离子束,所述分子离子基于由氮化锗以及GeFn所构成群族中选出的一种或多种物质,其中n=1、2或3;以及
一或多个组件,用以使所述离子束冲击半导体晶片。
19.根据权利要求18所述的形成浅接合的装置,其中所述离子束的冲击在掺杂剂被离子注入至所述半导体晶片内之前非晶化所述半导体晶片的至少一部份。
20.根据权利要求18所述的形成浅接合的装置,还经组合为一种状态以在所述离子束的冲击期间维持所述半导体晶片在低于室温的温度范围。
21.根据权利要求18所述的形成浅接合的装置,还经组合为一种状态以在所述半导体晶片上执行低温离子注入,以将掺杂剂置入于所述半导体晶片的非晶化部份内。
22.一种形成浅接合的装置,包括:
离子源组件,用以生成包括分子离子的离子束,所述分子离子基于ZnCxFy,其中Z表示除了碳或氢之外的一或多个原子物质,x、y和n各为正整数;以及
一或多个组件,用以使所述离子束冲击半导体晶片。
23.根据权利要求22所述的形成浅接合的装置,其中所述离子束的冲击还使由碳和氟所构成群族中选出的一或多个共同注入物质置放于所述半导体晶片中的一或多个预定部位中。
24.根据权利要求22所述的形成浅接合的装置,其中所述离子束的冲击还使一或多个共同注入物质置放于所述半导体晶片内。
25.根据权利要求24所述的形成浅接合的装置,其中所述一或多个共同注入物质是由碳和氟所构成的群族中选出的。
26.根据权利要求25所述的形成浅接合的装置,其中所述一或多个共同注入物质被置放于所述半导体晶片内的末端区域中。
27.根据权利要求22所述的形成浅接合的装置,其中所述离子束的冲击在掺杂剂被离子注入至所述半导体晶片内之前非晶化所述半导体晶片的至少一部份。
28.根据权利要求22所述的形成浅接合的装置,还经组合为一种状态以在所述离子束的冲击期间将所述半导体晶片维持在低于室温的温度范围。
29.根据权利要求22所述的形成浅接合的装置,还经组合为一种状态以在所述半导体晶片上执行低温离子注入,以将掺杂剂置入至所述半导体晶片的非晶化部份内。
CN2008800152420A 2007-04-10 2008-04-04 形成浅接合的技术 Active CN101681820B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/733,467 US7642150B2 (en) 2006-11-08 2007-04-10 Techniques for forming shallow junctions
US11/733,467 2007-04-10
PCT/US2008/059333 WO2008124554A1 (en) 2007-04-10 2008-04-04 Techniques for forming shallow junctions

Publications (2)

Publication Number Publication Date
CN101681820A CN101681820A (zh) 2010-03-24
CN101681820B true CN101681820B (zh) 2013-01-09

Family

ID=39512812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800152420A Active CN101681820B (zh) 2007-04-10 2008-04-04 形成浅接合的技术

Country Status (6)

Country Link
US (1) US7642150B2 (zh)
JP (1) JP2010524263A (zh)
KR (1) KR101492533B1 (zh)
CN (1) CN101681820B (zh)
TW (1) TWI438831B (zh)
WO (1) WO2008124554A1 (zh)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112795A1 (en) * 2005-08-30 2010-05-06 Advanced Technology Materials, Inc. Method of forming ultra-shallow junctions for semiconductor devices
US20070178679A1 (en) * 2006-01-28 2007-08-02 Varian Semiconductor Equipment Associates, Inc. Methods of implanting ions and ion sources used for same
US7795101B2 (en) * 2006-04-03 2010-09-14 United Microelectronics Corp. Method of forming a MOS transistor
DE102006019935B4 (de) * 2006-04-28 2011-01-13 Advanced Micro Devices, Inc., Sunnyvale SOI-Transistor mit reduziertem Körperpotential und ein Verfahren zur Herstellung
US20080305598A1 (en) * 2007-06-07 2008-12-11 Horsky Thomas N Ion implantation device and a method of semiconductor manufacturing by the implantation of ions derived from carborane molecular species
JP2009027027A (ja) * 2007-07-20 2009-02-05 Toshiba Corp 半導体装置の製造方法
US20090200494A1 (en) * 2008-02-11 2009-08-13 Varian Semiconductor Equipment Associates, Inc. Techniques for cold implantation of carbon-containing species
US7868306B2 (en) * 2008-10-02 2011-01-11 Varian Semiconductor Equipment Associates, Inc. Thermal modulation of implant process
US20100084583A1 (en) * 2008-10-06 2010-04-08 Hatem Christopher R Reduced implant voltage during ion implantation
WO2010051283A1 (en) * 2008-10-31 2010-05-06 Applied Materials, Inc. Doping profile modification in p3i process
US8178430B2 (en) 2009-04-08 2012-05-15 International Business Machines Corporation N-type carrier enhancement in semiconductors
US20110021011A1 (en) 2009-07-23 2011-01-27 Advanced Technology Materials, Inc. Carbon materials for carbon implantation
US20110039390A1 (en) * 2009-08-14 2011-02-17 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing Local Mismatch of Devices Using Cryo-Implantation
US8273617B2 (en) 2009-09-30 2012-09-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US8569128B2 (en) 2010-06-21 2013-10-29 Suvolta, Inc. Semiconductor structure and method of fabrication thereof with mixed metal types
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
US8377783B2 (en) * 2010-09-30 2013-02-19 Suvolta, Inc. Method for reducing punch-through in a transistor device
US8404551B2 (en) 2010-12-03 2013-03-26 Suvolta, Inc. Source/drain extension control for advanced transistors
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US8525271B2 (en) 2011-03-03 2013-09-03 Suvolta, Inc. Semiconductor structure with improved channel stack and method for fabrication thereof
US8400219B2 (en) 2011-03-24 2013-03-19 Suvolta, Inc. Analog circuits having improved transistors, and methods therefor
US8748270B1 (en) 2011-03-30 2014-06-10 Suvolta, Inc. Process for manufacturing an improved analog transistor
US8796048B1 (en) 2011-05-11 2014-08-05 Suvolta, Inc. Monitoring and measurement of thin film layers
US8999861B1 (en) 2011-05-11 2015-04-07 Suvolta, Inc. Semiconductor structure with substitutional boron and method for fabrication thereof
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
KR20120133652A (ko) * 2011-05-31 2012-12-11 삼성전자주식회사 반도체 소자의 제조 방법
US8735987B1 (en) 2011-06-06 2014-05-27 Suvolta, Inc. CMOS gate stack structures and processes
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
JP5665679B2 (ja) * 2011-07-14 2015-02-04 住友重機械工業株式会社 不純物導入層形成装置及び静電チャック保護方法
US8629016B1 (en) 2011-07-26 2014-01-14 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
WO2013022753A2 (en) 2011-08-05 2013-02-14 Suvolta, Inc. Semiconductor devices having fin structures and fabrication methods thereof
US8748986B1 (en) 2011-08-05 2014-06-10 Suvolta, Inc. Electronic device with controlled threshold voltage
US8614128B1 (en) 2011-08-23 2013-12-24 Suvolta, Inc. CMOS structures and processes based on selective thinning
US8645878B1 (en) 2011-08-23 2014-02-04 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8713511B1 (en) 2011-09-16 2014-04-29 Suvolta, Inc. Tools and methods for yield-aware semiconductor manufacturing process target generation
US9236466B1 (en) 2011-10-07 2016-01-12 Mie Fujitsu Semiconductor Limited Analog circuits having improved insulated gate transistors, and methods therefor
KR101868803B1 (ko) * 2011-11-04 2018-06-22 삼성전자주식회사 스트레스 기억 기술(smt)을 이용한 반도체 장치의 제조 방법
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8819603B1 (en) 2011-12-15 2014-08-26 Suvolta, Inc. Memory circuits and methods of making and designing the same
US8883600B1 (en) 2011-12-22 2014-11-11 Suvolta, Inc. Transistor having reduced junction leakage and methods of forming thereof
US8599623B1 (en) 2011-12-23 2013-12-03 Suvolta, Inc. Circuits and methods for measuring circuit elements in an integrated circuit device
US8877619B1 (en) 2012-01-23 2014-11-04 Suvolta, Inc. Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom
US8970289B1 (en) 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
CN108565198A (zh) 2012-02-14 2018-09-21 恩特格里斯公司 用于改善注入束和源寿命性能的碳掺杂剂气体和协流
US9406567B1 (en) 2012-02-28 2016-08-02 Mie Fujitsu Semiconductor Limited Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
US8863064B1 (en) 2012-03-23 2014-10-14 Suvolta, Inc. SRAM cell layout structure and devices therefrom
US9224604B2 (en) 2012-04-05 2015-12-29 Globalfoundries Inc. Device and method for forming sharp extension region with controllable junction depth and lateral overlap
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US8637955B1 (en) 2012-08-31 2014-01-28 Suvolta, Inc. Semiconductor structure with reduced junction leakage and method of fabrication thereof
US9112057B1 (en) 2012-09-18 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor devices with dopant migration suppression and method of fabrication thereof
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
JP2016500927A (ja) 2012-10-31 2016-01-14 三重富士通セミコンダクター株式会社 低変動トランジスタ・ペリフェラル回路を備えるdram型デバイス、及び関連する方法
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
CN103871813A (zh) * 2012-12-14 2014-06-18 中国科学院微电子研究所 一种半导体离子注入均匀性的改善方法
US9112484B1 (en) 2012-12-20 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9268885B1 (en) 2013-02-28 2016-02-23 Mie Fujitsu Semiconductor Limited Integrated circuit device methods and models with predicted device metric variations
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
KR102274771B1 (ko) * 2014-03-10 2021-07-09 에스케이하이닉스 주식회사 트랜지스터, 트랜지스터의 제조 방법 및 트랜지스터를 포함하는 전자장치
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods
US9319013B2 (en) 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244820A (en) * 1990-03-09 1993-09-14 Tadashi Kamata Semiconductor integrated circuit device, method for producing the same, and ion implanter for use in the method
EP0581369A1 (en) * 1992-07-24 1994-02-02 Koninklijke Philips Electronics N.V. Method of manufacturing a semiconductor device with a heterojunction manufactured by implantation with a carbon-halogen compound

