CN101589009B - 烷基化芳香族化合物的制造方法 - Google Patents

烷基化芳香族化合物的制造方法 Download PDF

Info

Publication number
CN101589009B
CN101589009B CN2008800033154A CN200880003315A CN101589009B CN 101589009 B CN101589009 B CN 101589009B CN 2008800033154 A CN2008800033154 A CN 2008800033154A CN 200880003315 A CN200880003315 A CN 200880003315A CN 101589009 B CN101589009 B CN 101589009B
Authority
CN
China
Prior art keywords
cumene
acetone
reaction
aromatic compound
benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008800033154A
Other languages
English (en)
Other versions
CN101589009A (zh
Inventor
高井敏浩
梅野道明
青木忍
藤田照典
大久保英主
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Mitsui Chemical Industry Co Ltd
Original Assignee
Mitsui Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemical Industry Co Ltd filed Critical Mitsui Chemical Industry Co Ltd
Publication of CN101589009A publication Critical patent/CN101589009A/zh
Application granted granted Critical
Publication of CN101589009B publication Critical patent/CN101589009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/08Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by decomposition of hydroperoxides, e.g. cumene hydroperoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7676MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/085Isopropylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/867Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an aldehyde or a ketone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/02Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides
    • C07C409/04Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides the carbon atom being acyclic
    • C07C409/08Compounds containing six-membered aromatic rings
    • C07C409/10Cumene hydroperoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/53Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition of hydroperoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明提供用单一反应工序使酮和芳香族化合物直接反应,以更高的收率获得对应的烷基化芳香族化合物的方法。在固体酸物质和以Zn相对于Cu为0.70~1.60(原子比)的比例含有Cu和Zn的催化剂组合物存在下,使芳香族化合物与酮和氢反应来制造对应的烷基化芳香族化合物。

Description

烷基化芳香族化合物的制造方法
技术领域
本发明涉及使芳香族化合物与酮和氢反应而制造对应的烷基化芳香族化合物的方法。本发明尤其涉及使用固体酸物质和含有Cu和Zn的催化剂组合物作为催化剂,用单一反应工序以丙酮、苯和氢为起始物质以高收率制造枯烯的方法。
背景技术
使苯和丙烯反应而制造枯烯的方法、使枯烯氧化而制造氢过氧化枯烯的方法、使氢过氧化枯烯酸分解而制造苯酚和丙酮的方法是公知的,组合了这些反应的方法就是通常被称作枯烯法的苯酚制造方法,是目前苯酚制造法的主流。
该枯烯法的特征是兼产出丙酮,当同时需要丙酮时是优点,但丙酮剩余时经济上是不利的。因此,为了将作为原料的烯烃与兼产的酮的价格差引向有利的方向,提出有例如将由正丁烯和苯得到的仲丁基苯氧化、酸分解,而与苯酚同时得到甲基乙基酮的方法(参照专利文献1、专利文献2)。按照该方法,通过仲丁基苯的氧化,目的仲丁基苯过氧化氢的选择率只有80%左右,此外副产出15%以上的苯乙酮,所以作为苯酚制造法的收率就不及枯烯法。
进而,还提出了将由环己烯和苯得到的环己基苯氧化、酸分解而得到苯酚和环己酮的方法。按照该方法,通过对所得环己酮进行脱氢而得到苯酚,所以形式上可以避免副产出酮。但是,按照该方法,通过环己基苯的氧化反应,目的环己基苯过氧化氢的收率更低,工业价值低。
因此,就氧化和酸分解的收率最高的枯烯法而言,为了在保持其优异性的条件下避免与原料丙烯兼产的丙酮的问题,提出了使用各种方法将兼产的丙酮作为枯烯法的原料进行再利用的方法。提出了如下的工艺:对丙酮而言,通过加氢能够容易地转变为异丙醇,进而通过脱水反应成为丙烯后,与苯反应而成为枯烯,作为枯烯法的原料进行再利用(参照专利文献3)。但是,该方法存在多出加氢工序和脱水工序该2个工序的问题。
因此,提出了使由丙酮的加氢得到的异丙醇直接与苯反应而得到枯烯的方法(参照专利文献4、专利文献5)。尤其在专利文献6中记载了这样的工艺性方法:将兼产的丙酮制成异丙醇,使其与苯进行反应得到枯烯,利用枯烯来制造苯酚。但是,该方法也比原来的枯烯法多出加氢工序。
对此,作为在不增加以往的枯烯法的工序的情况下再利用兼产的丙酮的方法,即,直接反应丙酮和苯的方法,公开了一种制备烷基化芳香族化合物的方法,该方法包括:在固体酸物质和含有铜的催化剂组合物的存在下,使芳香族化合物与酮和氢反应的步骤(参照专利文献7)。但是在实施例中,作为Cu系的还原催化剂,只公开了在第二成分中含有Cr、或者Al和微量Zn的Cu系催化剂。并且,虽然记载了可以使用沸石作为固体酸物质,但是,作为实施例只公开了β-沸石。本发明人使用了实施例中的铜-铬系催化剂以及作为固体酸物质的菱沸石,结果事实上并没有生成枯烯。另外,沸石中存在具有远远小于苯或枯烯的分子直径的孔径的沸石(非专利文献1),可容易估计到靠这种催化剂反应本身都是不可能的。如上所述,靠与实施例不同的固体酸物质,不能充分生成枯烯。另外,本发明人实际验证的结果,任何催化剂都会副产出源于丙酮的烃,可见作为工业上的制造方法是不充分的。即,靠以往的催化剂,枯烯的选择性非常低,终究达不到工业化水平。
专利文献1:日本特开昭57-91972号公报
专利文献2:美国专利申请公开2004/0162448号说明书
专利文献3:日本特开平2-174737号公报
专利文献4:日本特开平2-231442号公报
专利文献5:日本特开平11-35497号公报
专利文献6:日本特表2003-523985号公报
专利文献7:日本特表2005-513116号公报
非专利文献1:ZEOLITES,Vol4,202-213页,1984年
发明内容
发明要解决的问题
从而,希望开发出一种用于直接反应丙酮和苯来得到枯烯的、活性和选择性更高的新型催化剂体系。
解决问题的技术方案
本发明人为了解决上述问题而深入研究的结果,发现通过使用固体酸物质和以特定量比含有特定金属的催化剂组合物作为催化剂,能够用单一反应工序,以丙酮等酮、苯等芳香族化合物以及氢为起始物质,以高收率得到枯烯等对应的烷基化芳香族化合物。并且,还发现烃的副产极其少。
即,本发明涉及一种烷基化芳香族化合物的制造方法,其特征在于,在固体酸物质和以Zn相对于Cu为0.70~1.60(原子比)含有Cu和Zn的催化剂组合物存在下,使芳香族化合物与酮和氢反应来制造对应的烷基化芳香族化合物。并且,涉及一种苯酚的制造方法,其特征在于,含有如下工序:
(a)对枯烯进行氧化而转变为氢过氧化枯烯的工序;
(b)对氢过氧化枯烯进行酸分解而合成苯酚和丙酮的工序;
(c)将上述工序(b)中生成的丙酮与苯进行反应而合成枯烯的工序;
(d)将上述工序(c)中得到的枯烯循环至工序(a)的工序,
其中,工序(c)按照上述烷基化芳香族化合物的制造方法实施。
发明的效果
根据本发明的方法,能够用单一反应工序,以丙酮等酮、苯等芳香族化合物以及氢为起始物质,以更高收率得到枯烯等对应的烷基化芳香族化合物。从而,在用枯烯法制造苯酚的工艺中,能够更有效地再使用兼产的丙酮。而且,是所得枯烯与由丙烯或异丙醇和苯得到的枯烯相比没有任何品质上的差异的突破性的技术,能够在工艺上和经济上都显著优异地生产苯酚。
具体实施方式
本发明的反应使用固体酸物质、以Zn相对于Cu为0.70~1.60(原子比)含有Cu和Zn的催化剂组合物。在本发明中只要使用上述2种成分即可,对其利用方法没有特别限制,可以将作为固体酸物质的酸催化剂成分、以及至少含有Cu和Zn的催化剂组合物成分,以厘米尺寸的催化剂粒子水平进行物理混合;也可以将两者微细化并混合后,重新成型为厘米尺寸的催化剂粒子;进而,也可以将酸催化剂成分作为载体,在其上负载含有上述金属的催化剂组合物成分;也可以反过来将含有上述金属的催化剂组合物成分作为载体,在其上负载酸催化剂成分。
在本发明中,至于含有Cu和Zn的催化剂组合物中的金属量,从活性和选择性的角度考虑,Zn的量相对于Cu以原子比计为0.70~1.60是重要的。
如果小于0.70,则活性和选择性不充分,如果超过1.60,则活性不充分。优选为0.80~1.50。另外,Cu的含量优选为5~55%,进一步优选为10~50%。如果作为活性种的Cu的量过于少,则所使用的催化剂量需要多量,反应器也会过于大,所以会增加设备费,是不经济的。另外,如果Cu的含量过于多,会无法维持与Zn的合适的原子比。
在本发明的方法中,对于上述Cu和Zn的量比以外的条件,可以利用专利文献7中公开的方法、条件。例如,对于含有Cu和Zn的催化剂组合物的制造方法、其他成分、利用方法、固体酸物质的具体例、使用方法等,可以利用上述文献中记载的物质、方法、条件等。
具体示例的话,含有Cu和Zn的催化剂组合物,可以在不损害本发明效果的范围内含有其他金属,作为其他金属可以举出Al、Fe等。含有这些时,其量比相对于Cu为10重量%以下。
另外,至于本发明中所说的含有Cu和Zn的催化剂组合物,Cu和Zn是任何构造都可,但就Cu、Zn的形态而言,优选以金属氧化物的形式含有。含有其他金属时,这些金属也优选为金属氧化物的形式。对于上述催化剂组合物的制造方法没有特别限制,例如可以使用湿法来制备。作为湿法可以举出含浸法和共沉淀法,其中共沉淀法从可以得到高活性的角度来说是优选的。
具体表示由共沉淀法制造催化剂的方法的话,例如可以举出将铜、锌、铁等各金属元素的酸式盐水溶液混合,将该混合后的水溶液与碱性化合物的水溶液接触,将析出的析出物清洗并回收,干燥所回收的析出物后,进行烧成的方法。作为各金属元素的酸式盐,只要是将与碱性化合物反应得到的析出物干燥并烧成而能够得到各金属元素的氧化物的化合物,则没有特别限制。作为这种酸式盐例如可以举出硝酸盐、硫酸盐、盐酸盐。作为与各金属元素的酸式盐接触的碱性化合物,例如可以举出碱金属或碱土金属的碳酸盐、碳酸氢盐。
作为使各金属元素的酸式盐水溶液与碱性化合物的水溶液接触的方法,只要能够将接触而得到的水溶液的pH控制在6~9的范围,则没有特别限制,例如可以举出将碱性化合物的水溶液和各金属元素的酸式盐水溶液同时混合的方法;在碱性化合物的水溶液中加入混合了各金属元素的酸式盐水溶液的水溶液的方法;在混合了各金属元素的酸式盐水溶液的溶液中加入碱性化合物的水溶液的方法。使各金属元素的酸式盐水溶液与碱性化合物的水溶液接触的温度,只要在约10~约80℃的温度范围则没有特别限制。
对于使各金属元素的酸式盐和碱性化合物反应而得到的析出物,通常用室温~50℃温度范围的水清洗,接着于约100~160℃的温度范围在空气或惰性气体氛围下进行干燥。干燥后,进行烧成就可以得到本发明的催化剂。烧成可以在约200~470℃的温度范围进行。烧成温度优选为450℃以下。另外,如果烧成温度在300℃以上,则从该析出物能够充分分解的角度来说是优选的。烧成通常是在空气或惰性气体的存在下进行。
烧成后的催化剂可以直接用于反应,也可以将烧成后的催化剂在液相或气相中用氢、一氧化碳等还原性气体处理后,用于反应。
含有Cu和Zn的催化剂组合物,除了打锭成型或挤出成型外,还可以负载到莫来石、堇青石等陶瓷载体、硅石布、海棉状金属烧结多孔板等上制成蜂窝状形状来用于反应。
另外,含有Cu和Zn的催化剂组合物,在添加PbSO4、FeCl2或SnCl2等金属盐、K、Na等碱金属或碱金属盐、BaSO4等时,有时会提高活性或选择性,也可以根据需要来添加。
含有Cu和Zn的催化剂组合物的形状没有特别限制,可以是球状、圆柱状、挤出状、破碎状的任一种,另外,其粒子的大小也可以在0.01mm~100mm的范围内根据反应器大小来选择。
用于本发明的固体酸物质,只要是起到酸的作用的催化剂并且通常被称为固体酸的物质即可,可以使用沸石、硅酸铝、氧化铝、负载硫酸离子的氧化锆、负载WO3的氧化锆等。
尤其是,作为由硅和铝构成的无机结晶性多孔质化合物的沸石化合物,从耐热性和目的枯烯的选择率方面来说是适宜的催化剂。作为沸石化合物,可以使用由10~16元氧环构成的沸石化合物。
作为由10~16元氧环构成的沸石化合物,可以举出镁碱沸石、片沸石、ZSM-5、ZSM-11、ZSM-12、NU-87、θ-1、水磷铍钙石(weinebeneite)、X型、Y型、USY型、丝光沸石型、脱铝丝光沸石型、β型、MCM-22型、MCM-36、MCM-56型、钠菱沸石、菱钾沸石、镓磷沸石(cloverite)、VPI-5、UTD-1等。
在沸石化合物中,适宜的是具有与枯烯的分子直径相同程度的细孔的沸石化合物,适宜的结构是由12个氧原子构成的细孔,即12元氧环的细孔。作为具有12元氧环结构的沸石化合物,可以举出Y型、USY型、丝光沸石型、脱铝丝光沸石型、β型、MCM-22型、MCM-56型、ZSM-12等。另外,具有10元氧环结构的沸石化合物可举出ZSM-5。
从作为类似反应的、由丙烯使苯烷基化的文献(例如US4992606、US5453554、Erdoel Erdgas Khole,113,84,1997年)中可以推测β型、MCM-22型、MCM-56型是尤其适宜的结构。关于β型和MCM-22,也有认为从催化活性和枯烯选择性方面来讲MCM-22要比β型稍微好的文献(例如US5453554),但也有认为两者的性能几乎没有差异的文献(例如Journal of Catalysis,191,163-173,2000年),优劣之差并不明确。并且,在以往的技术中完全没有关于损害经济性的烃生成的记载,在丙酮存在下,由Cu催化剂生成的丙醇进一步被加氢而生成丙烷的反应,可由酸催化剂种类来抑制的情况是令人吃惊的。进而,MCM-22、MCM-56的这种抑制效果更加大是完全不能预料的。这些沸石化合物的硅与铝的组成比只要在2/1~200/1的范围即可,尤其从活性和热稳定性方面考虑优选5/1~100/1。
进而,也可以使用以Ga、Ti、Fe、Mn、B等铝以外的金属取代了沸石骨架中所含的铝原子的,所谓同型取代了的沸石。
固体酸物质的形状没有特别限制,可以是球状、圆柱状、挤出状、破碎状的任一种,另外,其粒子的大小也可以在0.01mm~100mm的范围内根据反应器大小来选择。
含有Cu和Zn的催化剂组合物,也可以将作为固体酸物质的酸催化剂作为载体负载,具体地,可以举出含浸其金属的硝酸盐水溶液并烧成的方法;为了使这些金属可溶于有机溶剂,与被称为配体的有机分子结合而制成配位化合物后,含浸到有机溶剂中并烧成的方法;进而,由于有些配位化合物会在真空下气化,所以通过蒸镀等方法负载也是可以的。另外,由对应的金属盐获得酸催化剂时,也可以采用使会成为含有Cu和Zn的催化剂组合物的金属盐共存,同时进行载体合成和金属负载的共沉淀法。
含有Cu和Zn的催化剂组合物对于固体酸物质的比,以Cu对于固体酸物质的质量比计,通常在成为0.001~10、优选0.01~2的范围内添加。
在实施本发明时,适宜用公知的方法对固体酸物质和含有Cu和Zn的催化剂组合物进行脱水。固定床反应方式的情况,一边向填充有催化剂和催化助剂的反应器中流通氮、氦等惰性气体,一边在300℃以上的温度保持10分钟以上即可。进而,为了发挥出含有Cu和Zn的催化剂组合物的活性,也可以在脱水处理后在氢气流下进行处理。
作为依次填充与反应的各阶段对应的适当的催化剂种类的方法,例如可以举出(1)混合固体酸物质和含有前述金属的催化剂组合物并填充的方法;(2)按照形成由含有前述金属的催化剂组合物构成的层(上流侧)、和由固体酸物质构成的层(下流侧)的方式进行填充的方法;(3)填充负载了含有前述金属的催化剂组合物的固体酸物质的方法;(4)按照形成由含有前述金属的催化剂组合物构成的层(上流侧)、和由固体酸物质和含有前述金属的催化剂组合物构成的层(下流侧)的方式进行填充的方法;(5)按照形成由含有前述金属的催化剂组合物构成的层(上流侧)、和由负载了含有前述金属的催化剂组合物的固体酸物质构成的层(下流侧)的方式进行填充的方法;(6)按照形成由固体酸物质和含有前述金属的催化剂组合物构成的层(上流侧)、和由固体酸物质构成的层(下流侧)的方式进行填充的方法;(7)按照形成由负载了含有前述金属的催化剂组合物的固体酸物质构成的层(上流侧)、和由固体酸物质构成的层(下流侧)的方式进行填充的方法等。这里,所谓的上流侧表示反应器的入口侧,即原料在反应的前半程所通过的层,所谓的下流侧表示反应器的出口侧,即在反应的后半程所通过的层。
在本发明中,作为芳香族化合物,可以例示出碳原子数6~20的化合物,例如可以举出苯、甲苯、二甲苯等苯同系物和它们的取代基衍生物;萘、甲基萘等萘同系物和它们的取代基衍生物等。作为酮,可以例示出碳原子数3~20的化合物,可以利用对称物、非对称物。作为结合于羰基上的基团,可以例示出烷基、芳基,具体讲,可以举出丙酮、甲基乙基酮、苯乙酮等。
作为这些酮、芳香族化合物的组合,反应丙酮和苯来制造枯烯的反应在工业上是最重要的。
本发明中的芳香族化合物和酮的反应的特征为,在氢共存下进行。这里所说的氢,可以是分子状的氢气,也可以是在反应条件下产生氢的环己烷等烃。在反应丙酮和苯时,从分离回收枯烯的角度考虑,氢在原理上与丙酮为等摩尔以上即可,适宜的范围是,相对于丙酮为1~10倍摩尔,优选为1~5倍摩尔。出于分离回收丙酮的目的,想将丙酮的转化率抑制在100%以下时,可通过使所用氢的量小于1倍摩尔来解决。另外,在本发明的反应中供给的氢,会与丙酮所具有的氧原子反应而形成水,与枯烯一起从反应器出口排出,所以,只要不进行不优选的副反应,丙酮的当量以上的氢本质上就不会被消耗。
在向反应添加氢气时,通常是连续地供给,但并不限定于该方法,也可以是在反应开始时添加氢气后在反应途中停止供给,在过某一定时间后再次供给的间歇式供给;在液相反应的情况下,也可以使氢气溶解于溶剂中来供给。另外,在再循环工艺中,也可以供给从塔顶与轻沸馏分一起回收的氢气。所添加氢的压力通常与反应器的压力相同,但可根据氢的供给方法,进行适当变更。
进行本反应时,作为其条件没有特别限制,可以直接采用以往公知的通常的方法、反应条件。另外,各种各样的改良方法也是众所周知的,也可以利用。例如,可以采用以下所示的条件、方法。
至于作为反应原料的丙酮和苯的混合物与氢气的接触,可以是气液逆流、气液并流中的任一种,而且作为液体、气体的方向,也可以是液体下降-气体上升、液体上升-气体下降、液体气体上升、液体气体下降中的任一种。
对于反应温度,本发明中也没有特别限制,优选为50~300℃,更优选为60~200℃的范围。另外,通常优选的实施压力范围为0.01~100MPa,更优选为0.05~50MPa。另外,在实施本发明时,所使用的催化剂量没有特别限制,例如,使用固定床流通装置进行反应时,以用原料的单位时间的供给量(重量)除以催化剂的重量的值即WHSV表示的话,优选为0.1~200/h的范围,更优选为0.2~100/h的范围。另外,只要没有特别说明,压力指表压。
在实施本发明时,也可以在反应体系内添加对催化剂和反应试剂表现惰性的溶剂或气体,在稀释的状态下进行。
在实施本发明时,其方法不管是用分批式、半分批式或连续流通式中的任一种方法都可以实施。不管是液相、气相、气-液混合相中的任一形态都可以实施。作为催化剂的填充方式,可以采用固定床、流动床、悬浮床、塔板式固定床等各种各样的方式,以任一种方式实施都没问题。
在经过某个时间后催化活性降低时,可以用公知的方法进行再生来恢复催化剂的活性。
为了维持枯烯的生产量,也可采取将两个或三个反应器并列地排放,在一个反应器再生的期间,用剩余的一个或两个反应器实施的旋转木马(merry-go-round)方式。进而有三个反应器时,可以采用将其他两个反应器串联连接,来减少生产量变动的方法。另外,用流动床流通反应方式或移动床反应方式实施时,也可以从反应器中连续地或间断地取出一部分或全部的催化剂,补充相应量来维持一定的活性。
如上所述,本发明中,可以由制造苯酚时副产的丙酮直接获得枯烯。这样得到的枯烯可作为苯酚和丙酮的制造原料来利用,能够利用于如含有前面所述工序(a)~工序(d)的、氧化枯烯后分解的工艺等,即使提供各种各样的改良方法也没问题。
实施例
实施例1
制备催化剂:
将三水合硝酸铜[Cu(NO3)2·3H2O]30.37g、六水合硝酸锌[Zn(NO3)2·6H2O]32.90g、九水合硝酸铝[Al(NO3)3·9H2O]7.36g溶解于纯水700ml,制备水溶液(A液)。另一方面,将十水合碳酸钠[Na2CO3·10H2O]87.44g溶解于纯水870ml,制备水溶液(B液)。准备装有水800ml的烧瓶,一边在室温搅拌烧瓶内的水,一边向其中以相同速度滴加A液和B液。将生成的浆液搅拌150分钟后,减压过滤浆液中的析出物,用蒸馏水充分清洗。然后,将回收的析出物在调节为80℃的干燥器中干燥12小时后,在大气下在调节为温度350℃的电炉内烧成3小时,得到氧化物。对氧化物进行打锭成型、粉碎后,采取10ml粉碎物。将其填充于小型反应管中,用H2/N2=1/9的混合气体,在GHSV=6000/h、350℃下进行还原处理,得到催化剂1(元素质量%:Cu 40%、Zn 36%、Al 3%,Zn对Cu的原子比为0.87)。
实施例2
制备催化剂:
将三水合硝酸铜[Cu(NO3)2·3H2O]23.14g、六水合硝酸锌[Zn(NO3)2·6H2O]40.21g、九水合硝酸铁[Fe(NO3)3·9H2O]1.93g、九水合硝酸铝[Al(NO3)3·9H2O]7.36g溶解于纯水700ml,制备水溶液(A液)。另一方面,将十水合碳酸钠[Na2CO3·10H2O]88.03g溶解于纯水880ml,制备水溶液(B液)。准备装有水800ml的烧瓶,一边在室温搅拌烧瓶内的水,一边向其中以相同速度滴加A液和B液。将生成的浆液搅拌150分钟后,减压过滤浆液中的析出物,用蒸馏水充分清洗。然后,将回收的析出物在调节为80℃的干燥器中干燥12小时后,在大气下在调节为温度350℃的电炉内烧成3小时,得到氧化物。对氧化物进行打锭成型、粉碎后,采取10ml粉碎物。将其填充于小型反应管中,用H2/N2=1/9的混合气体,在GHSV=6000/h、350℃下进行还原处理,得到催化剂2(元素质量%:Cu 30%、Zn 44%、Al 3%、Fe 1%,Zn对Cu的原子比为1.42)。
实施例3
在直径3cm、长40cm的石英玻璃制反应器中,填充1.0g上述的催化剂1、以及β沸石(触媒化成公司制造,在20MPa下压缩成型后,分级成250~500μ的物质)1.0g,在30ml/min的氮气流下于350℃干燥1小时后,在11ml/min的氢气流下于350℃进行1小时还原处理。直接在氢气流状态下,降温至160℃,向其中以1.2ml/min的比例流通苯/丙酮(5/1摩尔)的混合液,通过冷却出口来捕集生成物。用气相色谱分析反应开始3小时后的生成物的结果,除了苯、水以外的各成分的浓度按照重量比为丙酮0.1%、枯烯72.0%、间二异丙基苯19.9%、对二异丙基苯8.0%。
实施例4
在实施例3中,除了用催化剂2来代替催化剂1以外,其他同样地进行反应。用气相色谱分析反应开始3小时后的生成物的结果,除了苯、水以外的各成分的浓度按照重量比为丙酮0%、枯烯88.9%、间二异丙基苯7.9%、对二异丙基苯3.1%。
比较例1
在实施例3中,除了用亚铬酸铜(SudChemie公司制造,制品名G99b,元素质量%:Cu 35%、Cr 31%、Ba 2%、Mn 3%,Zn对Cu的原子比为0)来代替催化剂1以外,其他同样地进行反应。用气相色谱分析反应开始3小时后的生成物的结果,除了苯、水以外的各成分的浓度按照重量比为丙酮8.4%、枯烯56.7%、间二异丙基苯23.6%、对二异丙基苯11.1%。
比较例2
在实施例3中,除了用以铝酸铜为主剂的催化剂(SudChemie公司制造,制品名T4489,元素质量%:Cu 39%、Al 16%、Zn 6%、Mn 7%,Zn对Cu的原子比为0.15)来代替催化剂1以外,其他同样地进行反应。用气相色谱分析反应开始3小时后的生成物的结果,除了苯、水以外的各成分的浓度按照重量比为丙酮8.8%、枯烯55.0%、间二异丙基苯22.1%、对二异丙基苯10.7%。
实施例5
在直径3cm、长40cm的石英玻璃制反应器中,填充1.0g上述的催化剂2、以及MCM-22沸石(将按照VERIFIED SYNTHESES OF ZEOLITICMATERIALS Second Revised Edition 2001,P225的内容制备的催化剂在20MPa下压缩成型后,分级成250~500μ的物质)1.0g,在30ml/min的氮气流下于350℃干燥1小时后,在10ml/min的氢气流下于200℃进行3小时还原处理。然后在3ml/min的氢气流下,降温至150℃,向其中以1.2ml/min的比例流通苯/丙酮(3/1摩尔)的混合液,通过冷却出口来捕集液体生成物,还进行了在上述实施例和比较例中没有实施过的气体捕集。用气相色谱分析(气相分析用色谱柱:VARIAN公司制造的PLOT FUSED SILICA 50M×0.32MM IDCOATING,Al2O3/Na2SO4,DF=5UM;液相分析用色谱柱:phenomenex公司制造的ZB-WAX)反应开始3小时后的生成物的结果,如表1所示,以高收率获得了作为有用物质的枯烯、间二异丙基苯、以及对二异丙基苯。
实施例6
在实施例5中,用市售的铜-锌催化剂(SudChemie公司制造,制品名ShiftMax210,元素质量%:Cu 32~35%、Zn 35~40%、Al 4~7%,Zn对Cu的原子比为1.00~1.20)来代替催化剂2,用β沸石(触媒化成公司制造,在20MPa下压缩成型后,分级成250~500μ的物质)代替MCM-22,除此之外在相同的条件下进行反应。用气相色谱分析反应开始3小时后的生成物的结果,如表1所示,以高收率获得了作为有用物质的枯烯、间二异丙基苯、以及对二异丙基苯。
实施例7
在实施例5中,除了用市售的铜-锌催化剂(SudChemie公司制造,制品名ShiftMax210,元素质量%:Cu 32~35%、Zn 35~40%、Al 4~7%,Zn对Cu的原子比为1.00~1.20)来代替催化剂2以外,在相同的条件下进行反应。用气相色谱分析反应开始3小时后的生成物的结果,如表1所示,以高收率获得了作为有用物质的枯烯、间二异丙基苯、以及对二异丙基苯。
实施例8
使用设有高压进料泵、高压氢质量流量计、高压氮质量流量计、电炉、具有催化剂填充部分的反应器、背压阀的固定床反应装置,进行采用下流式的加压液相流通反应。
在内径1cm的SUS316制反应器内,从反应器的出口侧开始,先填充1.0g铜-锌催化剂(SudChemie公司制造,制品名ShiftMax210,元素质量%:Cu32~35%、Zn 35~40%、Al 6~7%,Zn对Cu的原子比为1.0~1.2)粉末(分级成250~500μ的物质)作为上流侧的催化剂层。填入石英棉后,填充3.0g上述的MCM-22(将按照VERIFIED SYNTHESES OF ZEOLITIC MATERIALS SecondRevised Edition 2001,P225的内容制备的催化剂在20MPa下压缩成型后,分级成250~500μ的物质,Si/Al摩尔比=20)作为下流侧的催化剂层。
用氢气加压至3MPa后,由反应器的入口侧在12.5ml/min的氢气流下于200℃进行3小时还原处理。然后直接在12.5ml/min的氢气流状态下,降温至175℃,由反应器的入口侧向其中以2.50g/h的比例流通苯/丙酮(3/1摩尔)的混合液。
在反应器出口和背压阀的中间由高压氮质量流量计导入200ml/min的氮气。在背压阀之后的管线上设置转换阀,由0.2ml的取样管向气相色谱的注射器中导入反应气体,由气相色谱分析定量生成物。
反应结果示于表1。通过分离铜-锌催化剂和MCM-22,虽然残存丙酮,但丙烷的副产减少,可高选择性地得到枯烯。
比较例3
在实施例6中,除了用亚铬酸铜(SudChemie公司制造,制品名G99b,元素质量%:Cu 35%、Cr 31%、Ba 2%、Mn 3%,Zn对Cu的原子比为0)来代替ShiftMax210以外,其他同样地进行反应。用气相色谱分析反应开始3小时后的生成物的结果,如表1所示,作为有用物质的枯烯、间二异丙基苯、以及对二异丙基苯的选择率低,源于丙酮的烃类的副产量非常多。
比较例4
在实施例6中,除了用铜-氧化铝催化剂(日挥化学公司制造,制品名N242,元素质量%:Cu 40%、Al 18%)来代替ShiftMax210以外,其他同样地进行反应。用气相色谱分析反应开始3小时后的生成物的结果,如表1所示,丙酮转化率非常低,杂质的副产量也多,所以作为有用物质的枯烯、间二异丙基苯、以及对二异丙基苯的收率低。
表1
  实施例5   实施例6   实施例7   实施例8   比较例3   比较例4
  催化剂还原催化剂酸催化剂 催化剂2MCM-22 Cu-Znβ Cu-ZnMCM-22 Cu-ZnMCM-22 Cu-Crβ Cu-Alβ
  反应条件
反应温度(℃)苯/丙酮摩尔比氢/丙酮摩尔比WHSV(h-1)压力(MPa) 1503.02.00.50 1503.02.00.50 1503.02.00.50 1753.04.00.63.0 1503.02.00.50 1503.02.00.50
  反应结果丙酮转化率(%) 99.7 99.0 100.0 97.0 95.0 56.3
  选择率/以丙酮为基准(%)丙烷+C4烃二异丙基醚异丙醇枯烯二异丙基苯高沸物 2.80.00.070.023.43.8 7.60.00.041.147.34.0 0.50.00.066.227.36.0 1.30.40.081.616.70.0 25.11.40.033.231.48.9 8.60.00.035.238.218.2
  有用物质*选择率(%)   93.4   88.4   93.5   98.3   64.6   73.4
  杂质**选择率(%)   6.6   11.6   6.5   1.7   35.4   26.6
*有用物质=枯烯+二异丙基苯
**杂质=丙烷+C4烃+二异丙基醚+高沸物
工业上的应用性
本发明提供一种能够用单一反应工序,以丙酮等酮、苯等芳香族化合物以及氢为起始物质,以更高的收率得到枯烯等对应的烷基化芳香族化合物的方法。
该方法可利用于苯酚的工业性制造方法等。

Claims (5)

1.烷基化芳香族化合物的制造方法,其特征在于,在固体酸物质和以Zn相对于Cu为0.70~1.60(原子比)含有Cu和Zn的催化剂组合物存在下,使芳香族化合物与酮和氢反应来制造对应的烷基化芳香族化合物,
所述芳香族化合物为苯,所述酮为丙酮,所述固体酸物质为沸石化合物。
2.根据权利要求1所述的烷基化芳香族化合物的制造方法,其特征在于,所述沸石化合物为由10~16元氧环构成的沸石化合物。
3.根据权利要求2所述的烷基化芳香族化合物的制造方法,其特征在于,所述沸石化合物为沸石β、沸石Y、ZSM-12、丝光沸石、MCM-22、MCM-56及ZSM-5。
4.根据权利要求3所述的烷基化芳香族化合物的制造方法,其特征在于,所述沸石化合物为MCM-22、MCM-56及ZSM-5。
5.苯酚的制造方法,其特征在于,含有如下工序:
(a)对枯烯进行氧化而转变为氢过氧化枯烯的工序;
(b)对氢过氧化枯烯进行酸分解而合成苯酚和丙酮的工序;
(c)将上述工序(b)中生成的丙酮与苯进行反应而合成枯烯的工序;
(d)将上述工序(c)中得到的枯烯循环至工序(a)的工序,
其中,工序(c)按照权利要求1~4中的任一项所述的烷基化芳香族化合物的制造方法实施。
CN2008800033154A 2007-02-23 2008-02-12 烷基化芳香族化合物的制造方法 Active CN101589009B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007044363 2007-02-23
JP044363/2007 2007-02-23
JP146445/2007 2007-06-01
JP2007146445 2007-06-01
PCT/JP2008/052225 WO2008102664A1 (ja) 2007-02-23 2008-02-12 アルキル化芳香族化合物の製造方法

Publications (2)

Publication Number Publication Date
CN101589009A CN101589009A (zh) 2009-11-25
CN101589009B true CN101589009B (zh) 2013-03-27

Family

ID=39709941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800033154A Active CN101589009B (zh) 2007-02-23 2008-02-12 烷基化芳香族化合物的制造方法

Country Status (9)

Country Link
US (1) US7790936B2 (zh)
EP (1) EP2123622B1 (zh)
JP (1) JP5072951B2 (zh)
KR (1) KR101044481B1 (zh)
CN (1) CN101589009B (zh)
AT (1) ATE509898T1 (zh)
ES (1) ES2363571T3 (zh)
TW (1) TWI409244B (zh)
WO (1) WO2008102664A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063763A1 (ja) * 2007-11-13 2009-05-22 Mitsui Chemicals, Inc. アルキル化芳香族化合物の製造方法およびフェノールの製造方法
TWI458695B (zh) 2008-10-06 2014-11-01 Badger Licensing Llc 異丙苯的製造方法
WO2010042315A2 (en) * 2008-10-06 2010-04-15 Badger Licensing, Llc Process for producing cumene
JP5574968B2 (ja) * 2008-10-23 2014-08-20 三井化学株式会社 アルキル化芳香族化合物の製造方法、クメンの製造方法およびフェノールの製造方法
CN102333745B (zh) * 2009-03-19 2014-04-09 三井化学株式会社 烷基化芳香族化合物的制造方法以及苯酚的制造方法
CN103153461B (zh) * 2010-10-11 2015-11-25 埃克森美孚化学专利公司 加氢烷基化催化剂的活化和使用
WO2014074248A1 (en) * 2012-10-12 2014-05-15 Exxonmobil Chemical Patents, Inc. Activation and use of hydroalkylation catalysts for the preparation of cycloalkylaromatic compounds, phenol and cyclohexanone
CN107649170B (zh) * 2017-09-30 2020-02-21 宝鸡文理学院 一种合成4-甲基-2,6-二叔丁基苯酚的负载型分子筛催化剂及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200410917A (en) * 2001-12-20 2004-07-01 Polimeri Europa Spa Process for the alkylation of aromatic compounds

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791972A (en) 1980-11-27 1982-06-08 Sumitomo Chem Co Ltd Preparation of hydroperoxide
US4463204A (en) * 1983-04-22 1984-07-31 Exxon Research & Engineering Co. Process for alkylating toluene with methanol to form styrene using a low sodium content potassium/cesium modified zeolite catalyst composition
JP2774607B2 (ja) 1988-09-30 1998-07-09 三井化学株式会社 フェノールの製造方法およびその製造時の副生アセトンからプロピレンを得る方法
US4992606A (en) 1988-10-06 1991-02-12 Mobil Oil Corp. Process for preparing short chain alkyl aromatic compounds
JPH02231442A (ja) 1988-11-28 1990-09-13 Mitsui Petrochem Ind Ltd フェノールの製造方法
US5043508A (en) * 1989-05-30 1991-08-27 Mobil Oil Corporation Process for preparing long chain alkyl aromatic compounds
FR2656300B1 (fr) * 1989-12-21 1993-06-11 Inst Francais Du Petrole Procede de production de phenol.
US5362697A (en) 1993-04-26 1994-11-08 Mobil Oil Corp. Synthetic layered MCM-56, its synthesis and use
JPH1135497A (ja) 1997-07-15 1999-02-09 Mitsui Chem Inc クメンの製造方法
JP3291248B2 (ja) 1998-07-16 2002-06-10 日本碍子株式会社 弾性表面波マッチトフィルタ
IT1313007B1 (it) * 1999-07-13 2002-05-29 Enichem Spa Processso per l'alchilazione di composti aromatici in fase gas.
US6346586B1 (en) 1999-10-22 2002-02-12 Univation Technologies, Llc Method for preparing a supported catalyst system and its use in a polymerization process
DE10008924A1 (de) 2000-02-25 2001-09-06 Phenolchemie Gmbh & Co Kg Verfahren zur Herstellung von Phenol
US7141703B2 (en) 2003-02-14 2006-11-28 Shell Oil Company Process for producing phenol and ketone using neutralizing base

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200410917A (en) * 2001-12-20 2004-07-01 Polimeri Europa Spa Process for the alkylation of aromatic compounds

Also Published As

Publication number Publication date
ES2363571T3 (es) 2011-08-09
CN101589009A (zh) 2009-11-25
TW200844077A (en) 2008-11-16
EP2123622A1 (en) 2009-11-25
JPWO2008102664A1 (ja) 2010-05-27
EP2123622B1 (en) 2011-05-18
TWI409244B (zh) 2013-09-21
US20100022805A1 (en) 2010-01-28
KR20090110937A (ko) 2009-10-23
WO2008102664A1 (ja) 2008-08-28
EP2123622A4 (en) 2010-03-24
ATE509898T1 (de) 2011-06-15
JP5072951B2 (ja) 2012-11-14
KR101044481B1 (ko) 2011-06-27
US7790936B2 (en) 2010-09-07

Similar Documents

Publication Publication Date Title
CN101589009B (zh) 烷基化芳香族化合物的制造方法
US8536395B2 (en) Catalyst with an ion-modified binder
WO2009150973A1 (ja) アルキル化芳香族化合物の製造方法およびフェノールの製造方法
CN101541711B (zh) 烷基化芳香族化合物的制造方法以及苯酚的制造方法
JP4774813B2 (ja) プロピレンの製造方法
CN102056868A (zh) 烷基化芳香族化合物的制造方法以及苯酚的制造方法
JP5574968B2 (ja) アルキル化芳香族化合物の製造方法、クメンの製造方法およびフェノールの製造方法
JP5063702B2 (ja) アルキル化芳香族化合物の製造方法およびフェノールの製造方法
CN102333745B (zh) 烷基化芳香族化合物的制造方法以及苯酚的制造方法
Aoki et al. Takai et a
JP5410888B2 (ja) オレフィンの製造方法
JP2006335729A (ja) プロピレンの製造方法
JP5255318B2 (ja) アルキル化芳香族化合物の製造方法およびフェノールの製造方法
JP2009298733A (ja) アルキル化芳香族化合物の製造方法およびフェノールの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant