CN101598697A - 钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极 - Google Patents

钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极 Download PDF

Info

Publication number
CN101598697A
CN101598697A CNA2009100632918A CN200910063291A CN101598697A CN 101598697 A CN101598697 A CN 101598697A CN A2009100632918 A CNA2009100632918 A CN A2009100632918A CN 200910063291 A CN200910063291 A CN 200910063291A CN 101598697 A CN101598697 A CN 101598697A
Authority
CN
China
Prior art keywords
nickel
titanium
water
aluminium
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100632918A
Other languages
English (en)
Other versions
CN101598697B (zh
Inventor
黄新堂
李新
艾汉华
刘金平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Normal University
Original Assignee
Huazhong Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Normal University filed Critical Huazhong Normal University
Priority to CN2009100632918A priority Critical patent/CN101598697B/zh
Publication of CN101598697A publication Critical patent/CN101598697A/zh
Application granted granted Critical
Publication of CN101598697B publication Critical patent/CN101598697B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极。该电极为钛基底上镍-铝水滑石纳米片阵列构成,其单个镍-铝水滑石纳米片厚度20~40纳米、直径200~400纳米,垂直、均匀、致密地分布在钛金属表面,呈现阵列形式。制法:将钛金属用稀氢氟酸溶液浸泡、清水冲洗后置入六水硝酸镍、九水硝酸铝和尿素配置的水溶液中;然后在高压釜内的聚四氟乙烯内胆中密封加热到70℃以上,保持36小时以上;自然冷却后将钛金属取出,即得电极样品,其中六水硝酸镍浓度为2.036克/70-140毫升水、九水硝酸铝浓度为1.313克/70-140毫升水,尿素浓度为4.200克/70-140毫升水。该电极应用于生物、医学、电子仪器类产品中。探测葡萄糖灵敏度高、探测极限低、反应速度快、线性范围大、工作性能稳定。

Description

钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极
技术领域
发明涉及无酶葡萄糖传感器电极,具体为一种钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极。属于生物、医学、分析化学、电子仪器、电子信息等领域,主要用于生物、临床医学、化学、化工等类产品的电化学分析仪器中。
背景技术
在普通的电化学葡萄糖探测电极上,需要用壳聚糖或者Nafion将起电化学反应作用的葡萄糖氧化酶固定在电极上。由于葡萄糖氧化酶价格昂贵,不易保存,必须低温冷藏,容易失活,如果保存不当,葡萄糖氧化酶就会失去催化活性,失去葡萄糖浓度探测的作用,因此,这种电极的廉价、方便和普及使用就存在着难以克服的困难;同时,固定葡萄糖氧化酶的壳聚糖或者Nafion都有微溶于水的性质,于是,起电化学反应作用的葡萄糖氧化酶就会随着壳聚糖或者Nafion慢慢溶于水,即长时间或者多次的使用,电极上的葡萄糖氧化酶就会变得越来越少,其电化学性能就会越来越差。
发明内容
本发明的目的是通过纳米技术实现二价镍化合物[Ni1-xAlx(OH)2]x+[Am-]x/m·nH2O在具有电化学稳定性和生物相容性的钛基底上均匀、可控和纳米结构生长,得到一种性价比高和通用性强的葡萄糖无酶传感器电极,服务于人体血糖的简单、方便、廉价和快速检测,保障人们身心健康,促进社会稳定、和谐与发展。
本发明的原理是:应用在电化学过程中,二价镍化合物在碱性溶液中氧化成三价镍(在本发明中的二价镍化合物为镍-铝水滑石材料[Ni1-xAlx(OH)2]x+[Am-]x/m·nH2O,其中Am-为阴离子碳酸根[CO3]-,硝酸根[NO3]2-等),又由于溶液中存在的葡萄糖的还原作用,使得三价镍还原成为二价镍,从而可以探测到电化学过程溶液中葡萄糖的存在及其多少,即无酶葡萄糖传感器电极的工作原理。
本发明的关键是,在具有电化学稳定性和生物相容性的钛基底上制备镍-铝水滑石材料纳米结构片状阵列,由于材料的纳米结构阵列,可以达到同时保障传感器的整体均匀性和大的表面积及高灵敏度的目的。
实施本发明的目的方案是:
一种无酶葡萄糖传感器电极,其特征在于,该电极为钛基底上镍-铝水滑石纳米片阵列构成,其单个镍-铝水滑石纳米片厚度20~40纳米、直径200~400纳米,垂直、均匀、致密地分布在钛金属表面,呈现阵列形式。
本发明的一种无酶葡萄糖传感器电极制备方法包括:将钛金属用稀氢氟酸溶液浸泡、清水冲洗后置入六水硝酸镍、九水硝酸铝和尿素配制的蒸馏水溶液中;然后将所述的水溶液连同钛金属置于高压釜内的聚四氟乙烯内胆中密封加热到70℃以上,优选75℃-95℃,保持36小时以上,优选36-72小时;自然冷却后将钛金属取出,得到钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极样品,其中六水硝酸镍浓度为2.036克/70-140毫升水、九水硝酸铝浓度为1.313克/70-140毫升水,尿素浓度为4.200克/70-140毫升水。
其中,所述的钛金属根据需要,可为钛片、钛棒或钛丝。
本发明的无酶葡萄糖传感器电极的应用,其特征在于,用于生物、医学、化学、化工、电子仪器、电子信息类产品中。
将得到的样品,用场发射扫描电子显微镜(日本电子公司生产,型号:JEOL 6700F)观察其表面生长的纳米片阵列状况,并做X射线衍射晶体结构分析(丹东奥龙射线仪器有限公司,型号:Y2000)。试验结果表明,镍-铝水滑石纳米片厚度20~40纳米、直径200~400纳米,垂直、均匀、致密地分布在钛金属表面,呈现阵列形式。
镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极的性能应用电化学工作站测试(上海辰华公司,型号:CHI660C),钛基底上镍-铝水滑石纳米片阵列做工作电极,铂丝做辅助电极,饱和甘汞电极为参比电极,结果表明,该工作电极灵敏度高、探测极限低、反应速度快、线性范围大、工作性能稳定。
本发明与现有相关技术相比有如下优点和积极效果:
1、钛基底作为镍-铝水滑石纳米片阵列载体,其在电化学过程中的化学稳定性和生物相容性保障了电极工作的稳定性。
2、镍-铝水滑石纳米片阵列电极直接探测葡萄糖溶液的浓度,不但省去了价格昂贵的葡萄糖氧化酶(电极呈几十倍价格降低),而且易于保存,室温、空气环境中保存、可以长期、重复多次稳定使用。因为在普通的电化学葡萄糖探测电极上,需要用壳聚糖或者Nafion将起电化学反应作用的葡萄糖氧化酶固定在电极上,但是,壳聚糖或者Nafion都有微溶于水的性质,于是,起电化学反应作用的葡萄糖氧化酶就会随着壳聚糖或者Nafion慢慢溶于水,即长时间或者多次的使用,电极上的葡萄糖氧化酶就会变得越来越少,其电化学性能就会越来越差。但是,在镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极上,不需要使用葡萄糖氧化酶作为电化学作用反应物,这时起电化学反应作用的是纳米镍-铝水滑石材料中本身的二价镍与三价镍之间的转换。从理论上讲镍-铝水滑石材料不会溶解在水中,因为该纳米结构材料是在水热过程中生长在钛基底上的,镍离子数不会减少,因此传感器的性能不会因为长期或者多次使用而变差。具有灵敏度高(大于35.0微安·每毫摩尔每升(浓度)·每平方厘米(电极面积))、探测极限低(葡萄糖浓度为0.005毫摩尔每升时,传感器电极能反应出人可以辨别到的电流差别)、反应快(小于5秒)、线性范围大(在葡萄糖浓度为0.005~10毫摩尔每升范围内,工作电极的电流-浓度曲线保持线性)、工作性能稳定、价格低廉、方便适用等优点。
3、镍-铝水滑石纳米片阵列是在水热过程中生长在钛基底上的,由于该材料制备方法的简单性、易控性、能耗低、成本低和材料生长环境的均匀性,极易实现低成本、大批量、大面积、均匀工业化量产。
附图说明
图1实施例1制备的样品的显微镜照片
图2实施例1制备的样品的X射线衍射图
图3实施例2制备的样品的显微镜照片
图4实施例2制备的样品的X射线衍射图
图5实施例3制备的样品的显微镜照片
图6实施例3制备的样品的X射线衍射图
图7实施例1制备的样品的测试工作电极的电流-浓度曲线
具体实施方式
具体配方、工艺参数和性能测试实例如下:
实例中工艺参数范围,六水硝酸镍浓度为2.036克/70-140毫升水、九水硝酸铝浓度为1.313克/70-140毫升水,尿素浓度为4.200克/70-140毫升水;高压釜加热到70℃以上,更好加热到75℃-95℃;加热保持时间36小时以上,更好保持36-72小时。
实施例1
镍-铝水滑石纳米片阵列电极制备:将2.036克六水硝酸镍(Ni(NO3)2·6H2O)、1.313克九水硝酸铝(Al(NO3)3.9H2O)、4.200克尿素(CON2H4)溶于70.0毫升水中,用磁力搅拌器搅拌,使其充分溶解,混合均匀,配成混合溶液;将厚度0.2毫米、宽度2.0毫米、长度60.0毫米的钛金属片用稀氢氟酸(HF)溶液浸泡、清水冲洗后置入已经配置的溶液中;然后将所述的溶液连同钛金属置于高压釜内的聚四氟乙烯内胆中密封加热到95℃,保持36小时;自然冷却后将钛金属片取出,得到钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极样品。将样品做扫描电子显微镜(图1)和X射线衍射(图2)观察。结果表明,镍-铝水滑石纳米片垂直、均匀、致密地分布在钛金属片表面,呈现纳米片状阵列结构,单个纳米片的厚度为20-40纳米,直径为200-400纳米。
实施例2
镍-铝水滑石纳米片阵列电极制备:将2.036克六水硝酸镍(Ni(NO3)2·6H2O)、1.313克九水硝酸铝(Al(NO3)3.9H2O)、4.200克尿素(CON2H4)溶于140毫升水中,用磁力搅拌器搅拌,使其充分溶解,混合均匀,配成混合溶液;将厚度0.2毫米、宽度2.0毫米、长度60.0毫米的钛金属片用稀氢氟酸(HF)溶液浸泡、清水冲洗后置入已经配置的溶液中;然后将所述的水溶液连同钛金属置于高压釜内的聚四氟乙烯内胆中密封加热到95℃,保持72小时;自然冷却后将钛金属片取出,得到钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极样品。将样品做扫描电子显微镜(图3)和X射线衍射(图4)观察。结果表明,镍-铝水滑石纳米片垂直、均匀、致密地分布在钛金属片表面,呈现纳米片状阵列结构,单个纳米片的厚度为20-40纳米,直径为200-400纳米。
实施例3
镍-铝水滑石纳米片阵列电极制备:将2.036克六水硝酸镍(Ni(NO3)2·6H2O)、1.313克九水硝酸铝(Al(NO3)3.9H2O)、4.200克尿素(CON2H4)溶于70.0毫升水中,用磁力搅拌器搅拌,使其充分溶解,混合均匀,配成混合溶液;将厚度0.2毫米、宽度2.0毫米、长度60.0毫米的钛金属片用稀氢氟酸(HF)溶液浸泡、清水冲洗后置入已经配置的溶液中;然后将所述的水溶液连同钛金属置于高压釜内的聚四氟乙烯内胆中密封加热到75℃,保持72小时;自然冷却后将钛金属片取出,得到钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极样品。将样品做扫描电子显微镜(图5)和X射线衍射(图6)观察。结果表明,镍-铝水滑石纳米片垂直、均匀、致密地分布在钛金属片表面,呈现纳米片状阵列结构,单个纳米片的厚度为20-40纳米,直径为200-400纳米。
实施例4
采用实施例1制备的样品,做镍-铝水滑石纳米片阵列电极葡萄糖浓度探测性能测试:镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极的工作性能测试,应用的电化学工作站为上海辰华公司,型号为CHI660C的设备,钛基底上镍-铝水滑石纳米片阵列做工作电极,铂丝做辅助电极,饱和甘汞电极为参比电极。将100毫摩尔每升的葡萄糖溶液滴入0.1摩尔每升的氢氧化钠缓冲液中,在0.9伏工作电压,不同葡萄糖浓度条件下(0.005~10毫摩尔每升),测试工作电极的电流-浓度曲线结果如图7。结果表明,工作电极具有灵敏度高(大于35.0微安·每毫摩尔每升(浓度)·每平方厘米(电极面积))、探测极限低(葡萄糖浓度为0.005毫摩尔每升时,传感器电极能反应出人可以辨别到的电流差别)、反应快(小于5秒)、线性范围大(在葡萄糖浓度为0.005~10毫摩尔每升范围内,工作电极的电流-浓度曲线保持线性)、工作性能稳定等优点。
实施例5
采用实施例1制备的样品,做镍-铝水滑石纳米片阵列电极对实际人体血浆中血糖浓度探测性能测试:测量用电化学工作站为上海辰华公司,型号为CHI660C的设备,钛基底上镍-铝水滑石纳米片阵列做工作电极,铂丝做辅助电极,饱和甘汞电极为参比电极。新鲜的血浆样品由华中师范大学校医院提供,血浆样品在医院用自动生化分析仪测定血糖含量,然后再用镍-铝水滑石纳米片阵列做工作电极在电化学工作站上测量。测量时,取1毫摩尔血浆于测量池中,再加入2毫摩尔,0.1摩尔每升的氢氧化钠缓冲液,搅拌均匀后用传感器测量其响应电流;样品中葡萄糖含量通过传感器的浓度校正曲线计算,其结果列于下表1中。人体血浆中血糖的正常含量一般在4-8毫摩尔每升范围,低于这个范围或者高于这个范围可能属于低血糖或者高血糖。实际样品的测量表明,1到4号样品血浆中血糖浓度在正常值,5号样品属于高血糖含量血浆。测量结果与自动生化分析仪测定的一致。
表1
  血浆样品   测量值(毫摩尔每升)   对照值(毫摩尔每升)
  1   5.88   5.78
  2   6.34   6.23
  3   6.54   6.33
  4   6.66   6.58
  5   14.32   14.55

Claims (5)

1、一种无酶葡萄糖传感器电极,其特征在于,该电极为钛基底上镍-铝水滑石纳米片阵列构成,其单个镍-铝水滑石纳米片厚度20~40纳米、直径200~400纳米,垂直、均匀、致密地分布在钛金属表面,呈现阵列形式。
2、一种无酶葡萄糖传感器电极制备方法,其特征在于,制备方法包括:将钛金属用稀氢氟酸溶液浸泡、清水冲洗后置入六水硝酸镍、九水硝酸铝和尿素配制的蒸馏水溶液中;然后将所述的水溶液连同钛金属置于高压釜内的聚四氟乙烯内胆中密封加热到70℃以上,保持36小时以上;自然冷却后将钛金属取出,得到钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极样品,其中六水硝酸镍浓度为2.036克/70-140毫升水、九水硝酸铝浓度为1.313克/70-140毫升水,尿素浓度为4.200克/70-140毫升水。
3、如权利要求2所述的一种无酶葡萄糖传感器电极制备方法,其特征在于,所述的钛金属为钛片、钛棒或钛丝。
4、如权利要求2所述的一种无酶葡萄糖传感器电极制备方法,其特征在于,所述的水溶液连同钛金属置于高压釜内的聚四氟乙烯内胆中密封加热到75℃-95℃,保持36-72小时。
5、权利要求1所述的无酶葡萄糖传感器电极的应用,其特征在于,用于生物、医学、化学、化工、电子仪器、电子信息类产品中。
CN2009100632918A 2009-07-24 2009-07-24 钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极 Expired - Fee Related CN101598697B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100632918A CN101598697B (zh) 2009-07-24 2009-07-24 钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100632918A CN101598697B (zh) 2009-07-24 2009-07-24 钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极

Publications (2)

Publication Number Publication Date
CN101598697A true CN101598697A (zh) 2009-12-09
CN101598697B CN101598697B (zh) 2012-07-18

Family

ID=41420204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100632918A Expired - Fee Related CN101598697B (zh) 2009-07-24 2009-07-24 钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极

Country Status (1)

Country Link
CN (1) CN101598697B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645463A (zh) * 2012-03-31 2012-08-22 无锡百灵传感技术有限公司 一种高灵敏度电流型葡萄糖传感器制备方法
CN104076076A (zh) * 2013-12-19 2014-10-01 浙江工商大学 一种无酶葡萄糖传感器泡沫铜修饰碳工作电极的制备方法
CN104132983A (zh) * 2014-07-31 2014-11-05 北京师范大学 一种水滑石碳纸复合材料的制备方法及其作为生物传感器的应用
CN104155353A (zh) * 2014-07-31 2014-11-19 深圳市容大感光科技股份有限公司 一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用
CN105288774A (zh) * 2015-11-05 2016-02-03 种红侠 有创式血糖治疗仪的使用方法
CN105286884A (zh) * 2015-11-05 2016-02-03 种红侠 有创式血糖治疗仪
CN106495236A (zh) * 2016-09-21 2017-03-15 见嘉环境科技(苏州)有限公司 一种垂直排列双金属水滑石纳米片的制备方法
CN109001272A (zh) * 2017-06-07 2018-12-14 张家港市五湖新材料技术开发有限公司 复合纳米颗粒的制备方法、电极和电化学传感器
CN113299490A (zh) * 2021-05-27 2021-08-24 辽宁工程技术大学 一种多孔结构镍钛铝水滑石超级电容器电极材料制备方法
CN113502469A (zh) * 2021-07-21 2021-10-15 中国石油大学(华东) 一种用于油水分离的可自修复超疏水/超亲油铝合金网的制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645463A (zh) * 2012-03-31 2012-08-22 无锡百灵传感技术有限公司 一种高灵敏度电流型葡萄糖传感器制备方法
CN104076076A (zh) * 2013-12-19 2014-10-01 浙江工商大学 一种无酶葡萄糖传感器泡沫铜修饰碳工作电极的制备方法
CN104155353B (zh) * 2014-07-31 2016-03-30 深圳市容大感光科技股份有限公司 一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用
CN104155353A (zh) * 2014-07-31 2014-11-19 深圳市容大感光科技股份有限公司 一种三维碳微阵列与水滑石复合材料的制备方法及其作为无酶传感器的应用
CN104132983A (zh) * 2014-07-31 2014-11-05 北京师范大学 一种水滑石碳纸复合材料的制备方法及其作为生物传感器的应用
CN105288774A (zh) * 2015-11-05 2016-02-03 种红侠 有创式血糖治疗仪的使用方法
CN105286884A (zh) * 2015-11-05 2016-02-03 种红侠 有创式血糖治疗仪
CN105963827A (zh) * 2015-11-05 2016-09-28 彭青 有创式血糖治疗仪
CN106495236A (zh) * 2016-09-21 2017-03-15 见嘉环境科技(苏州)有限公司 一种垂直排列双金属水滑石纳米片的制备方法
CN109001272A (zh) * 2017-06-07 2018-12-14 张家港市五湖新材料技术开发有限公司 复合纳米颗粒的制备方法、电极和电化学传感器
CN113299490A (zh) * 2021-05-27 2021-08-24 辽宁工程技术大学 一种多孔结构镍钛铝水滑石超级电容器电极材料制备方法
CN113299490B (zh) * 2021-05-27 2022-05-10 辽宁工程技术大学 一种多孔结构镍钛铝水滑石超级电容器电极材料制备方法
CN113502469A (zh) * 2021-07-21 2021-10-15 中国石油大学(华东) 一种用于油水分离的可自修复超疏水/超亲油铝合金网的制备方法
CN113502469B (zh) * 2021-07-21 2022-12-02 中国石油大学(华东) 一种用于油水分离的可自修复超疏水/超亲油铝合金网的制备方法

Also Published As

Publication number Publication date
CN101598697B (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
CN101598697B (zh) 钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极
CN106770544B (zh) Ni-MOF超薄纳米带、合成方法及其应用
Long et al. Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation
CN102507692B (zh) 钛基底上多孔镍-铜氧化物纳米线阵列无酶葡萄糖传感器电极
Luo et al. Nonenzymatic glucose sensor based on nickel (II) oxide/ordered mesoporous carbon modified glassy carbon electrode
CN108007998B (zh) 氧化镍非酶葡萄糖电化学传感器
Balasubramanian et al. Ultrasensitive non-enzymatic electrochemical sensing of glucose in noninvasive samples using interconnected nanosheets-like NiMnO3 as a promising electrocatalyst
Xia et al. Facile synthesis of NiO nanoflowers and their electrocatalytic performance
CN106226382A (zh) 纳米多孔铜/Cu(OH)2纳米线阵列传感器电极材料及其制备方法
CN106324059B (zh) 一种无酶葡萄糖传感器电极材料的制备方法
CN103265061A (zh) 一维氧化铜纳米阵列葡萄糖传感器电极材料及其制备方法
CN104280439A (zh) 一种新型超高灵敏度抗坏血酸生物传感材料的制备方法
Zhao et al. Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection
Dönmez Green synthesis of zinc oxide nanoparticles using Zingiber officinale root extract and their applications in glucose biosensor
CN104359966A (zh) 一种贵金属掺杂氧化锌纳米棒的葡萄糖传感器的制备方法
Wang et al. Non-enzymatic glucose sensor based on facial hydrothermal synthesized NiO nanosheets loaded on glassy carbon electrode
CN111044590A (zh) 一种CuNi-MOF纳米材料修饰电极及其应用
CN105738437B (zh) 一种基于金属及金属氧化物共掺杂纳米复合材料的电化学对硫磷传感器的制备方法及应用
CN112432981A (zh) 一种基于功能化纳米探针的单细胞电化学传感器及其应用
CN102735721B (zh) 过氧化氢浓度的检测方法
CN111154110A (zh) 二维框架结构电极材料及其制备方法、电化学无酶葡萄糖传感器及其制备方法、应用
CN110361431A (zh) 一种复合电极及其制备方法和用于氨氮检测的方法
Liang et al. Green synthesis of porous graphene-like nanosheets for high-sensitivity nonenzymatic hydrogen peroxide biosensor
Peng et al. A novel non-enzymatic glucose electrochemical sensor with high sensitivity and selectivity based on CdIn2O4 nanoparticles on 3D Ni foam substrate
Tan et al. Hydrogen peroxide biosensor based on poly (vinyl alcohol)/ZnO nanorods composite films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120718

Termination date: 20150724

EXPY Termination of patent right or utility model