CN101678317B - 从烃流中吸附硫化合物的方法 - Google Patents
从烃流中吸附硫化合物的方法 Download PDFInfo
- Publication number
- CN101678317B CN101678317B CN2007800408377A CN200780040837A CN101678317B CN 101678317 B CN101678317 B CN 101678317B CN 2007800408377 A CN2007800408377 A CN 2007800408377A CN 200780040837 A CN200780040837 A CN 200780040837A CN 101678317 B CN101678317 B CN 101678317B
- Authority
- CN
- China
- Prior art keywords
- adsorbent
- sulphur
- carrier
- silica
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/28083—Pore diameter being in the range 2-50 nm, i.e. mesopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0225—Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0259—Compounds of N, P, As, Sb, Bi
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
- B01J20/08—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/103—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
- B01J20/28007—Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28061—Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28064—Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3234—Inorganic material layers
- B01J20/3236—Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/3416—Regenerating or reactivating of sorbents or filter aids comprising free carbon, e.g. activated carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/345—Regenerating or reactivating using a particular desorbing compound or mixture
- B01J20/3458—Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/3483—Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/185—Phosphorus; Compounds thereof with iron group metals or platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G25/00—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
- C10G25/003—Specific sorbent material, not covered by C10G25/02 or C10G25/03
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/42—Materials comprising a mixture of inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
- C10G2300/1055—Diesel having a boiling range of about 230 - 330 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Thermal Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicon Compounds (AREA)
Abstract
本发明提供一种从烃流中脱除硫的高容量吸附剂。该吸附剂包括含镍磷化物复合物NixP的颗粒的复合材料。该吸附剂用于不需要添加氢的硫脱除方法,并且在约150℃至约400℃范围内的相对低的温度下运行。本发明的方法使“超深度”脱硫能够实现,使得含量低至约1ppm和更低。
Description
发明内容
本发明提供一种通过利用高容量吸附剂从液体烃流中脱除硫化合物的方法,该吸附剂为包含镍磷化物复合物的颗粒的复合材料,镍磷化物复合物具有约0.5∶4、优选约2∶3且最优选约2.2∶2.5的Ni/P比例。复合材料优选分布在包含二氧化硅、氧化铝或碳的相中,并且通过由镍磷酸盐(Ni2P2O7)、镍氧化物和/或镍氢氧化物、铵磷酸盐((NH4)2HPO4)组成的复合材料的还原获得,其中该复合材料优选通过镍和磷盐在二氧化硅、中孔二氧化硅、二氧化硅-氧化铝或碳材料上的沉积形成。本发明进一步包括利用吸附剂,其中在还原之后使部分二氧化硅或碳从所述复合材料中除去,增加镍磷化物复合物的负载量。根据本发明的脱硫方法优选为在150℃至400℃范围内的温度下进行的一阶段方法,并且其不需要富氢的气氛。该方法既能够以间歇方式进行,又能够以连续方式进行。吸附剂对于硫化合物的亲和力使超深度脱硫能够实现,使得含量低至约1ppm和更低。本发明每100g的吸附剂能够吸附大于1g硫。本发明进一步通过在还原性气氛中除去所吸附的硫,使吸附剂的周期性再生能够实现,周期性再生将有效的总硫容量增加至大于每100g约2.0g硫。
背景技术
利用两种下列的方法,能够完成在未添加氢的条件下,以合理的吸附剂硫容量,通过硫有机物的吸附进行的液体烃燃料的超深度脱硫:硫化合物利用吸附剂的反应性吸附,该吸附剂包含沉积在复合材料载体上的金属镍(Ni°),把Ni°转化成块状(bulk)镍硫化物相(如US专利申请20050258077 A1,2005所示),及通过硫化合物利用沸石吸附剂的平衡吸附,该沸石吸附剂包含部分还原的Cu(1+)阳离子(如A.J.Hernandez-Maldonado,R.T.Yang,Ind.Eng.Chem.Res.,42,123,2003所示)。两种方法相对于本发明都有缺点。即使在>30%的高镍分散下,第一种方法中Ni°相的硫容量也受到Ni°把燃料中的现有不饱和烃转化成碳质沉积物的趋势限制。这导致了吸附剂表面以比Ni°相完全转化成块状镍硫化物所需的速率更快的速率阻塞。这也是失活的镍吸附剂不能通过还原性处理再生的原因之一,并且需要采用氧化性再生技术来恢复材料。氧化性再生,即烧掉碳质沉积物,把Ni°相转化成分散不良的NiO相。NiO还原回Ni°保持着Ni°较低分散,导致在随后脱硫循环中的较低硫容量。包含在轻汽油燃料中的烯烃的形成焦炭的能力在极大程度上被通常添加到汽油中的含氧化合物(MTBE,乙醇等)抵消。这允许达到大于每100g的吸附剂1g硫容量,如待审US专利申请20050258077 A1,2005中所教导的那样。在衍生自不含氧化剂但是包含具有高的焦炭形成能力的单环、二环和三环芳香族化合物的化石来源的柴油燃料的情况下,执行Ni°基吸附剂的方法收到低于每100g0.1g的极低的硫容量。该低容量和吸附剂不可再生性大大损害了这种柴油燃料的超深度脱硫方法的商业应用。
利用包含Cu(1+)的沸石吸附剂的平衡吸附方法通常限于具有>50ppm的相对高硫含量的烃给料。在给料中的硫含量<20ppm时,这是现代氢化处理的柴油燃料的情况,在常规温度下在该方法中建立起来的吸附平衡未如本文中所教导的那样将硫降至低于1ppm。
附图说明
图1显示了新鲜的和用过的NixP/SiO2的XRD图案。
图2显示了参考吸附剂活性。
图3显示了本发明的实施例2至4的吸附剂活性。
图4显示了本发明的实施例5的吸附剂活性。
图5显示了本发明的实施例的再生和吸附剂活性。
图6显示了对于它们的沸程和硫物种不同的几种柴油燃料样品的吸附剂性能。
图7显示了作为LHSV的函数的吸附剂性能。
图8显示了作为反应温度的函数的吸附剂性能。
图9显示了进料和产物柴油燃料的沸点曲线。
图10显示了进料和产物柴油燃料的主要的本体特性。
具体实施方式
其中M选自由V、Cr、Mn、Fe、Co、Ni、Nb、Mo、Ta和W组成的组,x为0.1和10之间,并且该材料分散在高表面积氧化物载体上的具有式MPx的过渡金属磷化物材料,为通过把有机硫化合物转化成H2S的烃给料加氢脱硫的已知催化剂。本发明是基于这样的发现,即被挑选出来的属于该组的材料在未添加氢的条件下从烃流中吸附大量有机硫。新的吸附剂为镍磷化物复合物NixP,其中x=2至3,其以2至50nm Ni2P、Ni12P5、Ni3P相或者它们的混合物的纳米晶体形式稳定在中孔载体基体中。利用这种材料的硫吸附对于超深度脱硫来说足以达到包含约20ppm硫的氢化处理的烃燃料的约1ppm残余硫或更低的水平,其中硫容量大于每100g吸附剂1g。本发明包括氢化处理的烃液体给料、尤其是柴油燃料的超深度脱硫方法。
镍磷化物复合物
本发明的一个实施方案为镍磷化物复合物,其包括2至50nm相Ni2P、Ni12P5、Ni3P或它们的混合物的纳米颗粒,该镍磷化物复合物可以用作二苯并噻吩衍生物如现存于氢化处理的柴油燃料中的二苯并噻吩衍生物的反应性吸附的活性材料。尽管不希望束缚于特定理论,但是相信这些化合物中镍的金属特性引起了S化合物的最低未占分子轨道(LUMO)与NixP相中的表面镍原子的价带的强烈相互作用,导致C-S键的断裂,其向右移动吸附平衡NixP+S-R←→S-R……NixP。即使入口硫为约20ppm,这也允许把进料硫含量降至低于1ppm。由NixP相中的磷从镍原子中吸引了一部分电子密度赋予了部分正电荷(Ni δ+)给镍原子,这降低了它们与亲电子的硫相互作用的能力,抑制了块状Ni硫化物相的形成。如图1所示,在硫含量为15ppm的标准柴油燃料脱硫中每100g材料吸附1.05g硫之后,新还原的和用过的30重量%Ni12P5/SiO2的X射线衍射谱图基本上相同。这表明不存在块状镍硫化物相。同时,认为NixP相中镍原子上的部分正电荷降低了它们把芳香族化合物转化成致密的碳质沉积物的能力,使得运行之后的碳沉积物的量未超过约4至5重量%。用过的NixP基材料的还原性处理允许从用过的吸附剂表面脱除所吸附的硫,使得可能利用本发明使用相同的NixP基材料实施几个硫吸附循环。这扩展了一批次吸附剂所能吸附的硫的总量。
在本发明的一个实施方案中,吸附剂具有约15重量(st)%至约80重量%范围内、优选20重量%至约60重量%范围内的分散NixP复合物的高负载量。分散NixP复合物具有约2纳米至约50纳米(优选2至30nm)范围内的晶体尺寸,并且沉积在二氧化硅、中孔结构的二氧化硅、二氧化硅-氧化铝、碳或其组合上,这些载体具有约200m2/gm至约800m2/gm范围内的表面积和约5纳米至约30纳米范围内的孔隙直径。所述材料是通过沉积在中孔载体上的镍磷酸盐或镍氧化物(氢氧化物)与铵磷酸盐的还原制备的。
在还原之后,中孔载体(即二氧化硅或二氧化硅-氧化铝)单独利用pH=4且Ni/P比例为约0.5至4.0(优选2至3)范围内的用HNO3稳定的Ni(NO3)3和(NH4)2HPO4澄清水溶液浸渍,可能不足以达到大于30重量%的NixP负载量,而未引起载体孔隙的大量阻塞及>30nm的大NixP纳米颗粒的形成。本发明的一个方面为增加NixP负载量高达60至80重量%。尽管这可以通过改善沉积技术而实现,但是在本发明的一个实施方案中,增加的负载是通过二氧化硅从还原的NixP/SiO2(SiO2-Al2O3)复合材料中的提取完成的。在一个实施方案中,在不影响活性NixP相的组成的条件下,用强碱(NaOH)溶液或HF水溶液处理还原的吸附剂导致二氧化硅的提取,因此增加了NixP负载量。通过上面提及的化学处理,二氧化硅载体材料优先从还原的吸附剂材料中部分或全部“浸”出。这些化学物质对于活性NixP没有实质影响,因而活性相的组成基本上未改变。在另一个实施方案中,活性相NixP的高负载量可以通过如下方式获得:在尿素的存在下,高度分散的NiO由Ni盐水溶液以50至80重量%Ni负载量在中孔二氧化硅(二氧化硅-氧化铝)载体上的均质沉积-沉淀的执行,如在待审US专利申请20050258077 A1,2005中所教导的那样,之后进行(NH4)2HPO4在NiO/SiO2(SiO2-Al2O3)材料上的沉积及所获得的材料的还原。在另外的实施方案中,NixP相的高负载量可以通过如下方式获得:在尿素的存在下,高度分散的镍磷酸盐由通过硝酸稳定的包含Ni盐和铵磷酸盐两者的水溶液以45至65%镍负载量在中孔二氧化硅(二氧化硅-氧化铝)载体上的均质沉积-沉淀的执行,之后进行所获得的材料的还原。
上面提及的实施方案不是限制性的,并且对于本领域的技术人员可以显而易见,可能有其它的在多孔载体上沉积细结晶体NixP的技术。本发明为具有所需的NixP负载量(60至80%)及微晶尺寸(2至50nm)、表面积(200至800m2/g)和孔隙尺寸(5至30nm)的吸附剂。
脱硫方法
本发明的从液体烃流中脱除硫化合物的方法包括i)提供包含稳定在中孔二氧化硅、二氧化硅-氧化铝或碳载体基体中的作为纳米晶体的Ni2P、Ni12P5、Ni3P相或它们的混合物的复合材料,该纳米晶体具有2至50nm的尺寸和20至80重量%的负载量,该载体基体具有200至800m2/g范围内的表面积和5至30nm范围内的平均孔隙直径;及ii)在约150至400℃范围内、优选250至350℃范围内的温度下,使所述液体烃流与吸附剂接触。该方法是在未添加氢的条件下进行的,并且它能够间歇方式或以连续方式进行。当该方法是连续的时,选取液时空速以便达到所需的硫残余含量。LHSV为约0.5至30/小时,优选为约1至20/小时且最优选为约3至15/小时。用于本发明方法的吸附剂中优选的镍含量为20重量%至80重量%、优选为25重量%至70重量%,其中Ni/P原子比为约2至约3、优选为约2.2至约2.5。
组合物的还原的复合材料、活性镍磷化物相的晶体尺寸和基体织构有助于与通常存在于液体烃流如氢化处理的柴油燃料中的有机硫化合物、尤其是二苯并噻吩反应,以吸附硫。吸附剂与石油加工时在加氢脱硫处理之后保留在柴油燃料中的有机硫化合物的这种不可逆的相互作用,提供了硫的超深度脱除,而实际上对于构成柴油燃料的主要部分的烃没有其它影响。
在被硫化合物饱和之后,用于根据本发明的方法的吸附剂能够通过还原性处理,例如通过在约450至600℃下使吸附剂与氢流接触而再生。这脱除了所吸附的硫,使得能够在与第一次运行大约相同的吸附剂条件下进一步重新使用吸附剂,达到与第一次运行相同的残余硫含量。所述吸附剂能够成功地重新用于几个吸附-再生循环,收得>每100g吸附剂2g硫的总的有效硫容量。
在替代实施方案中,本文中描述的NixP基吸附剂可以用于从不同的烃流中脱除硫化合物,其中烃能够包括选自如下的材料:添加了含氧化合物以提高辛烷值的氢化处理过的粗汽油,柴油和喷气燃料,烷烃,链烯烃和芳香族烃,并且硫化合物能够包括选自如下的材料:有机硫化物,有机二硫化物,硫醇,及芳香族化合物如噻吩、苯并噻吩、二苯并噻吩和它们的衍生物。
实施例1(比较)
在放入加热浴中的提供有磁力搅拌器和冷凝器的250ml烧瓶内,利用两种溶液的混合物放入5g在500℃下煅烧2小时的表面积为220m2/g且孔隙直径为26nm的二氧化硅凝胶(PROMEKS,PI-258),这两种溶液为0.5g三仲丁基醇铝与100mL甲苯的溶液,及1.5g三乙胺与100mL的溶液。将甲苯悬浮液在85℃下剧烈搅拌6小时,然后通过过滤分离出固体。将氧化铝接枝的中孔二氧化硅固体悬浮在包含0.22g水的150mL乙醇溶液中,并将它在室温下搅拌24小时。接着将氧化铝接枝的中孔二氧化硅固体过滤并在85℃下真空干燥2小时,之后进行在250℃和400℃的温度下于2小时的周期内的逐渐煅烧,然后在空气中在500℃下煅烧4小时。氧化铝接枝的中孔二氧化硅材料展示出243m2/g的表面积和窄的中孔尺寸分布,其中平均孔隙直径为5nm且孔隙体积为0.3cm3/g。利用SEM Quanta 2000 Philips Fay公司的EDX分析表明Al、Si和O的含量分别为2.35、50.32和47.35重量%。
将在前面的步骤中获得的6.4g氧化铝接枝的中孔二氧化硅材料,悬浮在包含0.14mol/l镍硝酸盐(Ni(NO3)2·6H2O)、0.42mol/l尿素和0.02mol/l HNO3的pH为1.5的50ml水溶液中。在90℃下将混合物搅拌并加热24小时。在这个期间,pH增至6.4。将混合物在冰浴上快速冷却至20℃并过滤。将固体在过滤器上用200ml蒸馏水洗涤,并用200ml蒸馏水转移到烧瓶中,在60℃下搅拌15分钟并再次过滤。该洗涤步骤重复两次。
洗涤过的材料在空气中在90℃下干燥24小时,并在500℃下煅烧4小时(加热速率5℃/分钟),其收得19.2克。EDX分析表明Ni、Si、Al和O的含量分别为63.47、21.19、1.3和14.04重量%。通过BET方法测量,复合材料的表面积为304m2/g。
把上面获得的复合材料放入不锈钢反应器中,该不锈钢反应器具有内径10mm和长度100mm、装备有内部温度计套管和加热炉。温度控制器保持温度在±1℃的范围内。吸附剂在450℃下在GHSV(气时空速)为12000小时-1的氢流中还原8小时,接着在He流中钝化并在He中冷却至环境温度。在本文中称为BGU-1的材料收得大约全部为Ni氧化物形式的镍。在氢还原之后,这收得具有高分散性的金属Ni相,其特性示于图1中(在2θ=44.5和51.8°处的衍射峰),如由XRD峰宽测定,其对应于晶体尺寸4至5nm。
实施例2
将6g表面积为220m2/g且孔隙直径为26nm的二氧化硅凝胶样品(PROMEKS,PI-258)在500℃下煅烧2小时。其在润湿点(wetness point)的水容量为2.7cc(H2O)/g。通过混合6ml蒸馏的H2O和2.5ml 68%HNO3,添加9g Ni(NO3)2·6H2O(0.031mol Ni)及慢慢插入4.1g(NH4)2HPO4(0.031mol P),制备16.2ml透明溶液。继续搅拌30分钟,直到所有盐溶解,收得pH为4.0的透明的绿色溶液。通过初始湿润(incipient wetness)方法,将溶液嵌入到二氧化硅凝胶的孔隙内。所浸渍的材料在空气中在120℃下干燥4小时(加热速率5℃/分钟),然后在500℃下煅烧6小时(加热速率1℃/分钟)。煅烧的复合物的EDX分析表明Ni、P、Si、O的含量分别为22.9、10.9、35.1和31.1重量%并且Ni/P的原子比为1.1。
在大气压下,在580℃下,用1000cc·分钟-1 g-1的H2通量将0.5g上面的复合材料在石英反应器中还原0.5小时(在3.6℃/分钟下从环境温度至350℃和在1℃/分钟下从350℃至580℃),接着在He流中钝化并在He中冷却至环境温度。在本文中称为BGU-2的还原材料的XRD分析表明以对应于二氧化硅的2θ=22°为中心的宽无定形晕圈(hallo)并且显示出在对应于Ni2P磷化物相的2θ=40.8、44.6、47.3、54.2和66.2°处的峰(图1),其中由XRD峰宽测定的晶畴尺寸为10nm。基于EDX和XRD分析,BGU-2材料中该相的总负载量为30重量%。
实施例3
将10g表面积为480m2/g且平均孔隙直径为10nm的二氧化硅凝胶样品(PQ Co-PM5308)在500℃下煅烧2小时。其在润湿点的水容量为2.31cc(H2O)/g(二氧化硅)。通过混合8ml蒸馏的H2O和3.25ml 68%HNO3,添加16.25g Ni(NO3)2·6H2O(0.056mol Ni)及慢慢插入3.75g(NH4)2HPO4(0.028mol P),制备23ml透明溶液。继续搅拌30分钟,直到所有盐溶解,收得pH为3.5的透明的绿色溶液。在空气中在120℃下将所浸渍的材料干燥4小时(加热速率5℃/分钟),然后在500℃下煅烧6小时(加热速率1℃/分钟)。煅烧的复合物的EDX分析表明Ni、P、Si、O的含量分别为26.2、6.4、38.9和28.5重量%并且Ni/P的原子比为1.97。
在大气压下,在580℃下,用1000cc·分钟-1g-1的H2通量将0.5g上面的复合材料在石英反应器中还原0.5小时(在3.6℃/分钟下环境温度至350℃和在1℃/分钟下350℃至580℃),接着在He流中钝化并在He中冷却至环境温度。除了以2θ=22°为中心并且对应于二氧化硅的宽无定形晕圈以外,称为BGU-3的还原的材料的XRD分析显示出在对应于Ni12P5磷化物相的2θ=32.7、38.4、41.7、44.4、47.0和49.0°处的峰(图1),其中由XRD峰宽测定晶畴尺寸为9nm。基于EDX和XRD分析,BGU-2材料中该相的总负载量为31重量%。
实施例4
将6g表面积为220m2/g且孔隙直径为26nm的二氧化硅凝胶样品(PROMEKS,PI-258)在500℃下煅烧2小时。煅烧的二氧化硅润湿点为2.7cc(H2O)/g(二氧化硅)并且浸渍方法为初始湿润。通过混合13ml蒸馏的H2O和3.25ml 68% HNO3,添加16.25g Ni(NO3)2·6H2O(0.056mol Ni)及慢慢插入2.96g(NH4)2HPO4(0.022mol P),制备27ml透明溶液,继续搅拌30分钟直到所有盐溶解,收得透明的绿色溶液。在干燥炉内在120℃下将所浸渍的材料干燥4小时(加热速率5℃/分钟),然后在500℃下煅烧6小时(加热速率1℃/分钟)。煅烧的复合物的EDX分析表明Ni、P、Si、O的含量分别为24.9、5.3、40.3和29.5重量%并且Ni/P的原子比为2.48。
在大气压下,在580℃下,用1000cc·分钟-1g-1的H2通量将0.5g上面的复合材料在石英反应器中还原0.5小时(在3.6℃/分钟下环境温度至350℃和在1℃/分钟下350℃至580℃),接着在He流中钝化并在He中冷却至环境温度。除了以2θ=22°为中心并且对应于二氧化硅的宽无定形晕圈以外,称为BGU-4的还原的材料的XRD分析显示出在对应于Ni12P5磷化物相的2θ=32.7、38.4、41.7、44.4、47.0和49.0°处的峰和在对应于Ni3P相的2θ=36.4、41.8、43.6、46.6°处的峰(图1),这两种磷化物相的重量比为0.6/0.4以及晶体尺寸分别为10nm和15nm。基于EDX和XRD分析,BGU-4材料中这些相的总负载量为30重量%。
实施例5
将10g表面积为400m2/g且平均孔隙直径为8nm的二氧化硅凝胶样品(DAVICAT,ID-2411)在550℃下煅烧2小时。把它放入插到加热浴中的提供有磁力搅拌器和冷凝器的250ml烧瓶内,该烧瓶含有通过把93g Ni(NO3)26H2O、84g尿素、7mL HNO3(70%)和11.9g(NH4)2HPO4溶解在150ml H2O中制备的水溶液。将混合物加热至80℃并在该温度下搅拌24小时。在这个期间,pH由0.96增加至5。将混合物冷却至室温并过滤。在60℃下用200ml蒸馏水将固体转移到烧瓶中,搅拌1.5分钟并再次过滤。该洗涤步骤重复两次。将洗涤过的材料在120℃下干燥4小时(加热速率5℃/分钟)并在空气中在500℃下煅烧6小时(加热速率1℃/分钟)。通过仪器SEM Quanta 2000 Philips Fay公司进行的EDX分析表明Ni、P、Si和O的含量分别为62.8、13.1、6.4和17.6重量%。通过BET方法测量,复合材料的表面积为175m2/g。
在大气压下,在580℃下,用1000cc·分钟-1g-1的H2通量将0.5g上面的复合材料在石英反应器中还原0.5小时(在3.6℃/分钟下环境温度至350℃和在1℃/分钟下350℃至580℃),接着在He流中钝化并在He中冷却至环境温度。除了以2θ=22°为中心并且对应于二氧化硅的低强度的宽无定形晕圈以外,称为BGU-5的还原的材料的XRD分析显示出在对应于Ni12P5磷化物相的2θ=32.7、38.4、41.7、44.4、47.0和49.0°处的峰,其中由XRD峰宽测定晶畴尺寸为30nm,以及在对应于Ni3P相的2θ=36.4、41.8、43.6、46.6°处的峰,其中由XRD峰宽测定晶畴尺寸为3nm。基于EDX和XRD分析,BGU-5材料中这些相的总负载量为62.2重量%。还原的BGU-5材料的表面积为205m2/g。
实施例6
将0.8g在空气中煅烧之后的根据实施例1至5制备的BGU吸附剂材料的样品放入装备有内部温度计套管和加热炉的内径为5mm且长度为10cm的管状不锈钢反应器中。温度控制器用来将温度保持在±1℃内。在大气压下,在580℃下,用1000cc·分钟-1g-1的H2通量还原吸附剂0.5小时(在3.6℃/分钟下环境温度至350℃和在1℃/分钟下350℃至580℃),并在H2流下冷却至300℃的反应温度。包含30.6体积%芳香族烃、1.9体积%烯烃、67.5体积%链烷烃和15ppm重量硫的其中IBP=193℃且FBP=351℃、密度为0.83388g/cm3的氢化处理的柴油燃料用作试验吸附剂的进料。该运行首先由用He净化系统开始,然后利用He把压力提高至17巴。以3.5小时-1的LHSV(液时空速)穿过保持在300℃的反应器抽吸液体,并在经过反应器之后将其收集在冷却的收集器(trap)中。通过G.C方法,利用装备有用于硫分析的检测器GC-355 SCD的HP 6890 A仪器,周期性地分析反应器出口处柴油燃料中的硫含量(Sout,ppm重量)。
包含金属镍相的BGU-1参考材料的试验结果示于图2中。该吸附剂中镍相不够活泼而不足以所选的空时(接触时间)从柴油燃料中脱除硫至低于1ppm。在运行的开始,Sout为3ppm重量,并且在约50小时期间慢慢升至~8ppm重量。
包含不同镍磷化物相的BGU-2、BGU-3和BGU-4吸附剂的试验结果列于图3中。所有材料都显示出高活性,高活性是指硫吸附率高得足以在所选的接触时间下收得Sout.~0.1ppm重量。当Sout值达到1ppm重量时停止的运行中获得的BGU-2,BGU-3和BGU-4吸附剂的总硫容量分别为每100g吸附剂0.65、1.00和0.85g。用过的吸附剂的EDX分析分别给出了0.67、1.02和0.88重量%硫。用过的吸附剂的XRD衍射谱图的图案基本上与示于图1中的氢还原之后的新鲜的样品的图案相同。
镍磷化物相负载量提高为62.2重量%的BGU-5吸附剂的试验结果列于图4中。该材料显示出高活性,高活性是指硫吸附率高得足以在所选的2.7小时-1的接触时间下收得Sout.<0.5ppm重量。当Sout值超过0.5ppm重量时停止的运行中获得的BGU-5吸附剂的总硫容量为每100g吸附剂1.5g。用过的吸附剂的EDX分析给出1.6重量%硫。
实施例7
在根据实施例5的以LHSV=3.5小时-1进行的柴油燃料脱硫中,试验吸附剂BGU-3。当在所处理的柴油燃料中的硫含量Sout达到0.2ppm重量时,停止液体抽吸。在1000cc·分钟-1g-1的H2通量下,将反应器内的压力降至大气压并将温度升至550℃(加热速率1℃/分钟),并且在550℃下保持3.5小时,实现吸附剂的还原性再生。然后在H2流下将反应器冷却至反应温度300℃,接着用He净化并把He的压力增至17巴。以3.3小时-1的LHSV重新开始运行,并且经过另外110小时所处理的柴油燃料中的硫含量在0.1至0.3ppm重量范围内,如图5所示,通过BGU-3吸附剂从柴油燃料中脱除硫的量另外增加了0.66重量%(总和0.85+0.66=1.51重量%)。如图5所示,又重复两次在相同的条件下的还原性再生步骤,使得从柴油燃料中脱除的硫的总量达到2.35重量%。通过XRD分析在该运行之后用过的吸附剂BGU-3,XRD表明如图1所示,Ni12P5相的图案基本上未改变。
实施例8
该实施例显示了本发明的吸附剂从烃燃料混合物中脱除硫化合物的范围(硫醇、硫化物、二硫化物、噻吩、苯并噻吩(BT)、二苯并噻吩(DBT)和取代的DBT)。通过BGU-4吸附剂使各种柴油燃料样品经受脱硫。这些柴油燃料样品在总硫浓度方面以及在硫物种的类型方面不同。例如,柴油A(沸程:136至387℃)的特征在于11ppm总硫。然而,该样品中难熔的硫化合物(DBT和更高级)仅占1ppm。柴油B是通过向柴油A中添加4,6-二甲基-DBT来把总硫浓度增至14.3ppm获得的。柴油C(沸程:107至362℃)为相对较高沸点馏分,其与较轻沸点馏分共混以制备最后的柴油燃料。柴油C中的硫物种主要是难熔的硫化合物。超过94%的硫比DBT难熔,其中76%比4,6-二甲基-DBT难熔。另外,50%硫化合物比4,6-二乙基-DBT重。柴油D(沸程:127至336℃)为在欧洲市场典型地出售的未添加的(unadditized)全馏程(full range)柴油的样品。脱硫以6/小时的LHSV,在300℃下,在250psig压力下,于包含6cm3吸附剂的反应器中进行。结果示于图6中。从图6中看出,吸附剂BGU-3能够对它们的沸程和硫物种不同的多种柴油燃料样品实现亚ppm脱硫。BGU-3从多种有机硫化合物中提取硫原子,该有机硫化合物包括难于通过常规加氢脱硫方法脱除的难熔的硫化合物。
实施例9
BGU-4吸附剂在燃料流速范围内保持其反应性(重量%硫俘获)。改变的流速(液时空速或LHSV)对于吸附剂反应性的影响在于300℃和250psig下操作的6cm3固定床反应器中量化。这些实验利用在上面实施例8中详述的柴油B进行。列于图7中的数据显示了加工的突破燃料体积(breakthrough fuel volume)(在1ppm的出口S浓度下测量)在试验的LHSV范围内未有明显改变。因而,BGU-4能够在大的极限负荷比内保持其反应性。这促进了该脱硫方法在固有地瞬时操作,如在交通工具上的应用。高LHSV操作使得能够将该吸附剂用于空间受到限制的环境中。
实施例10
BGU-4在宽温度范围内保持其反应性。反应温度对于吸附剂反应性的影响于在6/小时LHSV和250psig下操作的6cm3固定床反应器中量化。这些实验利用在上面实施例8中详述的柴油B进行。列于图8中的数据证明了在275至350℃的试验温度范围内获得了亚ppm脱硫。通过该吸附剂实现的重量%S俘获在该温度范围内也未显示出明显最大值。吸附剂对于反应温度的这种稳健对瞬时操作,如在交通工具上柴油燃料(包含10至50ppm总硫)的亚ppm脱硫来说应当是尤其有益的。
实施例11
所述脱硫方法未显著改变所得到的脱硫的燃料的性质,从而有助于确保较低硫的燃料产物符合燃料规范。对柴油A样品进行下列试验,该柴油A样品利用BGU-4吸附剂在300℃、250psig和6/小时LHSV下脱硫。如图9所示,在柴油A和作为该脱硫方法结果的柴油A的亚ppm硫产物的沸程方面没有明显变化(ASTM D86-01)。如图10所示,在API重力(ASTM D4052-96)、计算十六烷指数(ASTM D4737-96a(2001))和由平均磨损斑痕长度测量的燃料的润滑性(ASTM D6079)方面也没有显著变化。
Claims (18)
1.一种从烃流中脱除硫的方法,该方法包括使所述流与吸附剂接触,该吸附剂包括镍磷化物复合物,该镍磷化物复合物具有Ni2P、Ni12P5、Ni3P相或其混合物的颗粒,其中所述吸附剂通过如下方法制备:
提供载体,该载体包括二氧化硅、二氧化硅-氧化铝或其组合;
在所述载体上沉积NixPyOz复合物;
还原所述NixPyOz复合物以在所述载体上形成NixP纳米颗粒;和
通过提取所述载体中的二氧化硅而提高NixP在所述吸附剂中的含量。
2.根据权利要求1的方法,其中该颗粒尺寸范围为2nm至30nm。
3.根据权利要求1的方法,其中,在接触烃流之后,通过在450至580℃的温度和3至6小时的时间下,使该吸附剂与足以还原所吸附的硫物种的氢接触,使该吸附剂再生。
4.根据权利要求1的方法,其中硫由20ppm降至低于1ppm。
5.根据权利要求1的方法,其中所述硫脱除是在未添加氢的条件下完成的。
6.根据权利要求1的方法,其中从多种有机硫化合物中脱除所述硫原子,所述有机硫化合物选自硫醇、硫化物、噻吩、苯并噻吩(BT)、二苯并噻吩(DBT)、其它取代的DBT及其组合。
7.根据权利要求1的方法,其中该吸附剂在0.5/小时至30/小时的流速范围内保持其容量。
8.根据权利要求7的方法,其中该吸附剂在1至20/小时的流速范围内保持其容量。
9.根据权利要求8的方法,其中该吸附剂在3至15/小时的流速范围内保持其容量。
10.根据权利要求1的方法,其中该吸附剂在150至400℃的宽温度范围内保持稳健的反应性。
11.根据权利要求10的方法,其中该吸附剂在200至375℃的宽温度范围内保持稳健的反应性。
12.根据权利要求11的方法,其中该吸附剂在275至350℃的宽温度范围内保持稳健的反应性。
13.根据权利要求1的方法,其中该脱硫方法未显著改变未添加的柴油燃料的任何本体特性。
14.根据权利要求1的方法,其中所提供的载体具有200m2/g至800m2/g范围内的表面积和5nm至50nm范围内的平均孔隙尺寸。
15.根据权利要求1或14的方法,其中所述提取所述载体包括使所述吸附剂与氢氧化钠或氢氟酸接触。
16.根据权利要求1或14的方法,其中,在尿素的存在下,从用酸稳定的镍盐和铵磷酸盐的水溶液中将所述NixPyOz复合物通过沉积沉淀法沉积在所述载体上,所述水溶液的pH为0.2至3。
17.根据权利要求16的方法,其中所述pH为0.8至1.2。
18.根据权利要求16或17的方法,其中所述酸为硝酸。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85524106P | 2006-10-30 | 2006-10-30 | |
US60/855,241 | 2006-10-30 | ||
US11/977,898 | 2007-10-26 | ||
US11/977,898 US20080099375A1 (en) | 2006-10-30 | 2007-10-26 | Process for adsorption of sulfur compounds from hydrocarbon streams |
PCT/US2007/022857 WO2008054712A1 (en) | 2006-10-30 | 2007-10-30 | Process for adsorption of sulfur compounds from hydrocarbon streams |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101678317A CN101678317A (zh) | 2010-03-24 |
CN101678317B true CN101678317B (zh) | 2013-09-04 |
Family
ID=39047938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800408377A Expired - Fee Related CN101678317B (zh) | 2006-10-30 | 2007-10-30 | 从烃流中吸附硫化合物的方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US20080099375A1 (zh) |
EP (1) | EP2089154B1 (zh) |
JP (1) | JP5033881B2 (zh) |
KR (1) | KR101423353B1 (zh) |
CN (1) | CN101678317B (zh) |
CA (1) | CA2667887C (zh) |
WO (1) | WO2008054712A1 (zh) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2647489A1 (en) * | 2006-03-31 | 2007-11-01 | Perry Equipment Corporation | Layered filter for treatment of contaminated fluids |
WO2007117416A2 (en) * | 2006-03-31 | 2007-10-18 | Perry Equipment Corporation | Composite adsorbent block for the treatment of contaminated fluids |
WO2007117420A2 (en) * | 2006-03-31 | 2007-10-18 | Perry Equipment Corporation | Canister for treatment of contaminated fluids |
US8062523B2 (en) | 2006-12-01 | 2011-11-22 | Perry Equipment Corporation | Filter element and methods of manufacturing and using same |
US7842181B2 (en) * | 2006-12-06 | 2010-11-30 | Saudi Arabian Oil Company | Composition and process for the removal of sulfur from middle distillate fuels |
US20090032472A1 (en) * | 2007-07-31 | 2009-02-05 | Perry Equipment Corporation | Systems and methods for removal of heavy metal contaminants from fluids |
US7935248B2 (en) * | 2007-10-30 | 2011-05-03 | The University Of New Brunswick | Adsorbents for denitrogenation desulfurization of hydrocarbon oils and methods of producing |
US8142646B2 (en) | 2007-11-30 | 2012-03-27 | Saudi Arabian Oil Company | Process to produce low sulfur catalytically cracked gasoline without saturation of olefinic compounds |
US20090145808A1 (en) * | 2007-11-30 | 2009-06-11 | Saudi Arabian Oil Company | Catalyst to attain low sulfur diesel |
EP2250129A2 (en) | 2008-02-21 | 2010-11-17 | Saudi Arabian Oil Company | Catalyst to attain low sulfur gasoline |
US8562821B2 (en) * | 2008-12-15 | 2013-10-22 | Council of Scientific & Industrial Research Center for High Technology | Process for the removal of sulfones from oxidized hydrocarbon fuels |
US20100282567A1 (en) * | 2009-05-08 | 2010-11-11 | Krishnan Sankaranarayanan | On-board desulfurization system |
CA2777765C (en) | 2009-10-13 | 2018-02-20 | Square, Inc. | Systems and methods for dynamic receipt generation with environmental information |
US9296960B2 (en) | 2010-03-15 | 2016-03-29 | Saudi Arabian Oil Company | Targeted desulfurization process and apparatus integrating oxidative desulfurization and hydrodesulfurization to produce diesel fuel having an ultra-low level of organosulfur compounds |
US20110220550A1 (en) * | 2010-03-15 | 2011-09-15 | Abdennour Bourane | Mild hydrodesulfurization integrating targeted oxidative desulfurization to produce diesel fuel having an ultra-low level of organosulfur compounds |
US9005432B2 (en) | 2010-06-29 | 2015-04-14 | Saudi Arabian Oil Company | Removal of sulfur compounds from petroleum stream |
CN101979141B (zh) * | 2010-09-15 | 2012-08-22 | 天津大学 | 改性的磷化镍催化剂及其用于氯苯类化合物加氢脱氯的方法 |
US8535518B2 (en) | 2011-01-19 | 2013-09-17 | Saudi Arabian Oil Company | Petroleum upgrading and desulfurizing process |
AU2012363092B2 (en) | 2011-04-06 | 2015-12-24 | Exxonmobil Research And Engineering Company | Identification and use of an isomorphously substituted molecular sieve material for gas separation |
US8906227B2 (en) | 2012-02-02 | 2014-12-09 | Suadi Arabian Oil Company | Mild hydrodesulfurization integrating gas phase catalytic oxidation to produce fuels having an ultra-low level of organosulfur compounds |
US8877153B2 (en) * | 2012-06-06 | 2014-11-04 | Exxonmobil Research And Engineering Company | Adsorbent for ultradeep removal of sulfur compounds from distillate fuels |
CN103521249B (zh) * | 2012-07-05 | 2016-08-24 | 中国科学院大连化学物理研究所 | 一种用于合成气转化的磷化物催化剂和制备方法及其应用 |
CN102911003B (zh) * | 2012-10-26 | 2014-07-23 | 山西阳煤丰喜肥业(集团)有限责任公司 | 一种脱除焦化苯中噻吩硫的方法 |
US8920635B2 (en) | 2013-01-14 | 2014-12-30 | Saudi Arabian Oil Company | Targeted desulfurization process and apparatus integrating gas phase oxidative desulfurization and hydrodesulfurization to produce diesel fuel having an ultra-low level of organosulfur compounds |
JP6371102B2 (ja) * | 2014-04-24 | 2018-08-08 | 日揮触媒化成株式会社 | 金属担持成形体、その製造方法、吸着脱硫触媒、吸着脱硫方法、水素製造方法、および、燃料電池システム |
CN105214697B (zh) * | 2014-06-18 | 2017-12-01 | 天津大学 | 一种低链烷烃脱氢制烯烃催化剂及制备方法 |
CN104190921B (zh) * | 2014-09-02 | 2016-08-24 | 北京科技大学 | 一种Au/Ni12P5核壳结构的纳米粒子及其制备方法 |
CN104190456B (zh) * | 2014-09-26 | 2017-03-29 | 中国石油大学(华东) | 一种磷化镍脱氢催化剂的再生方法及再生催化剂的应用方法 |
US10410200B2 (en) | 2016-03-15 | 2019-09-10 | Square, Inc. | Cloud-based generation of receipts using transaction information |
US10628811B2 (en) | 2016-03-15 | 2020-04-21 | Square, Inc. | System-based detection of card sharing and fraud |
US10636019B1 (en) | 2016-03-31 | 2020-04-28 | Square, Inc. | Interactive gratuity platform |
US10414989B2 (en) * | 2016-04-15 | 2019-09-17 | Baker Hughes, A Ge Company, Llc | Chemical process for sulfur reduction of hydrocarbons |
CN106166496B (zh) * | 2016-06-06 | 2018-08-17 | 青岛科技大学 | 一种油脂加氢脱氧催化剂 |
CN107824206A (zh) * | 2016-11-10 | 2018-03-23 | 中国石油天然气股份有限公司 | 一种超深度脱硫催化剂 |
US10752847B2 (en) | 2017-03-08 | 2020-08-25 | Saudi Arabian Oil Company | Integrated hydrothermal process to upgrade heavy oil |
US10703999B2 (en) | 2017-03-14 | 2020-07-07 | Saudi Arabian Oil Company | Integrated supercritical water and steam cracking process |
CN107684919B (zh) * | 2017-08-03 | 2020-05-19 | 大连理工大学 | 负载型Ni3P催化剂及其制备方法和应用 |
CN110538645B (zh) * | 2018-05-28 | 2022-05-03 | 中国石油化工股份有限公司 | 一种结块的再生吸附剂的处理方法和含硫烃油的脱硫方法 |
US10526552B1 (en) | 2018-10-12 | 2020-01-07 | Saudi Arabian Oil Company | Upgrading of heavy oil for steam cracking process |
CN109651850B (zh) * | 2019-02-18 | 2021-04-27 | 山西永东化工股份有限公司 | 一种煤焦油蒽油脱硫脱灰及生产超导电炭黑方法 |
US11719684B2 (en) | 2019-10-04 | 2023-08-08 | Conocophillips Company | Elemental sulfur analysis in fluids |
US20230226528A1 (en) * | 2020-06-30 | 2023-07-20 | Khalifa University of Science and Technology | Hydrogenation of sulphur containing gases with phosphide nanoparticles |
WO2022144562A1 (en) * | 2020-12-28 | 2022-07-07 | Totalenergies Onetech | Recovery method of organic molecules from a complex matrix |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8503090A (nl) * | 1985-11-11 | 1987-06-01 | Harshaw Chemie Bv | Werkwijze voor het bereiden van gedragen katalysator systemen. |
JPH0620539B2 (ja) * | 1986-12-02 | 1994-03-23 | 日本化薬株式会社 | 脱臭剤 |
JP3029841B2 (ja) * | 1990-04-16 | 2000-04-10 | 株式会社豊田中央研究所 | 複合吸着材およびその製造方法 |
WO2001023501A1 (en) * | 1999-09-30 | 2001-04-05 | Virginia Tech Intellectual Properties, Inc. | Novel transition metal phosphide catalysts |
US6429170B1 (en) * | 2000-05-30 | 2002-08-06 | Phillips Petroleum Company | Sorbents for desulfurizing gasolines and diesel fuel |
US8158843B2 (en) * | 2002-02-12 | 2012-04-17 | The Penn State Research Foundation | Deep desulfurization of hydrocarbon fuels |
US7074324B2 (en) * | 2002-06-05 | 2006-07-11 | Exxonmobil Research And Engineering Company | Process to remove sulfur contaminants from hydrocarbon streams |
KR100692699B1 (ko) * | 2004-12-24 | 2007-03-09 | 현대자동차주식회사 | 연료전지 전극용 백금 촉매의 제조방법 |
-
2007
- 2007-10-26 US US11/977,898 patent/US20080099375A1/en not_active Abandoned
- 2007-10-30 CA CA2667887A patent/CA2667887C/en not_active Expired - Fee Related
- 2007-10-30 WO PCT/US2007/022857 patent/WO2008054712A1/en active Application Filing
- 2007-10-30 JP JP2009534695A patent/JP5033881B2/ja not_active Expired - Fee Related
- 2007-10-30 EP EP07839842.7A patent/EP2089154B1/en not_active Not-in-force
- 2007-10-30 KR KR1020097010964A patent/KR101423353B1/ko not_active IP Right Cessation
- 2007-10-30 CN CN2007800408377A patent/CN101678317B/zh not_active Expired - Fee Related
-
2010
- 2010-04-19 US US12/799,120 patent/US8524071B2/en not_active Expired - Fee Related
Non-Patent Citations (4)
Title |
---|
Joseph P. Carpenter. et al.Organometallic compounds as single-source precursors to nanocomposite materials: an overview.《Journal of Organometallic Chemistry》.1998,第557卷(第1期),第121-130页. * |
Nozaki F. et al.Chemical Composition of the Catalyst Prepared by Reduction of Nickel Orthophosphate in Hydrogen and Catalytic Activity for Partial Hydrogenation of 1,3-Butadiene.《Journal og Catalysis》.1975,第40卷第166-172页. * |
NozakiF.etal.ChemicalCompositionoftheCatalystPreparedbyReductionofNickelOrthophosphateinHydrogenandCatalyticActivityforPartialHydrogenationof1 3-Butadiene.《Journal og Catalysis》.1975 |
W.R.A.M.Robinson. et al.Phosphorus Promotion of Ni(Co)-Containing Mo-Free Catalysts in Quinoline Hydrodenitrogenation.《Journal of Catalysis》.1996,第161卷(第2期),第539-550页. * |
Also Published As
Publication number | Publication date |
---|---|
JP5033881B2 (ja) | 2012-09-26 |
US20080099375A1 (en) | 2008-05-01 |
EP2089154B1 (en) | 2014-11-19 |
KR101423353B1 (ko) | 2014-07-24 |
WO2008054712A1 (en) | 2008-05-08 |
KR20100014248A (ko) | 2010-02-10 |
CA2667887A1 (en) | 2008-05-08 |
CA2667887C (en) | 2014-01-21 |
JP2010508138A (ja) | 2010-03-18 |
EP2089154A1 (en) | 2009-08-19 |
US20100206776A1 (en) | 2010-08-19 |
US8524071B2 (en) | 2013-09-03 |
CN101678317A (zh) | 2010-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101678317B (zh) | 从烃流中吸附硫化合物的方法 | |
EP1609842B1 (en) | Method for purifying a liquid medium | |
KR100664895B1 (ko) | 경유의 수소화 처리 촉매, 이의 제조방법 및 경유의수소화 처리방법 | |
KR100755194B1 (ko) | 경유의 수소화 처리 촉매, 이의 제조방법 및 경유의 수소화처리방법 | |
Wang et al. | The enhanced adsorption of dibenzothiophene onto cerium/nickel-exchanged zeolite Y | |
CA2567617C (en) | Process for removing sulfur compounds from hydrocarbon streams and adsorbent used in this process | |
CN101618314B (zh) | 一种脱硫吸附剂及其制备方法和应用 | |
JP3939695B2 (ja) | 軽油留分を吸着脱硫する方法 | |
RU2745372C2 (ru) | Катализатор для обессеривания жидких нефтепродуктов, его получение и применение | |
CN102343249A (zh) | 一种烃油脱硫吸附剂及其制备方法和应用 | |
CN101088614A (zh) | 一种超细粒子共晶沸石芳构化催化剂及其制备方法和应用 | |
TW200800394A (en) | Catalyst composition for reducing gasoline sulfur content in catalytic cracking process | |
CN101618313A (zh) | 一种脱硫吸附剂及其制备方法和应用 | |
US8877153B2 (en) | Adsorbent for ultradeep removal of sulfur compounds from distillate fuels | |
WO2013065007A1 (en) | Nano structured adsorbent for removal of sulphur from diesel and gasoline like fuels and process for preparing the same | |
CN101148604A (zh) | 燃料油的深度脱硫剂的制备方法 | |
CN102114404B (zh) | 一种脱硫吸附剂及其制备方法和应用 | |
Cao et al. | Adsorption desulphurization of gasoline by silver loaded onto modified activated carbons | |
CN102343250A (zh) | 一种烃油脱硫吸附剂及其制备方法和应用 | |
Ahmedzeki et al. | Reactive adsorption desulfurization by nanocrystalline ZnO/Zeolite a molecular sieves | |
CN101130701B (zh) | 一种汽油吸附脱硫方法 | |
Shen et al. | Preparation of high surface area mesoporous activated carbon fiber and its adsorption properties of sulfides from light oil | |
JP2005058856A (ja) | 炭化水素油の脱硫剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130904 Termination date: 20151030 |
|
EXPY | Termination of patent right or utility model |