CN101665110A - 增强反向驱动性能的混合动力电动车辆动力系的方法 - Google Patents

增强反向驱动性能的混合动力电动车辆动力系的方法 Download PDF

Info

Publication number
CN101665110A
CN101665110A CN200910168921A CN200910168921A CN101665110A CN 101665110 A CN101665110 A CN 101665110A CN 200910168921 A CN200910168921 A CN 200910168921A CN 200910168921 A CN200910168921 A CN 200910168921A CN 101665110 A CN101665110 A CN 101665110A
Authority
CN
China
Prior art keywords
power
engine
battery
reverse drive
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910168921A
Other languages
English (en)
Other versions
CN101665110B (zh
Inventor
大窪俊介
邝明朗
法扎尔·阿拉曼·塞伊德
卡罗尔·路易丝·大久保
沙雷斯·斯坎特·柯扎雷卡尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Publication of CN101665110A publication Critical patent/CN101665110A/zh
Application granted granted Critical
Publication of CN101665110B publication Critical patent/CN101665110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种控制具有在前向驱动期间作为动力源的发动机和作为反向驱动动力源的电动马达的混合动力电动车辆动力系的方法。通过使发动机运转于高于给定发动机功率的最佳转速的增加的转速来实现反向驱动期间所需的发动机动力。

Description

增强反向驱动性能的混合动力电动车辆动力系的方法
技术领域
本发明涉及一种混合动力电动车辆动力系,其中,电动马达为反向驱动扭矩源。
背景技术
带有分离动力流路径的混合动力电动车辆动力系包括电动力源和机械动力源(例如内燃发动机)。高压牵引马达、电池和发电机电连接。发动机和牵引马达通过动力传动装置可驱动地连接至车辆牵引轮。
美国专利6,991,053和7,285,869中公开了具有带有分离动力流特性的配置的动力系。该配置包括形成从电动力源和机械动力源至车辆牵引轮的分开的扭矩传输路径的行星齿轮系统。行星齿轮系统包括通过传动装置可驱动地连接至牵引轮的齿圈、可驱动地连接至发电机的中心齿轮、和可驱动地连接至发动机的行星齿轮架。发电机、马达、和电池电连接。
如下面方程(1)中所示,在车辆前向驱动期间以分离动力传输模式应用至行星齿轮架的正的发动机扭矩处于在车辆牵引轮处增强来自马达的驱动扭矩的方向。相反地,在反向驱动期间,在车辆牵引轮处来自马达的驱动扭矩与前向驱动中的扭矩方向相反。这样发动机扭矩降低了车辆牵引轮处的净驱动扭矩。下面方程(2)中显示了当Tmotor等于-200Nm时该情况的具体示例。从方程(2)可以看出反向驱动期间任何正的发动机扭矩将降低车轮扭矩的绝对值。
反向驱动期间最小化发动机扭矩输出以最大化反向驱动性能。如果可能,所有反向驱动扭矩均从由电池提供给马达的电能获得。然而,如果电池无法提供足够的电能以满足驾驶员对反向扭矩的需求,则必须使用发动机来驱动发电机以产生电能对电池充电。
如下面的稳定态方程所证明,发动机产生的正的驱动扭矩降低了反向的净可用车轮扭矩。
TWheel=K1(Tmotor+K2 Tengine)    (1)
其中
K1和K2为正的机械传动比,且
Tmotor为马达扭矩,其在前向驱动中为正值而在反向驱动中为负值,且
Tengine为发动机扭矩。
在反向驱动期间,例如,Tmotor可等于-200Nm。于是车轮扭矩TWheel将等于:
TWheel=K1(-200Nm+K2 Tengine)    (2)
由于低运转温度、或高运转温度、或老化、或电池充电状态极限,高压电池可能不能满足牵引轮处驾驶员对反向扭矩的需求。因此,必须使用发动机产生电能供电动马达使用以驱动牵引轮。在这种情况下,方程(1)和(2)证明可用反向扭矩随后将降低。
发明内容
如果发动机动力产生于高转速低扭矩的运转点而非通常用于高发动机运转效率的转速及扭矩运转点,则反向驱动期间使用发动机驱动发电机对电池充电时发生的车轮扭矩减小可被最小化。这通过使用为反向驱动指定的所需发动机转速和扭矩的可校准变量映射图来实现,该映射图与在前向驱动期间遵循的发动机转速与扭矩映射图不同。
用于设立反向驱动期间运转点的映射图使得发动机转速对于给定发动机功率增加产生逐渐增加,发动机转速从发动机怠速状态增加至用于反向驱动的最佳目标运转点。该运转点处的目标发动机转速为所需发动机功率的函数。对于反向驱动发动机转速从怠速状态至目标发动机转速的改变为逐渐改变,其不会导致转速在怠速发动机转速增加至所需发动机目标转速时突然增加。这避免了动力系中不需要的噪音、振动和粗糙度(noise,vibration andharshness)。
最大发动机目标转速为车速的函数。因此,可校准运转映射图可为两个变量的函数。在可替代的实施例中,其可为一个变量(发动机功率)的函数,其中,功率被减小以限制驾驶员的动力指令,以在反向驱动期间产生最大发动机转速。
根据本发明的一方面,公开了一种在混合动力电动车辆动力系中产生反向驱动轮扭矩的方法;所述动力系具有发动机、电动马达、电池、电动马达-发电机、以及从所述发动机和所述马达延伸至车辆牵引轮的分离动力传输路径;所述方法包含:车辆系统控制器计算牵引轮处的所需反向驱动功率;电池和电池控制模块测量电池充电状态;车辆系统控制器将计算的反向驱动功率和测量的充电状态下的有效电池功率进行比较;当所述反向驱动功率要求小于所述测量的电池充电状态下的所述有效电池功率时,要求最小发动机功率;车辆系统控制器计算所述最小发动机功率要求下的发动机扭矩;以及发动机的控制单元控制发动机转速和发动机扭矩,以在反向驱动期间实现所述最小发动机功率,从而在所述马达驱动所述牵引轮时在所述牵引轮处实现增强的反向驱动扭矩。
根据本发明的一方面,公开了一种在混合动力电动车辆动力系中的牵引轮处产生反向驱动轮扭矩的方法;所述动力系具有发动机、电动马达、电池和电动马达-发电机;所述马达、所述电池和所述马达-发电机电连接;且分离动力传输路径从所述发动机和所述马达延伸至车辆牵引轮;所述方法包含:车辆系统控制器计算牵引轮处的所需反向驱动功率;当反向驱动期间的所述功率大于测量的电池充电状态下的电池功率时,车辆系统控制器通过减去在测量的充电状态下的电池功率来计算发动机功率;并且当所需驱动功率大于所述测量的充电状态下的电池功率时,发动机的控制单元控制发动机转速和发动机扭矩以实现所需的发动机功率,从而在所述马达驱动所述牵引轮而所述发动机以对应于低于最佳发动机效率的发动机效率的发动机转速和发动机扭矩运转时实现所述牵引轮处增强的驱动扭矩。
根据本发明的一方面,公开了一种在混合动力电动车辆动力系中产生反向驱动轮扭矩的方法;所述动力系具有发动机、电动马达、电池和电动马达-发电机,且分离动力传动装置形成从所述发动机和所述马达延伸至车辆牵引轮的动力传输路径;所述方法包含:车辆系统控制器计算牵引轮处的所需反向驱动功率;当所述反向驱动功率要求小于测量的电池充电状态下的有效电池功率时,要求最小发动机功率;当所述反向驱动功率要求大于所述测量的电池充电状态下的电池功率时,车辆系统控制器通过从所需功率减去测量的电池充电状态下的电池功率来计算发动机功率;当所述反向驱动功率要求大于所述测量的电池充电状态下的可用电池功率时,车辆系统控制器根据目标发动机转速和所述计算的发动机功率的函数来确定发动机扭矩;当所述反向驱动功率要求小于所述测量的电池充电状态下的可用电池功率时,车辆系统控制器根据所述确定的发动机转速和所述计算的发动机功率来计算发动机扭矩;以及发动机的控制单元根据发动机功率和发动机扭矩的函数控制发动机转速和发动机扭矩,从而实现所述牵引轮处增强的反向驱动扭矩。
附图说明
图1为能够实施本发明的分离动力混合动力电动车辆动力系的示意图。
图2为确定用于反向运转的发动机变量的图示或映射图。
图3为说明了执行本发明控制策略的算法的流程图。
图4显示了为实现稳定发动机功率的发动机扭矩和发动机转速之间的关系以及对于最大发动机运转效率的发动机扭矩和发动机转速的图示。
图5为用于反向驱动和前向驱动的发动机转速和车辆速度的图示。
具体实施方式
图1为能够使用本发明控制策略的混联式混合动力电动车辆动力系的示意图。
图1的配置包括内燃发动机10和动力传动系统12。发动机10的发动机曲轴(其对应于传动系统扭矩输入轴14)可驱动地连接至行星齿轮单元18的行星齿轮架16。在某些工况下可作为马达的发电机20通过轴22机械连接至行星齿轮单元18的中心齿轮24。行星齿轮架16可旋转地支撑将中心齿轮24和行星齿圈26啮合的小齿轮。
扭矩传输元件28将齿圈扭矩传递至中间轴传动装置32的扭矩输入元件30。如36处所指示,中间轴传动装置32的输出齿轮元件34可驱动地连接至总体上在38处所指示的差速器-车桥总成,从而将扭矩传递至车辆牵引轮40。
车辆系统控制器(VSC)42电连接至传动控制模块(transmission controlmodule,TCM)44和发动机10的控制单元(ECU)。车辆系统控制器通过总体上在46处指示的信号流路径向发动机控制单元发送扭矩指令信号。信号流路径46还在车辆系统控制器(VSC)42和传动控制模块(TCM)44之间提供信号通信。电池和电池控制模块(BCM)48通过信号流路径46电连接至车辆系统控制器42。车辆系统控制器(VSC)42接收动力系输入(例如变速器档位选择器位置(PRND)、加速踏板位置(APPS)和制动踏板位置信号(BPPS)),并作为BCM、TCM和ECU的管理控制器。VSC、TCM、BCM和ECU共同形成总体动力系控制模块(PCM)。所有这些控制系统元件使用控制器局域网(CAN)协议通过车内网络连通。
发电机20电连接至电动马达50。马达50的转子机械连接至中间轴传动装置32的马达扭矩驱动齿轮52。如图1中所见,由电池和电池控制模块48驱动的高压总线54提供了发电机20和马达之间的电连接。
传动(驱动桥)控制模块44与马达50通过马达控制信号流路径56连通。发电机与传动控制模块通过信号流路径58连通。60处指示的发电机制动器通过信号流路径62电连接至传动控制模块。
当应用制动器60时,发动机动力穿过完全机械扭矩流路径从发动机通过行星齿轮单元18和中间轴传动装置32传递至牵引轮-车桥总成。
在正常混合动力电动动力系前向驱动运转期间,可释放制动器60且发电机20可向中心齿轮施加反作用扭矩,从而形成从发动机至差速器-车桥总成、以及从马达-发电机子系统通过中间轴传动装置32至车轮-车桥总成的并联扭矩流路径。
图1中示意说明的动力系系统可依赖于完全电动马达驱动或依赖于马达动力和发动机动力二者以实现最大效率。图1的系统可产生电动力同时使用发电机动力输出来驱动车辆。车辆系统控制器将通过在车辆多个组件之间管理动力分配来将车辆维持在其最大性能点。其管理发动机、发电机、马达和电池的运转状态以最大化总体车辆效率。电池为发电机和马达的能量存储介质。
可通过控制发电机速度使发动机动力分离进入两个动力流路径,以形成从发动机10至行星齿轮单元18、至行星齿轮单元的齿圈、并至中间轴传动装置32的机械动力流路径。从发动机10至发电机20、至马达50、并至中间轴传动装置32形成电动力流路径。
通过将发动机转速控制至所需值来分离发动机动力流路径,其对于给定的齿圈速度导致确定的发电机速度。发电机速度将根据车辆速度而改变。变化的发电机速度将改变发动机输出动力在电动力流路径和机械动力流路径之间的分离。
对发动机转速的控制导致发电机扭矩抵抗发动机输出扭矩。该发电机反作用扭矩使得发动机输出扭矩被分配至行星齿轮组的齿圈并最终分配至车轮。该运转模式被称为“主动分配”。
由于行星齿轮组的运动学特性,发电机可以沿着与反作用于发动机输出扭矩的扭矩相同的方向旋转。在该运转模式中发电机向行星齿轮组输入动力以驱动车辆。该运转模式被称为“被动分离”。像在“主动分离”模式的情况中的那样,由发电机速度控制产生的发电机扭矩反作用于发动机输出扭矩并向车辆牵引轮分配发动机输出扭矩。