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027A (en) * 1847-03-20 Box fob jotjbnals
US6019A (en) * 1849-01-09 Cast-iron car-wheel
JPS6190431A (ja) * 1984-10-11 1986-05-08 Sony Corp 半導体装置の製法
JPH04147617A (ja) * 1990-10-09 1992-05-21 Hitachi Ltd 半導体集積回路装置とその製造方法
US5223445A (en) * 1990-05-30 1993-06-29 Matsushita Electric Industrial Co., Ltd. Large angle ion implantation method
JPH0496273A (ja) * 1990-08-03 1992-03-27 Sharp Corp 半導体装置の製造方法
KR960000190B1 (ko) * 1992-11-09 1996-01-03 엘지전자주식회사 반도체 제조방법 및 그 장치
US5624598A (en) * 1995-04-18 1997-04-29 Shepodd; Timothy J. Materials for the scavanging of hydrogen at high temperatures
US5863831A (en) * 1995-08-14 1999-01-26 Advanced Materials Engineering Research, Inc. Process for fabricating semiconductor device with shallow p-type regions using dopant compounds containing elements of high solid solubility
JP3749924B2 (ja) * 1996-12-03 2006-03-01 富士通株式会社 イオン注入方法および半導体装置の製造方法
US6239441B1 (en) * 1997-01-20 2001-05-29 Kabushiki Kaisha Toshiba Apparatus for manufacturing a semiconductor device and a method for manufacturing a semiconductor device
JP3054123B2 (ja) * 1998-06-08 2000-06-19 アプライド マテリアルズ インコーポレイテッド イオン注入方法
US5965482A (en) * 1998-06-09 1999-10-12 Westinghouse Savannah River Company Composition for absorbing hydrogen from gas mixtures
WO2002080244A2 (en) * 2001-02-12 2002-10-10 Asm America, Inc. Improved process for deposition of semiconductor films
JP2004530268A (ja) * 2001-04-03 2004-09-30 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド イオンソースフィラメントおよび方法
US20040096386A1 (en) * 2002-11-19 2004-05-20 Syvret Robert George Method for nitrogen trifluoride production
US7410890B2 (en) * 2002-12-12 2008-08-12 Tel Epion Inc. Formation of doped regions and/or ultra-shallow junctions in semiconductor materials by gas-cluster ion irradiation
JP2007525838A (ja) * 2004-02-14 2007-09-06 エピオン コーポレーション ドープ済みおよび未ドープの歪み半導体の形成方法およびガスクラスタイオン照射による半導体薄膜の形成方法
US7767561B2 (en) * 2004-07-20 2010-08-03 Applied Materials, Inc. Plasma immersion ion implantation reactor having an ion shower grid
US7494852B2 (en) * 2005-01-06 2009-02-24 International Business Machines Corporation Method for creating a Ge-rich semiconductor material for high-performance CMOS circuits
JP5591470B2 (ja) 2005-08-30 2014-09-17 アドバンスト テクノロジー マテリアルズ,インコーポレイテッド 代替フッ化ホウ素前駆体を使用するホウ素イオン注入および注入のための大きな水素化ホウ素の形成
US7935942B2 (en) * 2006-08-15 2011-05-03 Varian Semiconductor Equipment Associates, Inc. Technique for low-temperature ion implantation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244820A (en) * 1990-03-09 1993-09-14 Tadashi Kamata Semiconductor integrated circuit device, method for producing the same, and ion implanter for use in the method
EP0581369A1 (en) * 1992-07-24 1994-02-02 Koninklijke Philips Electronics N.V. Method of manufacturing a semiconductor device with a heterojunction manufactured by implantation with a carbon-halogen compound

Also Published As

Publication number Publication date
TWI438831B (zh) 2014-05-21
US7642150B2 (en) 2010-01-05
CN101681820A (zh) 2010-03-24
JP2010524263A (ja) 2010-07-15
US20080108208A1 (en) 2008-05-08
KR20100015939A (ko) 2010-02-12
TW200847245A (en) 2008-12-01
KR101492533B1 (ko) 2015-02-12
WO2008124554A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
CN101681820B (zh) 形成浅接合的技术
KR101455564B1 (ko) 탄소 클러스터의 주입에 의한 반도체 디바이스의 제조를 위한 시스템 및 방법
US8586459B2 (en) Ion implantation with molecular ions containing phosphorus and arsenic
JP5580738B2 (ja) 太陽電池製造用のパターン化アセンブリ及び太陽電池の製造方法
US7919402B2 (en) Cluster ion implantation for defect engineering
WO2008151309A2 (en) An ion implantation device and a method of semiconductor manufacturing by the implantation of ions derived from carborane cluster ions
JPH0845920A (ja) 半導体基板に絶縁物層を形成する方法
US20080242066A1 (en) Method Of Manufacturing Semiconductor
TWI469368B (zh) 在太陽能電池製造中供固態磊晶成長之直流電離子注入
TWI474382B (zh) 用於缺陷工程的簇離子植入
KR101019987B1 (ko) 상변화 메모리 소자의 다이오드 형성방법
US20100112788A1 (en) Method to reduce surface damage and defects
US7416950B2 (en) MOS transistor forming method
CN101894748B (zh) 离子注入的方法
Grob Ion implantation
CN101770955B (zh) 一种制作p型金属氧化物半导体的方法
KR100272173B1 (ko) 이온주입 손상이 제거된 반도체 소자의 셸로우정션 형성방법
Current et al. Shallow and High-Dose Implants for IC and PV Devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant