CN106495236A - 一种垂直排列双金属水滑石纳米片的制备方法 - Google Patents

一种垂直排列双金属水滑石纳米片的制备方法 Download PDF

Info

Publication number
CN106495236A
CN106495236A CN201610837754.1A CN201610837754A CN106495236A CN 106495236 A CN106495236 A CN 106495236A CN 201610837754 A CN201610837754 A CN 201610837754A CN 106495236 A CN106495236 A CN 106495236A
Authority
CN
China
Prior art keywords
preparation
bimetallic
nano piece
hydrotalcite
arranged vertically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610837754.1A
Other languages
English (en)
Inventor
黄理志
张玉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Environmental Technology (suzhou) Co Ltd
Original Assignee
Environmental Technology (suzhou) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Environmental Technology (suzhou) Co Ltd filed Critical Environmental Technology (suzhou) Co Ltd
Priority to CN201610837754.1A priority Critical patent/CN106495236A/zh
Publication of CN106495236A publication Critical patent/CN106495236A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Abstract

本发明涉及一种垂直排列双金属水滑石纳米片的制备方法,所述水滑石纳米片制备方法是以三维石墨烯泡沫,多孔碳泡沫,或者多孔金属泡沫为导电基体,通过改变金属盐前驱体浓度,在不同温度下利用水热反应进行双金属水滑石的结晶。本发明工艺简单,容易批量生产,适用行强,可以根据需要制备不同反应活性的基于任何金属的垂直排列双金属水滑石纳米片。

Description

一种垂直排列双金属水滑石纳米片的制备方法
技术领域
本发明涉及一种水滑石纳米片的制备方法,具体涉及一种垂直排列双金属水滑石纳米片的制备方法,属于纳米材料技术领域。
背景技术
水滑石的结构由源于pyroaurite-结构。
pyroaurite-的结构是以阳离子为中心形成由六个氧原子作为氢氧化物配位的三八面水镁石型层。在水滑石结构中,某些二价金属离子被同构三价金属离子取代,得到净正电荷的金属氢氧化物层。金属氢氧化物层堆叠在彼此的顶部,层间由水分子和电荷补偿阴离子组成。水滑石作为阴离子交换剂,吸附剂,催化剂,在化工,能源以及环境领域有诸多应用。
目前水滑石的合成有如下几个专利【程志林,马群,于海斌,成宏,姜雪丹,一种水滑石型层状氢氧化物的生产方法,发明专利申请号:CN 1962453 A。】【陈光文,杨梅,任明月,一种纳米类水滑石的制备方法,发明专利申请号:CN 104709931 A】【盛仲夷,周雪琴,谢松桂,毛明忠,一种有机水滑石及其制备方法,发明专利申请号:CN 102153781 B】。另外,水滑石的应用仅在光催化分解水制备氢气方面有相关的专利,【卫敏,赵宇飞,陈鹏允,李杰,段雪,基于光催化分解水制备氢气的水滑石光催化剂及其制备方法,发明专利申请号:CN102489323 B】。研究发现,水滑石的反应活性位点在其二维纳米片的边缘,上述专利所提到的水滑石合成形貌不均匀,而且都无法将二维纳米片边缘的活性位点暴露,其反应活性将十分低下。
发明内容
本发明为克服现有技术的缺陷,而提供一种工艺简单,可以根据需要制备基于任何金属的垂直排列双金属水滑石纳米片。
为达到上述目的,本发明采用的技术方案是:一种垂直排列双金属水滑石纳米片的制备方法,所述水滑石纳米片制备方法是以三维石墨烯泡沫,多孔碳泡沫,或者多孔金属泡沫为导电基体,通过改变金属盐前驱体浓度,在不同温度下利用水热反应进行双金属水滑石的结晶。
优选的,所述制备方法以铁镍水滑石纳米片的制备为例,具体包括以下操作步骤:
(1)将硝酸镍,硝酸铁,尿素溶解于适量水中,并将其转移至水热反应釜中;
(2)将所述导电基体浸入水热反应釜的反应溶液中;
(3)通过控制上述反应液占反应釜的体积比、温度以及反应时间获得不同形态的垂直排列双金属水滑石纳米片。
优选的,通过上述制备步骤制备的纳米片大小为3~5μm,厚度为50nm。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
本发明的垂直排列双金属水滑石纳米片的制备方法,工艺简单,容易批量生产,适用行强,可以根据需要制备不同反应活性的基于任何金属的垂直排列双金属水滑石纳米片。
附图说明
下面结合附图对本发明技术方案作进一步说明:
图1为实施例1的以三维石墨烯泡沫为基体生长的垂直排列铁镍双金属水滑石纳米片的低分辨率SEM图像;
图2为实施例1的以三维石墨烯泡沫为基体生长的垂直排列铁镍双金属水滑石纳米片的高分辨率SEM图像。
图3为实施例5的以三维石墨烯泡沫为基体生长的垂直排列铁镍双金属水滑石纳米片的低分辨率SEM图像。
图4为实施例5的以三维石墨烯泡沫为基体生长的垂直排列铁镍双金属水滑石纳米片的高分辨率SEM图像。
具体实施方式
下面结合附图及具体实施例对本发明作进一步的详细说明。
本发明提出一种能大批量制备垂直排列双金属水滑石纳米片的简易方法,以三维石墨烯泡沫,多孔碳泡沫,或者多孔金属泡沫为导电基体,通过改变金属盐前驱体及其浓度,在不同温度下利用水热反应进行双金属水滑石的结晶。
具体制备操作步骤以铁镍水滑石纳米片的制备为例:
(1)将硝酸镍,硝酸铁,尿素溶解于适量水中,并将其转移至水热反应釜中;
(2)将导电基体(三维石墨烯泡沫,多孔碳泡沫,或者多孔金属泡沫)浸入水热反应釜的反应溶液中;
(3)控制反应液占反应釜体积比、温度以及反应时间获得不同形态的垂直排列双金属水滑石纳米片。
如附图1、2、3、4所示分别为上述实施例所采用的参数控制下的以三维石墨烯泡沫为基体生长的垂直排列铁镍双金属水滑石纳米片的高分辨率SEM图像。
本发明的范围包括在其他非导电基体上垂直排列双金属水滑石纳米片的生长,也包括采用不同金属盐前驱体以及不同浓度。
以上仅是本发明的具体应用范例,对本发明的保护范围不构成任何限制。凡采用等同变换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (4)

1.一种垂直排列双金属水滑石纳米片的制备方法,其特征在于:所述水滑石纳米片制备方法是以三维石墨烯泡沫,多孔碳泡沫,或者多孔金属泡沫为导电基体,通过改变金属盐前驱体,在不同温度下利用水热反应进行双金属水滑石的结晶。
2.根据权利要求1所述的垂直排列双金属水滑石纳米片的制备方法,其特征在于:所述制备方法以铁镍水滑石纳米片的制备为例,具体包括以下操作步骤:
(1)将硝酸镍,硝酸铁,尿素溶解于适量水中,并将其转移至水热反应釜中;
(2)将所述导电基体浸入水热反应釜的反应溶液中;
(3)通过控制上述反应液占反应釜的体积比、温度以及反应时间获得不同形态的垂直排列双金属水滑石纳米片。
3.根据权利要求2所述的垂直排列双金属水滑石纳米片的制备方法,其特征在于:通过上述制备步骤制备的纳米片大小为3~5μm,厚度为50nm。
4.根据权利要求2所述的垂直排列双金属水滑石纳米片的制备方法,其特征在于:所述温度控制在100~200℃。
CN201610837754.1A 2016-09-21 2016-09-21 一种垂直排列双金属水滑石纳米片的制备方法 Pending CN106495236A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610837754.1A CN106495236A (zh) 2016-09-21 2016-09-21 一种垂直排列双金属水滑石纳米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610837754.1A CN106495236A (zh) 2016-09-21 2016-09-21 一种垂直排列双金属水滑石纳米片的制备方法

Publications (1)

Publication Number Publication Date
CN106495236A true CN106495236A (zh) 2017-03-15

Family

ID=58290257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610837754.1A Pending CN106495236A (zh) 2016-09-21 2016-09-21 一种垂直排列双金属水滑石纳米片的制备方法

Country Status (1)

Country Link
CN (1) CN106495236A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110164699A (zh) * 2019-05-16 2019-08-23 北京化工大学 一种以水滑石为前驱体热解得到的铁掺杂氧化镍及其在光催化燃料电池中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598697A (zh) * 2009-07-24 2009-12-09 华中师范大学 钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极
CN103480403A (zh) * 2013-07-30 2014-01-01 常州大学 一种铁参杂磷化镍催化剂的制备方法
CN103769048A (zh) * 2014-01-22 2014-05-07 中国科学院合肥物质科学研究院 一种三维多孔石墨烯负载纳米镁铝水滑石除氟剂的制备方法
CN104163416A (zh) * 2013-05-20 2014-11-26 北京化工大学 一种石墨烯纳米墙的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598697A (zh) * 2009-07-24 2009-12-09 华中师范大学 钛基底上镍-铝水滑石纳米片阵列无酶葡萄糖传感器电极
CN104163416A (zh) * 2013-05-20 2014-11-26 北京化工大学 一种石墨烯纳米墙的制备方法
CN103480403A (zh) * 2013-07-30 2014-01-01 常州大学 一种铁参杂磷化镍催化剂的制备方法
CN103769048A (zh) * 2014-01-22 2014-05-07 中国科学院合肥物质科学研究院 一种三维多孔石墨烯负载纳米镁铝水滑石除氟剂的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BO WANG等: "Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties", 《APPLIED MATERIALS & INTERFACES》 *
DAMILOLA MOMODU等: "P3HT:PCBM/nickel-aluminum layered double expanded graphite hydroxide-graphene foam composites for supercapacitor electrodes", 《J SOLID STATE ELECTROCHEM》 *
TSHIFHIWA M. MASIKHWA等: "High performance asymmetric supercapacitor based on CoAl-LDH/GF and activated carbon from expanded graphite", 《RSC ADVANCES》 *
ZHIYI LU等: "Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction", 《CHEM. COMMUN.》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110164699A (zh) * 2019-05-16 2019-08-23 北京化工大学 一种以水滑石为前驱体热解得到的铁掺杂氧化镍及其在光催化燃料电池中的应用

Similar Documents

Publication Publication Date Title
Septiani et al. Self-assembly of two-dimensional bimetallic nickel–cobalt phosphate nanoplates into one-dimensional porous chainlike architecture for efficient oxygen evolution reaction
Li et al. Chemical properties, structural properties, and energy storage applications of Prussian blue analogues
Liu et al. Quaternary bimetallic phosphosulphide nanosheets derived from prussian blue analogues: origin of the ultra-high activity for oxygen evolution
Wang et al. Catalysis with two-dimensional materials confining single atoms: concept, design, and applications
Xiong et al. Engineering highly active oxygen sites in perovskite oxides for stable and efficient oxygen evolution
Lu et al. A simple and scalable route to synthesize CoxCu1− xCo2O4@ CoyCu1− yCo2O4 yolk–shell microspheres, a high‐performance catalyst to hydrolyze ammonia borane for hydrogen production
CN107867725B (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
Gao et al. Ru/RuO2 nanoparticle composites with N-doped reduced graphene oxide as electrocatalysts for hydrogen and oxygen evolution
Ramachandran et al. Efficient degradation of organic dye using Ni-MOF derived NiCo-LDH as peroxymonosulfate activator
Huo et al. Co/CoO/CoFe 2 O 4/G nanocomposites derived from layered double hydroxides towards mass production of efficient Pt-free electrocatalysts for oxygen reduction reaction
Li et al. Architecture control and electronic structure engineering over Ni-based nitride nanocomposite for boosting ammonia borane dehydrogenation
Javaid et al. Ni2+/Co2+ doped Au-Fe7S8 nanoplatelets with exceptionally high oxygen evolution reaction activity
Millet et al. Highly Dispersed Ni0/Ni x Mg1–x O Catalysts Derived from Solid Solutions: How Metal and Support Control the CO2 Hydrogenation
Xu et al. Highly controllable hierarchically porous Ag/Ag2S heterostructure by cation exchange for efficient hydrogen evolution
CN106512999B (zh) 一种甲烷干气重整催化剂及其制备方法
Zhang et al. Progress on iron-series metal-organic frameworks materials towards electrocatalytic hydrogen evolution reaction
Ye et al. Tailoring Metal–Oxygen Bonds Boosts Oxygen Reaction Kinetics for High-Performance Zinc–Air Batteries
CN107460496A (zh) 涂渍型镍掺杂硫化铁/碳复合材料电极的制备方法
CN105948085A (zh) 一种磁性水滑石的制备方法
CN106694019B (zh) 一种金属钴修饰的氮掺杂碳纳米材料的制备方法
Qiu et al. Hydrogen generation from ammonia borane hydrolysis catalyzed by ruthenium nanoparticles supported on Co–Ni layered double oxides
Hao et al. Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting
Ge et al. Controllable drilling by corrosive Cu1Ox to access highly accessible single-site catalysts for bacterial disinfection
Yang et al. The regulation mechanism of cationic substitution in morphology-controlled oxy-spinel for oxygen evolution reaction
CN114210343A (zh) 一种还原氧化石墨烯负载Ru-Ni双金属纳米团簇催化材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170315

RJ01 Rejection of invention patent application after publication