在发动机关闭的发电机驱动模式中,发电机作为马达,马达驱动反作用扭矩由固定行星齿轮架16的超速制动器15(单向连轴器OWC)产生。这种马达、发电机、和行星齿轮组的组合作为机电无级变速器。
当驱动发电机制动器以实现并联模式运转时,中心齿轮被锁定防止旋转,而发电机制动扭矩提供与发动机输出扭矩相反的反作用扭矩。在该运转模式中,所有的发动机输出扭矩均通过机械扭矩流路径以固定传动比传输至车辆牵引轮。
与常规的车辆动力系不同,此动力分离动力系需要由发动机转速控制产生的发电机扭矩或发电机制动扭矩以通过电动力流路径和机械动力流路径或仅通过机械并联路径来传递发动机输出动力,以实现车辆的前向移动。
第二动力源使得从电池吸取电动马达动力,以独立于发动机提供推进力,从而前向或反向驱动车辆。该运转模式被称为“电驱动”。另外,发电机可从电池吸取动力并驱动发动机输出轴上的单向离合器以前向推进车辆。该运转模式称为“发电机驱动”。
高压牵引电池作为存储被发电机转化为电流的电能的能量存储装置。其还存储滑行制动期间车辆产生的动能。滑行制动能量通过牵引马达传输至蓄电池。
图2显示了对于反向驱动所需的发动机功率和目标发动机转速之间的关系的映射图或图示。62处显示了所需发动机功率和目标发动机转速之间的关系,其将实现最大发动机功率。62处显示的关系对于内燃发动机通常为非线性。
图2中怠速时最大发动机功率指示为P1。在该怠速功率处,发动机转速指示为Nidle。对应于最大发动机功率的最大发动机转速指示为Nmax。对应于最大发动机转速的最大发动机功率指示为P2。车辆驾驶员可通过调节加速踏板位置选择目标发动机功率。加速踏板位置传感器向车辆系统控制器42发送信号,其处理信号并使用存储在ROM中的图2的图示向TCM 44发布目标发动机转速指令。校准图2的图示以在所需发动机功率如64处所示从P1改变至P2时提供逐渐增长的目标发动机转速。该逐渐增长将避免发动机转速从怠速改变至目标转速时不期望的噪音和震动。
图2的图示说明了发动机运转期间目标发动机转速和所需发动机功率之间的关系。在反向驱动模式中,如果电池的充电状态降低至校准阈值之下,则发动机动力用于驱动发电机20,其对电池48充电。66处所示的目标发动机转速低于68处的最大目标发动机转速。70处显示了最大发动机转速68下的最大发动机功率。
图4在72处显示了发动机转速和发动机扭矩的图示,其会实现最大发动机效率。74处显示了发动机扭矩和发动机转速间的恒定功率关系。在正常前向驱动运转期间,发动机将运转于实现最大效率的交叉点76。如果发动机转速在反向驱动期间增加至如78处指示的适于反向驱动的目标转速则,发动机扭矩将降低至T1处指示的值,其基本上低于T2处的最佳发动机扭矩值。
图5为发动机转速和车辆速度的图示,如80处所示对于任何给定的变速器传动比其可为线性关系。在前向驱动期间,发动机转速可从点82处的大约3000rpm改变至84处所示大约6000rpm的最大发动机转速。在反向驱动期间,随着反向驱动的车辆速度从0改变至大约30mph,发动机转速可从82处所示的值改变至0值。
图3为证明了图1中所示的混合动力电动车辆动力系结构的反向驱动模式的策略的流程图。如果驾驶员在步骤84处选择反向驱动,则在步骤86处车辆系统控制器计算牵引轮处的反向驱动期间的所需功率。然后,电池和电池控制模块测量电池的充电状态。所需功率将等于驾驶员要求的功率加上凭经验确定的电功率损耗。车辆系统控制器进行检查以确定所需功率是否大于车辆电池功率(Pbat),这在步骤88有所显示。
如果所需功率没有超过充电状态下的测量的可用电池功率,则要求最小发动机功率,如图3中90处所示。可在90处从存储于车辆系统控制器42中的ROM存储器中的查值表中选择该最小发动机功率。该查值表凭经验构造以考虑发动机燃烧极限和其它约束。例如,发动机可运转于图2中的Nidle处。在可替代的实施例中,如果发动机已经关闭,则可保持其关闭。当要求最小功率时,在93处车辆系统控制器使用扭矩、发动机功率和发动机转速之间的已知关系来计算发动机扭矩。如94处所示,随后发动机的控制单元可以以常规方式控制发动机转速以及发动机扭矩,以在反向驱动期间实现所述最小发动机功率,从而在所述马达驱动所述牵引轮时在所述牵引轮处实现增强的反向驱动扭矩。
如果步骤88处确定的反向驱动中所需发动机功率大于测量的可用电池功率(Pbat),程序将前进至步骤91,在该处车辆系统控制器通过从所需功率P减去充电状态下的测量的可用电池功率Pbat来计算所需发动机功率。通过步骤91确定的信息,使用图2的控制逻辑发动机的控制单元将发动机转速和扭矩控制于值N和TENG,以实现所需的发动机功率,从而在所述马达驱动所述牵引轮而所述发动机以对应于低于最佳发动机效率的发动机效率的发动机转速和发动机扭矩运转时实现所述牵引轮处增强的驱动扭矩。应了解,图4的78处的扭矩基本上低于发动机以最大效率运转的76处的扭矩。
尽管已经公开了本发明实施例,本领域技术人员应当了解可不脱离本发明的范围作出修改。所有这种修改及其等同变化由下面的权利要求所涵盖。

Claims (6)

1、一种在混合动力电动车辆动力系中产生反向驱动轮扭矩的方法;所述动力系具有发动机、电动马达、电池、电动马达-发电机、以及从所述发动机和所述马达延伸至车辆牵引轮的分离动力传输路径;所述方法包含:
车辆系统控制器计算牵引轮处的所需反向驱动功率;
电池和电池控制模块测量电池充电状态;
车辆系统控制器将计算的反向驱动功率和测量的充电状态下的有效电池功率进行比较;
当所述反向驱动功率要求小于所述测量的电池充电状态下的所述有效电池功率时,要求最小发动机功率;
车辆系统控制器计算所述最小发动机功率要求下的发动机扭矩;以及
发动机的控制单元控制发动机转速和发动机扭矩,以在反向驱动期间实现所述最小发动机功率,从而在所述马达驱动所述牵引轮时在所述牵引轮处实现增强的反向驱动扭矩。
2、根据权利要求1所述的方法,其特征在于,所述计算的功率包含驾驶员需求的所述牵引轮处的功率加上所述动力系中的电损失。
3、一种在混合动力电动车辆动力系中的牵引轮处产生反向驱动轮扭矩的方法;所述动力系具有发动机、电动马达、电池和电动马达-发电机;所述马达、所述电池和所述马达-发电机电连接;且分离动力传输路径从所述发动机和所述马达延伸至车辆牵引轮;所述方法包含:
车辆系统控制器计算牵引轮处的所需反向驱动功率;
当反向驱动期间的所述功率大于测量的电池充电状态下的电池功率时,车辆系统控制器通过减去在测量的充电状态下的电池功率来计算发动机功率;并且
当所需驱动功率大于所述测量的充电状态下的电池功率时,发动机的控制单元控制发动机转速和发动机扭矩以实现所需的发动机功率,从而在所述马达驱动所述牵引轮而所述发动机以对应于低于最佳发动机效率的发动机效率的发动机转速和发动机扭矩运转时实现所述牵引轮处增强的驱动扭矩。
4、根据权利要求3所述的方法,其特征在于,所述计算的功率包含驾驶员需求的所述牵引轮处的功率加上所述动力系中的电损失。
5、一种在混合动力电动车辆动力系中产生反向驱动轮扭矩的方法;所述动力系具有发动机、电动马达、电池和电动马达-发电机,且分离动力传动装置形成从所述发动机和所述马达延伸至车辆牵引轮的动力传输路径;所述方法包含:
车辆系统控制器计算牵引轮处的所需反向驱动功率;
当所述反向驱动功率要求小于测量的电池充电状态下的有效电池功率时,要求最小发动机功率;
当所述反向驱动功率要求大于所述测量的电池充电状态下的电池功率时,车辆系统控制器通过从所需功率减去测量的电池充电状态下的电池功率来计算发动机功率;
当所述反向驱动功率要求大于所述测量的电池充电状态下的可用电池功率时,车辆系统控制器根据目标发动机转速和所述计算的发动机功率的函数来确定发动机扭矩;
当所述反向驱动功率要求小于所述测量的电池充电状态下的可用电池功率时,车辆系统控制器根据所述确定的发动机转速和所述计算的发动机功率来计算发动机扭矩;以及
发动机的控制单元根据发动机功率和发动机扭矩的函数控制发动机转速和发动机扭矩,从而实现所述牵引轮处增强的反向驱动扭矩。
6、根据权利要求5所述的方法,其特征在于,所述计算的功率包含驾驶员需求的所述牵引轮处的功率加上所述动力系中的电损失。
CN200910168921.8A 2008-09-05 2009-09-04 增强反向驱动性能的混合动力电动车辆动力系的方法 Active CN101665110B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/204,825 US9545839B2 (en) 2008-09-05 2008-09-05 Hybrid electric vehicle powertrain with enhanced reverse drive performance
US12/204,825 2008-09-05

Publications (2)

Publication Number Publication Date
CN101665110A true CN101665110A (zh) 2010-03-10
CN101665110B CN101665110B (zh) 2014-01-22

Family

ID=41799956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910168921.8A Active CN101665110B (zh) 2008-09-05 2009-09-04 增强反向驱动性能的混合动力电动车辆动力系的方法

Country Status (2)

Country Link
US (1) US9545839B2 (zh)
CN (1) CN101665110B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105438164A (zh) * 2014-09-17 2016-03-30 丰田自动车株式会社 混合动力车
CN105857290A (zh) * 2015-02-06 2016-08-17 丰田自动车株式会社 混合动力车辆
US10071649B2 (en) 2014-11-13 2018-09-11 Toyota Jidosha Kabushiki Kaisha Method for controlling external electric power supply system of fuel cell-mounted vehicle, and external electric power supply system
CN108860133A (zh) * 2017-05-09 2018-11-23 福特全球技术公司 用于控制混合动力电动动力传动系统的系统和方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5203332B2 (ja) * 2008-11-11 2013-06-05 株式会社日本自動車部品総合研究所 車載動力伝達装置及び車両用駆動装置
JP5026496B2 (ja) 2009-11-16 2012-09-12 株式会社日本自動車部品総合研究所 車載動力伝達装置および車載動力伝達制御システム
ITBO20100011A1 (it) * 2010-01-13 2011-07-14 Cnh Italia Spa Sistema di controllo autofunction per autoveicoli, in particolare, per trattori agricoli
CN102358162B (zh) * 2011-09-01 2013-12-18 甘联芳 混联油电节能动力装置及其控制方法
JP6344030B2 (ja) * 2014-04-18 2018-06-20 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US9073547B1 (en) * 2014-05-22 2015-07-07 Ford Global Technologies, Llc Entering and exiting parallel operation of a powersplit hybrid powertrain
DE102014211625A1 (de) * 2014-06-17 2015-12-17 Robert Bosch Gmbh Leistungssteuervorrichtung für eine Motorsteuervorrichtung, Motorsteuervorrichtung und Motorsystem
US9381911B2 (en) * 2014-08-20 2016-07-05 GM Global Technology Operations LLC Hybrid vehicle and method of controlling same for engine auto-stop at non-zero vehicle speed
CN104442345B (zh) * 2014-11-11 2017-02-01 奇瑞汽车股份有限公司 混联式混合动力汽车动力总成系统及其功率分配控制方法
JP6176226B2 (ja) * 2014-12-01 2017-08-09 トヨタ自動車株式会社 ハイブリッド自動車
US10487918B2 (en) * 2016-02-29 2019-11-26 Deere & Company Integrated starter-generator device with power transmission
US10591025B2 (en) * 2016-02-29 2020-03-17 Deere & Company Integrated starter-generator device with power transmission
JP6399039B2 (ja) * 2016-05-18 2018-10-03 トヨタ自動車株式会社 ハイブリッド自動車
US10836372B2 (en) * 2016-08-24 2020-11-17 Ford Global Technologies, Llc System and method for controlling a hybrid vehicle in park or neutral
US10479187B2 (en) 2017-11-29 2019-11-19 Deere & Company Integrated hybrid power system for work vehicle
US10519920B2 (en) 2018-01-17 2019-12-31 Deere & Company Automatic two-mode high reduction power transmission system
US10821820B1 (en) 2019-04-16 2020-11-03 Deere & Company Multi-mode starter-generator device transmission with single valve control
US10975937B2 (en) 2019-04-16 2021-04-13 Deere & Company Multi-mode integrated starter-generator device with cam arrangement
US11156270B2 (en) 2019-04-16 2021-10-26 Deere & Company Multi-mode integrated starter-generator device with transmission assembly mounting arrangement
US10920733B2 (en) 2019-04-16 2021-02-16 Deere & Company Multi-mode integrated starter-generator device with preloaded clutch
US11060496B2 (en) 2019-04-16 2021-07-13 Deere & Company Multi-mode integrated starter-generator device
US10968985B2 (en) 2019-04-16 2021-04-06 Deere & Company Bi-directional integrated starter-generator device
US10920730B2 (en) 2019-04-16 2021-02-16 Deere & Company Multi-mode integrated starter-generator device with dog clutch arrangement
US10948054B2 (en) 2019-04-16 2021-03-16 Deere & Company Multi-mode integrated starter-generator device with solenoid cam actuation apparatus
US10975938B2 (en) 2019-04-16 2021-04-13 Deere & Company Multi-mode integrated starter-generator device with electromagnetic actuation assembly
US10933731B2 (en) 2019-04-16 2021-03-02 Deere & Company Multi-mode integrated starter-generator device with magnetic cam assembly
US10900454B1 (en) 2020-04-03 2021-01-26 Deere & Company Integrated starter-generator device with unidirectional clutch actuation utilizing a biased lever assembly
US11193560B1 (en) 2020-05-29 2021-12-07 Deere & Company Work vehicle multi-speed drive assembly with bifurcated clutches
US11415199B2 (en) 2020-05-29 2022-08-16 Deere & Company Bi-directional multi-speed drive
US11326570B1 (en) 2020-10-26 2022-05-10 Deere & Company Multi-mode integrated starter-generator device with unidirectional input
US11866910B2 (en) 2021-02-25 2024-01-09 Deere & Company Work vehicle multi-speed drive assembly with output control clutch
US11624170B2 (en) 2021-02-25 2023-04-11 Deere & Company Work vehicle multi-speed drive assembly with clutch retention mechanism
US11719209B2 (en) 2021-03-29 2023-08-08 Deere & Company Integrated starter-generator device with unidirectional clutch actuation utilizing biased lever assembly
US11761515B2 (en) 2021-05-20 2023-09-19 Deere & Company Work vehicle multi-speed drive assembly with guided dog clutch
US11686374B2 (en) 2021-07-23 2023-06-27 Deere & Company Work vehicle multi-speed drive assembly providing multiple gear ratios at same step ratio

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161101A (ja) * 2005-12-14 2007-06-28 Toyota Motor Corp ハイブリッド車およびその制御方法
EP1914161A2 (en) * 2006-10-17 2008-04-23 Yamaha Marine Kabushiki Kaisha Hybrid watercraft propulsion system and operation control method therefor
US20080093137A1 (en) * 2006-10-23 2008-04-24 Toyota Jidosha Kabushiki Kaisha Engine starting device and engine starting method for hybrid motor vehicle
CN101224700A (zh) * 2007-01-19 2008-07-23 福特全球技术公司 具有机械反转功能的混合动力车辆传动系统

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1525861A (en) * 1975-10-23 1978-09-20 Mullard Ltd Vehicle power transmission arrangements and electronic control means therefor
US5176213A (en) * 1987-12-09 1993-01-05 Aisin Aw Co., Ltd. Driving force distribution system for hybrid vehicles
US5343970A (en) * 1992-09-21 1994-09-06 Severinsky Alex J Hybrid electric vehicle
JP3291916B2 (ja) * 1994-06-06 2002-06-17 株式会社エクォス・リサーチ ハイブリッド型車両
USRE37743E1 (en) * 1994-10-03 2002-06-11 Tai-Her Yang Distributed differential mixing combined power system
JP2796698B2 (ja) * 1995-02-02 1998-09-10 株式会社エクォス・リサーチ ハイブリッド車両
JP3173319B2 (ja) * 1995-04-28 2001-06-04 株式会社エクォス・リサーチ ハイブリッド型車両
JP3414059B2 (ja) * 1995-07-19 2003-06-09 アイシン・エィ・ダブリュ株式会社 車輌用駆動装置
JP3780550B2 (ja) * 1995-12-08 2006-05-31 アイシン・エィ・ダブリュ株式会社 車両用駆動装置の制御装置
JP3531332B2 (ja) * 1996-02-29 2004-05-31 トヨタ自動車株式会社 ハイブリッド駆動装置
US6081042A (en) * 1996-03-22 2000-06-27 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive system including controllable device between engine and electric motor and vehicle drive wheels, and apparatus for controlling the device depending upon selected operation mode of the system
JPH09277847A (ja) * 1996-04-11 1997-10-28 Toyota Motor Corp ハイブリッド車両のエンジンブレーキ制御装置
US5887670A (en) * 1996-05-16 1999-03-30 Toyota Jidosha Kabushiki Kaisha Vehicle power transmitting system having devices for electrically and mechanically disconnecting power source and vehicle drive wheel upon selection of neutral state
JP3520668B2 (ja) * 1996-06-11 2004-04-19 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP3933728B2 (ja) * 1996-07-23 2007-06-20 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US5730676A (en) * 1996-10-22 1998-03-24 General Motors Corporation Three-mode, input-split hybrid transmission
US6387007B1 (en) * 1997-01-24 2002-05-14 Anthony W. Fini, Jr. Electromechanical vehicle regeneration system
DE19747265B4 (de) * 1997-10-25 2010-11-04 Zf Friedrichshafen Ag Hybridantrieb für ein Fahrzeug
BE1011629A7 (fr) 1997-12-19 1999-11-09 Mathurin Claude Boite de vitesses pour vehicule hybride.
JPH11280512A (ja) * 1998-03-30 1999-10-12 Nissan Motor Co Ltd ハイブリッド車両
US6267062B1 (en) * 1998-03-30 2001-07-31 Hugh B. Hamilton, Jr. AC drive industrial switching locomotive
DE69841499D1 (de) * 1998-04-28 2010-03-25 Hitachi Automotive Systems Ltd Schaltgetriebe und dieses nutzende fahrzeug
US5935035A (en) * 1998-06-24 1999-08-10 General Motors Corporation Electro-mechanical powertrain
JP3508559B2 (ja) 1998-07-24 2004-03-22 日産自動車株式会社 パラレル・ハイブリッド車両の制御装置
JP3668830B2 (ja) * 1998-08-28 2005-07-06 トヨタ自動車株式会社 動力伝達装置およびこれを用いたハイブリット車輌
JP3927325B2 (ja) * 1998-10-21 2007-06-06 トヨタ自動車株式会社 車両の制御装置
JP3456159B2 (ja) * 1999-01-29 2003-10-14 三菱自動車工業株式会社 ハイブリッド車
JP3327262B2 (ja) * 1999-10-08 2002-09-24 トヨタ自動車株式会社 車両の後進走行装置
US6394208B1 (en) * 2000-03-30 2002-05-28 Ford Global Technologies, Inc. Starter/alternator control strategy to enhance driveability of a low storage requirement hybrid electric vehicle
JP3692916B2 (ja) * 2000-08-29 2005-09-07 トヨタ自動車株式会社 動力出力装置およびこれを搭載する自動車
US6441574B1 (en) * 2000-10-27 2002-08-27 Ford Motor Company Energy control strategy for a hybrid electric vehicle
US6336063B1 (en) * 2000-10-31 2002-01-01 Volvo Car Corporation Method and arrangement in a hybrid vehicle for improving battery state-of-charge control and minimizing driver perceptible disturbances
US6453222B1 (en) * 2000-10-31 2002-09-17 Volvo Car Corporation Method and arrangement in a hybrid vehicle for matching engine and generator torques at times of engagement and disengagement
US6490511B1 (en) * 2000-11-10 2002-12-03 Ford Motor Company Torque-based monitor in a hybrid electric vehicle
US6603215B2 (en) 2001-05-24 2003-08-05 Ford Global Technologies, Llc Hybrid electric vehicle control strategy while traveling in reverse
US6478705B1 (en) * 2001-07-19 2002-11-12 General Motors Corporation Hybrid electric powertrain including a two-mode electrically variable transmission
EP1279544A3 (en) 2001-07-23 2003-10-29 Nissan Motor Co., Ltd. Hybrid drivetrain for a vehicle
US6407521B1 (en) * 2001-09-17 2002-06-18 Ford Global Technologies, Inc. Adaptive demagnetization compensation for a motor in an electric or partially electric motor vehicle
US6427794B1 (en) * 2001-09-17 2002-08-06 Ford Global Technologies, Inc. Adaptive demagnetization compensation for a motor in an electric or partially electric motor vehicle
WO2003035421A1 (en) 2001-10-22 2003-05-01 The Timken Company Electro-mechanical infinitely variable transmission
WO2003035422A1 (en) * 2001-10-23 2003-05-01 The Timken Company Output power split hybrid electric drive system
US6664751B1 (en) * 2002-06-17 2003-12-16 Ford Motor Company Method and arrangement for a controlling strategy for electronic components in a hybrid electric vehicle
JP2004056922A (ja) 2002-07-19 2004-02-19 Toyota Motor Corp 動力出力装置およびこれを備える自動車
US6991053B2 (en) * 2003-02-27 2006-01-31 Ford Global Technologies, Llc Closed-loop power control for hybrid electric vehicles
US7694762B2 (en) 2003-09-22 2010-04-13 Ford Global Technologies, Llc Hybrid vehicle powertrain with improved reverse drive performance
US6991584B2 (en) * 2003-11-12 2006-01-31 Ford Global Technologies, Llc Control of powertrain smoothness using output torque sensing and input torque control
JP4192873B2 (ja) * 2004-07-20 2008-12-10 トヨタ自動車株式会社 動力出力装置およびこれを搭載する自動車
US7285869B2 (en) * 2004-07-29 2007-10-23 Ford Global Technologies, Llc Method for estimating engine power in a hybrid electric vehicle powertrain
US7576501B2 (en) * 2006-10-11 2009-08-18 Ford Global Technologies, Llc Method for controlling a hybrid electric vehicle powertrain with divided power flow paths
US7444234B2 (en) * 2007-01-31 2008-10-28 Gm Global Technology Operations, Inc. Method and apparatus for monitoring an intake air filter
JP5092622B2 (ja) * 2007-08-22 2012-12-05 トヨタ自動車株式会社 ハイブリッド車の動力伝達装置の制御装置
US7497285B1 (en) * 2007-11-15 2009-03-03 Vladimir Radev Hybrid electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161101A (ja) * 2005-12-14 2007-06-28 Toyota Motor Corp ハイブリッド車およびその制御方法
EP1914161A2 (en) * 2006-10-17 2008-04-23 Yamaha Marine Kabushiki Kaisha Hybrid watercraft propulsion system and operation control method therefor
US20080093137A1 (en) * 2006-10-23 2008-04-24 Toyota Jidosha Kabushiki Kaisha Engine starting device and engine starting method for hybrid motor vehicle
CN101224700A (zh) * 2007-01-19 2008-07-23 福特全球技术公司 具有机械反转功能的混合动力车辆传动系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105438164A (zh) * 2014-09-17 2016-03-30 丰田自动车株式会社 混合动力车
CN105438164B (zh) * 2014-09-17 2018-03-23 丰田自动车株式会社 混合动力车
US10071649B2 (en) 2014-11-13 2018-09-11 Toyota Jidosha Kabushiki Kaisha Method for controlling external electric power supply system of fuel cell-mounted vehicle, and external electric power supply system
CN105857290A (zh) * 2015-02-06 2016-08-17 丰田自动车株式会社 混合动力车辆
US10011260B2 (en) 2015-02-06 2018-07-03 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle having acceleration control
CN105857290B (zh) * 2015-02-06 2018-10-02 丰田自动车株式会社 混合动力车辆
CN108860133A (zh) * 2017-05-09 2018-11-23 福特全球技术公司 用于控制混合动力电动动力传动系统的系统和方法

Also Published As

Publication number Publication date
US9545839B2 (en) 2017-01-17
CN101665110B (zh) 2014-01-22
US20100063704A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
CN101665110B (zh) 增强反向驱动性能的混合动力电动车辆动力系的方法
US9399461B2 (en) Opportunistic charging of hybrid vehicle battery
US7576501B2 (en) Method for controlling a hybrid electric vehicle powertrain with divided power flow paths
US8540604B1 (en) Transmission control during regenerative braking
JP5386115B2 (ja) 車両用ハイブリッド推進システム
CN101804809B (zh) 用于确定传动系游隙估计值的设备和方法
US7219756B2 (en) Method for setting an operating point of a hybrid drive of a vehicle
CN101797880B (zh) 混合动力车辆
CN102328572B (zh) 优化车辆中动力系效率的方法
US9242640B2 (en) Hybrid vehicle control device
JP7087805B2 (ja) ハイブリッド車両の制御装置
CN104828070A (zh) 消除混合动力车辆中的滑移扭矩
JP2011502846A (ja) 並列タイプのハイブリッド自動車において、ハイブリッド運転時の負荷ポイントをシフトするための方法
CN103380043A (zh) 混合动力车辆的驱动控制装置
CN105398449B (zh) 用于动力传动系统阻尼的离合器和电机控制
CN111605540A (zh) 车辆推进扭矩控制系统和方法
JP5277198B2 (ja) ハイブリッド車両制御装置
CN103587523A (zh) 用于控制混合起动器发电机的输出的方法和系统
CN107415933B (zh) 混合动力车辆和减小发动机过载的方法
KR20070063336A (ko) 직렬 및 병렬 하이브리드 자동차에서의 최적 운전점결정방법
US7971669B2 (en) Method for controlling an output torque of an electric variable transmission by battery power management
US9802601B2 (en) Vehicle and method for improving performance at low battery limits
JP2008024010A (ja) ハイブリッド車両の制御装置
CN109383490B (zh) 用于发动机速度控制的输入和输出扭矩的解耦方法和利用其的混合动力系
CN107150688B (zh) 混合动力车辆和间隙减轻策略

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant