CN101636226A - 制造具有可调孔径的介孔碳 - Google Patents

制造具有可调孔径的介孔碳 Download PDF

Info

Publication number
CN101636226A
CN101636226A CN200780020874A CN200780020874A CN101636226A CN 101636226 A CN101636226 A CN 101636226A CN 200780020874 A CN200780020874 A CN 200780020874A CN 200780020874 A CN200780020874 A CN 200780020874A CN 101636226 A CN101636226 A CN 101636226A
Authority
CN
China
Prior art keywords
carbon
silica
mesoporous carbon
phosphoric acid
sucrose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200780020874A
Other languages
English (en)
Other versions
CN101636226B (zh
Inventor
Q·胡
Y·卢
J·唐
M·蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Tulane University
Original Assignee
GM Global Technology Operations LLC
Tulane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC, Tulane University filed Critical GM Global Technology Operations LLC
Publication of CN101636226A publication Critical patent/CN101636226A/zh
Application granted granted Critical
Publication of CN101636226B publication Critical patent/CN101636226B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

使用蔗糖作为碳源并使用二氧化硅和磷酸作为碳中的介孔结构的模板,制造介孔碳(平均孔径为大约2至15纳米)。在水/乙醇介质中制备硅溶胶并将蔗糖分散在溶胶中。可以在溶胶中加入磷酸以将孔径控制在介孔尺寸范围内。将溶胶干燥、碳化并通过浸提除去二氧化硅和磷酸盐材料。残留物是可用作催化剂载体、气体吸收剂等的介孔碳物料。

Description

制造具有可调孔径的介孔碳
技术领域
本发明涉及多孔碳粒子的制造。更具体地,本发明涉及介孔碳的制造。
发明背景
多孔碳是可用于许多用途,如催化、提纯、燃料电池电极和气体储存的有用材料。多孔碳作为燃料电池电极的催化剂载体的开发目前在车辆推进应用领域中受到关注。
多孔碳可能具有在一定孔径范围内变动的孔隙且这些孔径已经被归类或分级。就开孔尺寸而言,均匀地在2至15纳米尺寸范围内的孔径被称作介孔,具有介孔的碳粒子有利于燃料电池电极用途。小于大约2纳米的较小孔径被称作微孔。这类孔径通常对燃料电池催化剂载体用途而言太小。大于大约15纳米的较大孔径被称作大孔。大孔尺寸的载体粒子通常对燃料电池催化剂用途而言太大。
最常用的多孔碳材料是活性炭,其通常通过产生微孔隙的物理或化学活化法制造。活性炭通常是微孔的(孔径<2纳米)并含有分布很宽的微孔、介孔和大孔。它们通常含有800至1500平米/克的高表面积。但是,当需要迅速的质量传递或更大的孔径时,小尺寸的微孔可能限制其用途。为了克服这些限制,介孔碳的合成受到极大关注,这是一类具有有吸引力的特征,如更大孔径、窄孔径分布、高表面积、大的孔体积和高度有序的骨架结构的多孔碳。
本发明提供了制造含介孔的碳粒子的方法。
发明概述
普通蔗糖合适地在本发明的方法中用作碳的来源或前体,并使用二氧化硅物类作为模板以便在所得碳中形成尺寸大致均匀的介孔。可以与二氧化硅模板一起使用磷酸以提高平均介孔直径。磷酸也可以促进在碳上形成提高的表面积。尽管可以使用其它碳源,但蔗糖可以大量地以低成本获得并且容易与其它形成介孔碳的材料一起分散。
介孔碳形成方法有利地如下进行。作为在液体介质(如水和乙醇的混合物)中的细分散体,制备硅溶胶。将蔗糖溶解或分散在该溶胶中。任选地,根据碳产品中需要的平均孔径,也向溶胶中加入适当量的磷酸。P(磷,以磷酸形式加入)比Si(硅,以二氧化硅形式加入)的摩尔比合适地为0至大约0.43。搅拌该混合物以使蔗糖、二氧化硅和磷酸(如果存在)均匀分散。
蒸发水和醇以留下纳米复合材料固体,通常是透明的棕色粒子。然后将该材料在氮气下在大约900℃下碳化。从碳化材料中除去二氧化硅和磷以留下介孔碳。合适地通过用氢氟酸水溶液浸提来除去二氧化硅,且水通常除去磷酸盐和其它含磷的残留物。
制成的介孔碳可以含有尺寸相当均匀的介孔,通常在大约2纳米至大约15纳米的范围内。如文中所述,使用更大量的磷酸(更高的P/Si)在碳材料中产生更大的平均孔径。
该介孔碳可用作催化剂粒子的载体和用作气体吸收剂。
从下列优选实施方案的描述中清楚看出本发明的其它目的和优点。
附图简述
图1是使用0至0.43的P/Si摩尔比制成的介孔碳的六个代表性氮吸附/解吸等温线的图:P/Si=0(实心正方形)、P/Si=0.12(空心正方形)、P/Si=0.17(实心圆形)、P/Si=0.34(空心圆形)、和P/Si=0.43(实心三角形)。沿图1的基线的空心三角形数据表明在除去二氧化硅和磷酸之前蔗糖、二氧化硅和磷酸的复合混合物的可忽略的氮吸收能力。
图2是通过实施本发明制成的介孔碳的孔径分布图。针对不同的磷酸/二氧化硅摩尔比,显示孔径分布:P/Si=0(实心正方形)、P/Si=0.12(空心正方形)、P/Si=0.17(实心圆形)、P/Si=0.34(空心圆形)、和P/Si=0.43(实心三角形)。
图3A-3C是以0(图3A)、0.17(图3B)和0.34(图3C)的P/Si比率制成的介孔碳的代表性透射电子显微(TEM)图。
图4是在0.3的P/Si摩尔比下制成的介孔碳在400℃至900℃下的BET表面积(平米/克)的图。
优选实施方案描述
本发明提供了用于制造具有可调至最多大约15纳米的均匀孔径的介孔碳的直接合成法。本发明包括下列三个步骤:(1)形成任选含有磷酸(一种常用于制造商业活性炭的活化剂)的二氧化硅/蔗糖纳米复合材料;(2)在惰性气氛中碳化该纳米复合材料;和(3)二氧化硅模板和磷酸盐(如果存在)的溶出。
详细实验步骤的实例如下:使2.08克原硅酸四乙酯(TEOS)(优选的二氧化硅前体)在60℃下在酸性乙醇/水溶液中预反应4小时。TEOS∶水∶乙醇∶HCl的摩尔比保持在1∶6∶6∶0.01。然后将预反应的溶胶与0.9克蔗糖、2克H2O和不同量的H3PO4混合,搅拌1小时,在室温下干燥以形成透明的棕色纳米复合材料。该材料为粉末形式,含有大的粉末团块。磷酸/TEOS(P/Si)的摩尔比为0至0.43。
然后将该纳米复合材料在900℃下在氮气下碳化4小时。然后将该材料用20%HF和随后用去离子水洗涤以除去二氧化硅和磷酸组分。通过能量耗散X-射线(EDX)分析和热重分析(TGA)证实二氧化硅和磷酸盐的完全除去。残留物是介孔碳粉。
图1显示了使用0至0.43的P/Si比率制成的介孔碳的代表性氮吸附/解吸等温线。如图1中的空心三角形所示,在所有P/Si比率范围下制成的纳米复合材料在除去模板之前在77K下对氮气是无孔的。
二氧化硅和磷酸模板材料的除去产生具有显著的氮吸收的等温线,表明通过除去二氧化硅/磷酸模板来产生介孔碳的多孔性。当P/Si比率小于0.1时,所得介孔碳表现出与表面活性剂模板化的介孔二氧化硅类似的等温线。滞后回线的缺失和在高于0.4的相对压力下的少量氮吸收进一步表明碳材料中的窄孔径分布。随着P/Si比率提高,滞后回线出现并移向更高的相对压力,表明提高的孔径和增宽的孔径分布。
这些介孔碳的孔径分布显示在图2中。通过在77K下进行的氮吸附和解吸试验测量孔径。在0的P/Si比率下制成的介孔碳表现出以2.1纳米为中心的均匀孔径分布。可以看出,将P/Si比率分别增至0.12、0.17、0.34和0.43的值系统地使平均孔径分别增至4.7、6.2、9.4和14.7纳米。
图3A-3C分别显示了以(图3A)0、(3B)0.17和(3C)0.34的P/Si比率制成的介孔碳的代表性TEM图像,显示出紊乱的蠕虫状孔隙结构。与图1中所示的结果一致,不添加磷酸时制成的介孔碳(图3A)表现出孔径大约2纳米的高度均匀的孔隙结构。使用0.17的P/Si比率制成的介孔碳(图3B)表现出更大孔径和更粗的形态。P/Si比率进一步增至0.34产生了多孔碳,其中不能清楚观察到各个孔隙(图3C)。这些结果进一步证实,磷酸的添加显著扩大孔隙,这与氮吸附结果非常一致。
本方法中的碳形成法可能涉及硅酸盐和蔗糖共组装成含有双连续网络结构的纳米复合材料,和随后由掺入的磷酸引发的化学活化过程。磷酸(一种公知的化学活化剂)可以与碳前体反应并形成各种长度的磷酸盐或聚磷酸盐。传统的活化法通常在大约400至600℃的温度下进行,产生含有随后充当致孔剂(porogens)(即孔隙生成剂)的磷酸盐部分的活性炭。通过洗涤除去磷酸盐部分,产生具有宽分布的微孔性和介孔性的多孔活性炭。在本方法中,掺入的磷酸也可以充当活化剂并促进蔗糖的碳化,从而在较低温度下形成碳/二氧化硅纳米复合材料。
为了证实磷酸的作用,通过用相同摩尔量的盐酸代替磷酸,合成对比介孔碳材料。所得介孔碳表现出2.1纳米至2.6纳米的类似孔径,即使所用盐酸的量比所用磷酸高100倍。因此,结论是,正是掺入的磷酸导致显著的孔隙扩大。
为了进一步证实活化过程的存在,将纳米复合材料(P/Si比率为0.3)在400至900℃下碳化。图4的图显示了所得介孔碳的表面积。在500℃的碳化温度下实现1026平米/克的最大表面积。更高的活化温度造成碳网络的结构排列并导致更低的孔隙率和表面积。这些结果证实,加入的磷酸确实充当有效的活化剂,其有助于所观察到的孔隙扩大。本发明的方法的另一优点是与其它方法(例如对于热活化法而言800-1000℃)相比更低的碳化温度(500℃)。
与传统化学活化法相比,我们的活化法局限在反应性无机硅酸盐网络内,从而产生具有均匀网络结构的二氧化硅/碳纳米复合材料。随后除去模板(二氧化硅和磷酸盐)以产生介孔碳,该介孔碳的孔隙结构取决于模板结构。更高的P/Si比率可能产生更大的模板和具有更大孔径和更高孔隙率的介孔碳。但是,进一步提高磷酸盐浓度可能由于磷酸和碳材料之间的强反应而降低孔隙率。
尽管已经通过具体实例例证了本发明的优选实施方案,但本发明的范围不受这些示例性实例的限制。

Claims (6)

1.制造介孔碳的方法,该方法包括:
将蔗糖添加到在含水液体介质中的含二氧化硅的溶胶中;
除去液体介质以形成蔗糖和二氧化硅的干混合物;
将干混合物碳化以形成碳-二氧化硅混合物;和
从二氧化硅-碳混合物中除去二氧化硅以形成介孔碳。
2.如权利要求1所述的制造介孔碳的方法,进一步包括:
将磷酸和蔗糖添加到在含水液体介质中的硅溶胶中,从而将介孔的平均尺寸提高至预定值;
除去液体介质以形成蔗糖、二氧化硅和磷酸的干混合物;
将干混合物碳化以形成含有碳-二氧化硅-磷酸的混合物;和
从含有碳-二氧化硅-磷酸的混合物中除去二氧化硅和磷酸以形成介孔碳。
3.如权利要求1所述的制造介孔碳的方法,其中硅溶胶由硅酸盐在水-乙醇混合物中制备。
4.如权利要求1所述的制造介孔碳的方法,其中硅溶胶由原硅酸四乙酯在水-乙醇混合物中制备。
5.如权利要求2所述的制造介孔碳的方法,其中硅溶胶由硅酸盐在水-乙醇混合物中制备。
6.如权利要求2所述的制造介孔碳的方法,其中硅溶胶由原硅酸四乙酯在水-乙醇混合物中制备。
CN200780020874.1A 2006-06-07 2007-05-24 制造具有可调孔径的介孔碳 Expired - Fee Related CN101636226B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US81172006P 2006-06-07 2006-06-07
US60/811,720 2006-06-07
PCT/US2007/069605 WO2007143404A2 (en) 2006-06-07 2007-05-24 Making mesoporous carbon with tunable pore size

Publications (2)

Publication Number Publication Date
CN101636226A true CN101636226A (zh) 2010-01-27
CN101636226B CN101636226B (zh) 2014-01-01

Family

ID=38802200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780020874.1A Expired - Fee Related CN101636226B (zh) 2006-06-07 2007-05-24 制造具有可调孔径的介孔碳

Country Status (4)

Country Link
US (1) US7892515B2 (zh)
CN (1) CN101636226B (zh)
DE (1) DE112007001284B4 (zh)
WO (1) WO2007143404A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102838370A (zh) * 2012-09-25 2012-12-26 中国科学院福建物质结构研究所 一种低碳化温度的碳/碳复合材料基体前驱体
CN103043644A (zh) * 2011-10-12 2013-04-17 光州科学技术院 粒状化碳介孔结构体的制备方法
CN104058384A (zh) * 2013-03-21 2014-09-24 株式会社东芝 高度结晶的颗粒及其制备方法
CN109292752A (zh) * 2018-11-30 2019-02-01 安徽工业大学 一种磷掺杂功能化的介孔碳材料的制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2297032A1 (en) * 2008-06-10 2011-03-23 National Research Council Of Canada Controllable synthesis of porous carbon spheres, and electrochemical applications thereof
US20130058724A1 (en) * 2009-10-14 2013-03-07 The Administrators Of The Tulane Educational Fund Novel multifunctional materials for in-situ environmental remediation of chlorinated hydrocarbons
JP2012212719A (ja) * 2011-03-30 2012-11-01 Toshiba Corp パターン形成方法
US9067848B2 (en) * 2012-10-19 2015-06-30 California Institute Of Technology Nanostructured carbon materials for adsorption of methane and other gases
CN104437620B (zh) * 2014-12-04 2017-08-25 江南大学 一种新型的磁性碳质材料的催化剂的制备
JP6730001B2 (ja) * 2015-03-12 2020-07-29 株式会社豊田中央研究所 吸着材成形体
KR102615619B1 (ko) * 2016-11-03 2023-12-20 콜럼버스 인더스트리즈, 인코포레이티드 가스 오염물질 제거에 있어 개선된 효율을 위한 표면-개질된 탄소 및 흡착제
US20180334396A1 (en) * 2017-05-18 2018-11-22 PowerTech Water LLC Defined Carbon Porosity for Sustainable Capacitive Charging
US11117818B2 (en) 2018-07-23 2021-09-14 Powertech Water Inc. Faradic porosity cell
GR1010189B (el) * 2020-10-01 2022-03-17 Ευσταθιος Βασιλειου Λιακος Ενεργος ανθρακας απο επιτραπεζια ζαχαρη
FR3122585A1 (fr) 2021-05-04 2022-11-11 Universite Claude Bernard Lyon 1 Solide mésoporeux pour réguler l’humidité dans les espaces clos
CN113764680B (zh) * 2021-07-28 2023-08-22 中山大学 一种用于微生物燃料电池的高活性碳基电极材料及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518206A (en) * 1968-05-17 1970-06-30 Du Pont Supported catalysts composed of substrate coated with colloidal silica and catalyst
KR100307692B1 (ko) * 1999-06-02 2001-09-24 윤덕용 구조 규칙성 탄소 분자체 물질, 이의 제조 방법 및 이의 용도
US6559070B1 (en) 2000-04-11 2003-05-06 Applied Materials, Inc. Mesoporous silica films with mobile ion gettering and accelerated processing
WO2001089991A1 (en) * 2000-05-24 2001-11-29 Finecell Co., Ltd. Mesoporous carbon material, carbon/metal oxide composite materials, and electrochemical capacitors using them
WO2003006372A1 (en) * 2001-07-13 2003-01-23 Kent State University Imprinted mesoporous carbons and a method of manufacture thereof
KR100474854B1 (ko) * 2003-02-13 2005-03-10 삼성에스디아이 주식회사 탄소 분자체 및 그 제조 방법
US7541312B2 (en) * 2004-03-18 2009-06-02 Tda Research, Inc. Porous carbons from carbohydrates
KR100669750B1 (ko) 2004-11-04 2007-01-16 삼성에스디아이 주식회사 탄소 나노 튜브가 포함된 중형 다공성 탄소 복합체
KR100612896B1 (ko) * 2005-05-18 2006-08-14 삼성에스디아이 주식회사 중형 다공성 탄소체 및 그의 제조방법
KR100751350B1 (ko) * 2005-11-29 2007-08-22 삼성에스디아이 주식회사 헤테로원자 함유 중형 다공성 탄소, 그 제조방법 및 이를이용한 연료전지

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043644A (zh) * 2011-10-12 2013-04-17 光州科学技术院 粒状化碳介孔结构体的制备方法
CN103043644B (zh) * 2011-10-12 2016-03-30 光州科学技术院 粒状化碳介孔结构体的制备方法
CN102838370A (zh) * 2012-09-25 2012-12-26 中国科学院福建物质结构研究所 一种低碳化温度的碳/碳复合材料基体前驱体
CN104058384A (zh) * 2013-03-21 2014-09-24 株式会社东芝 高度结晶的颗粒及其制备方法
CN109292752A (zh) * 2018-11-30 2019-02-01 安徽工业大学 一种磷掺杂功能化的介孔碳材料的制备方法

Also Published As

Publication number Publication date
CN101636226B (zh) 2014-01-01
WO2007143404A2 (en) 2007-12-13
DE112007001284B4 (de) 2017-07-13
DE112007001284T5 (de) 2009-05-20
US7892515B2 (en) 2011-02-22
US20100021366A1 (en) 2010-01-28
WO2007143404A3 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
CN101636226B (zh) 制造具有可调孔径的介孔碳
Yu et al. Simple fabrication of an ordered nitrogen-doped mesoporous carbon with resorcinol–melamine–formaldehyde resin
Lee et al. Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates
Li et al. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO 2 capture
Huang et al. Development of high-temperature CO2 sorbents made of CaO-based mesoporous silica
KR100420787B1 (ko) 탄소 분자체 및 그의 제조 방법
Ojeda-López et al. SBA-15 materials: calcination temperature influence on textural properties and total silanol ratio
US7666380B2 (en) Imprinted mesoporous carbons and a method of manufacture thereof
Xu et al. A two-step synthesis of ordered mesoporous resorcinol–formaldehyde polymer and carbon
JP5521191B2 (ja) メソ多孔性窒化炭素材料とその製造方法
WO2005113431A2 (en) Mesoporous carbon films and methods of preparation thereof
RU2761216C1 (ru) Мезопористый углерод и способ его изготовления, а также топливный элемент с полимерным электролитом
Liu et al. Synthesis of hierarchical fiberlike ordered mesoporous carbons with excellent electrochemical capacitance performance by a strongly acidic aqueous cooperative assembly route
Shi et al. Rapidly reversible adsorption of methane with a high storage capacity on the zeolite templated carbons with glucose as carbon precursors
KR20120137111A (ko) 메조기공을 갖는 코어-쉘 실리카 입자 제조방법
Mitran et al. Thermal stability enhancement of mesoporous SBA-15 silica through nanoconfinement of ceria nanoparticles
Joseph et al. Mesoporous carbons with hexagonally ordered pores prepared from carbonated soft-drink for CO2 capture at high pressure
Pei et al. A geopolymer route to micro-and meso-porous carbon
Choma et al. Soft-templating synthesis and adsorption properties of mesoporous carbons with embedded silver nanoparticles
Gucbilmez et al. A comparative characterization of the HPA-MCM-48 type catalysts produced by the direct hydrothermal and room temperature synthesis methods
US7824641B2 (en) Periodic mesoporous phosphorus-nitrogen compounds
JP4900795B2 (ja) 吸着フィルタの製造方法
Luo et al. Directed growth of multiwalled carbon nanotubes from ordered porous silica structuresElectronic supplementary information (ESI) available: detailed experimental procedure. See http://www. rsc. org/suppdata/jm/b1/b104252c
JP5246841B2 (ja) ケージ型メソポーラスシリカ(snc−1)およびその製造方法
Álvarez et al. Templated synthesis of nanosized mesoporous carbons

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140101