CN101578316A - 刷状共聚物 - Google Patents

刷状共聚物 Download PDF

Info

Publication number
CN101578316A
CN101578316A CNA2007800438442A CN200780043844A CN101578316A CN 101578316 A CN101578316 A CN 101578316A CN A2007800438442 A CNA2007800438442 A CN A2007800438442A CN 200780043844 A CN200780043844 A CN 200780043844A CN 101578316 A CN101578316 A CN 101578316A
Authority
CN
China
Prior art keywords
integer
raft
formula
unit
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800438442A
Other languages
English (en)
Inventor
程翀
E·克霍施德尔
K·L·伍利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever NV
Original Assignee
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever NV filed Critical Unilever NV
Publication of CN101578316A publication Critical patent/CN101578316A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/902Core-shell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及式1的共聚物,其中,M1是可从开环易位聚合(ROMP)获得的单元;R是烷基、醚、酯或芳基单元;M2和M3独立地选自可通过可逆加成断裂链转移聚合(RAFT)获得的单元;X是选自二硫代酯、三硫代碳酸酯、黄原酸酯的末端单元;且m是2-1,000,000的整数,n是2-500,000的整数,和k是2-500,000的整数。

Description

刷状共聚物
发明领域
本发明涉及共聚材料及其制造方法。
发明背景
如Zhang,M.;Müller,A.H.E.J.Polym.Sci.,PartA:Polym.Chem.2005,43,3461-3481中所讨论的,作为一种重要的纳米尺度的单一大分子的类型,刷状共聚物由于其特殊的性能吸引了特别的关注,并在开发用于其制备的精细合成方法方面引起极大的兴趣。
Hsieh,H.L.;Quirk,R.P.,Anionic Polymerization:Principles andPractical Applications.Marcel Dekker:New York,1996中公开,刷状共聚物一般可以通过“接出(grafting from)”(从聚合物骨架接枝生长)、“直接接枝(grafting through)”(大分子单体的聚合)和“接入(grafting onto)”(使用多官能团偶联剂的聚合偶联反应)途径获得。如
Figure A20078004384400041
H.G.;Beers,K.;Matyjaszewski,K.;Sheiko,S.S.;
Figure A20078004384400042
M.Macromolecules 2001,34,4375-4383和Zhang,M.;Breiner,T.;Mori,H.;Müller,A.H.E.Polymer 2003,44,1449-1458中所公开的,由赋予核-壳形态的二嵌段接枝组成的独特刷状共聚物纳米结构也已经由ATRP或NMP通过“接出”途径制备。Zhang,M.;Drechsler,M.;Müller,A.H.E.Chem.Mater.2004,16,537-543中公开了制备核-壳纳米材料的单个大分子模板。
本发明涉及具有明确(well-defined)的组成、结构和性质的聚合物基的纳米物体,尤其涉及如具有核-壳形态的球体、圆柱体和其它形状的纳米尺度的单一分子。
本发明允许对整个大分子结构进行更高程度的控制,因而,本发明的焦点在于刷状聚合物及其向其它类型纳米材料的转化上。
因为正常情况下刷状聚合物的合成一般需要复杂和耗时的程序,本发明公开了制备刷状聚合物的简易的合成方法。
发明描述
本发明涉及式1的刷状共聚物:
Figure A20078004384400051
式1
其中,M1是可从开环易位聚合(ROMP)获得的单元;
R是烷基、醚、酯或芳基单元;
M2和M3独立地选自可通过可逆加成断裂链转移聚合(RAFT)获得的单元;
X是选自二硫代酯、三硫代碳酸酯、黄原酸酯的末端单元;且
m是2-1,000,000的整数,n是2-500,000的整数,和k是2-500,000的整数。
本发明进一步涉及式3的核-壳刷状共聚物:
式3
其中,m是2-1,000,000的整数,n是2-500,000的整数,且k是2-500,000的整数。
本发明的另外的一方面是式4的核-壳刷状共聚物:
Figure A20078004384400061
式4
其中,m是2-1,000,000的整数,x是0-1的值,n是2-500,000的整数,且k是2-500,000的整数。
本发明进一步涉及制造上述聚合物的方法,其中,该制造方法包括串联的ROMP(开环易位聚合)和RAFT(可逆加成断裂链转移聚合)的步骤。
发明详述
本发明涉及核-壳刷状共聚物。
核-壳刷状共聚物
本发明涉及包含式1的刷状共聚物的组合物:
Figure A20078004384400062
式1
其中,M1是可从开环易位聚合(ROMP)获得的单元,优选可从环辛二烯或降冰片烯的开环易位聚合(ROMP)获得的单元。
R是烷基、醚、酯或芳基单元;
M2和M3独立地选自可通过可逆加成断裂链转移聚合(RAFT)获得的单元,优选为可通过苯乙烯、异戊二烯、丙烯酸甲酯、丙烯酸叔丁酯、二甲基丙烯酰胺、丙烯酸、丙烯腈、甲基丙烯酸甲酯、马来酸酐、醋酸乙烯酯、乙烯基吡啶或乙烯基苯基甲酮的可逆加成断裂链转移聚合(RAFT)获得的单元;
X是选自二硫代酯、三硫代碳酸酯、黄原酸酯的末端单元;且
m是2-1,000,000的整数,优选10-500,000,更优选100-200,000;n是2-500,000的整数,优选10-250,000,更优选20-100,000;且k是2-500,000的整数,优选10-250,000,更优选20-100,000。
优选核-壳刷状共聚物具有式2的结构:
Figure A20078004384400071
式2
其中,m是2-1,000,000的整数,且y是2-18的整数,x是1-100的整数,n是2-500,000的整数,且k是2-500,000的整数。
优选本发明的核-壳刷状共聚物是颗粒状的,通过动态光散射、原子力显微镜、透射电子显微镜或本领域技术人员已知的其它标准方法测量,具有2-2000nm的大小和1-10000的纵横比。
这些核-壳刷状共聚物使用串联的ROMP(开环易位聚合)和RAFT(可逆加成断裂链转移聚合)的步骤制造。
优选的反应路线如下:
Figure A20078004384400081
核-壳刷状共聚物可以进一步聚合以形成纳米笼。优选通过内部交联,颗粒内部交联制备纳米笼。在本发明的情形中,纳米笼可定义为以形成壳样结构的方式排列的共聚物。这种壳样结构的非常优选的用途是用于包封物质。
将有益的药剂引入该核-壳刷状共聚物是非常可取的。
实施例
现在参考下面的非限制性的实施例描述本发明。在实施例和整个说明书中,除非另外指出,所有的百分比是基于总组合物和基于活性物质的重量百分比。
实施例1.通过串联的ROMP和RAFT的共聚反应从小分子反应物一锅法合成和负载核-壳刷状共聚物
通过串联的ROMP和RAFT的共聚反应从小分子反应物一锅法合成和负载纳米笼如下面的路线2所示。
路线2
Figure A20078004384400091
作为核-壳刷状共聚物串联合成的关键试剂,外-降冰片烯-功能化的RAFT试剂1,通过在室温下、在CH2Cl2中,使用N,N′-二环己基碳二亚胺(DCC;2.1当量)和4-(二甲基氨基)吡啶(DMAP;0.2当量),通过降冰片烯-功能化醇2与酸-功能化的RAFT试剂3(2.0当量)酯化11小时,以87%的产率制备。20试剂1的1H NMR分析显示一系列特征共振(图1a),包括降冰片烯烯质子a和b(于6.03-6.16ppm)、CH2OCO质子e(于4.07ppm)、CH2OCH2质子c和d及SCH2质子f(于3.20-3.55ppm)和CH3质子g(于0.87ppm)的特征共振。它们的积分面积比1.95∶2.00∶5.95∶3.10与质子的数量比2∶2∶6∶3高度一致,证实了1的分子结构。然后从小分子反应物一锅法到核-壳刷状共聚物的制备如下进行:外-降冰片烯-功能化的RAFT试剂1的ROMP,接着通过苯乙烯(St)和马来酸酐(MAn)的RAFT共聚合用所获得的多官能化RAFT试剂和AIBN(作为引发剂)进行“接出”。在室温下,在CH2Cl2中,使用Grubbs催化剂RuCl2(CHC6H5)[P(C6Hn)3]2(0.02当量)进行试剂1(99.7mg)的ROMP反应1小时。反应混合物(19体积%,由乙基乙烯基醚终止)试样的1H NMR和GPC分析确认了试剂1向明确的多官能RAFT试剂的成功转化。试剂1的接近完全的转化(>99%)通过6.03-6.16ppm处的试剂1降冰片烯烯质子的1H NMR共振的基本消失(图1b)确认,而聚合(1)(即,试剂4)的形成通过一系列特征共振(包括聚(降冰片烯)基主链的烯质子a’和b’(于5.00-5.50ppm)、CH2OCO质子e’(于4.07ppm)、CH2OCH2质子c’和d’及SCH2质子f’(于3.20-3.55ppm)和CH3质子g’(于0.87ppm)的特征共振)证明。它们的积分面积比1.93∶2.00∶5.94∶3.03与质子的数量比2∶2∶6∶3非常一致,这定量地表明试剂4的每个重复单元中有一个RAFT官能团。通过GPC,发现试剂4具有40.6kDa的Mn和1.24的较低的多分散性指数(图2)。相对于31.5kDa的计算Mn值,试剂4的实验Mn值表明78%的引发效率(initiation efficiency)。
通过将聚(St-stat-MAn)嵌段中的MAn单元水解为亲水的马来酸单元,试剂5可以进一步转化为两亲性的核-壳刷状共聚物7(路线1)。水解作用很容易在室温下、在碱性条件下使用KOH(氢氧化钾)进行以促进反应。随后中和反应溶液以产生7。1H NMR和FT-IR的光谱鉴定用来对7和其前体5进行比较。通过7在DMSO-d6中的1H NMR测量观察到以12.0ppm为中心的羧基质子的1H NMR共振,证明在7中存在马来酸单元。通过FT-IR揭示了7和5之间的关键不同。核-壳刷状共聚物5显示在1857和1778cm-1处的其环酐基团的两个C=O伸缩频率,不存在O-H伸缩吸收。但是,两亲性的核-壳刷状共聚物7只具有一个1714cm-1的C=O伸缩频率和2500-3500cm-1的宽O-H伸缩吸收,表明从酸酐到羧酸基团的完全的官能团转化。而且,还发现7相对于5具有不同的溶解性。例如,5可溶于CDCl3,但7不溶于CDCl3,而可溶于1∶2的CDCl3-CD3OD。
通过交联两亲性的核-壳刷状共聚物7制备的并负载15重量%水杨酸的纳米笼按照上述路线合成。按照路线1合成样品,即负载15重量%的水杨酸的纳米笼。两亲性的核-壳刷状共聚物7具有聚降冰片烯基骨架、聚异戊二烯核心和聚(丙烯酸)壳。使用相对于7的丙烯酸壳单元的0.11当量的2,2′-(亚乙基二氧基)二(乙胺)交联剂和0.22当量的1-[3′-(二甲基氨基)丙基]-3-乙基碳二亚胺甲碘化物(催化剂)进行7的壳交联反应。然后通过臭氧处理和随后的Na2SO3还原,降解获得的壳交联纳米微粒8的聚异戊二烯核心。然后形成的纳米笼9通过搅拌20%的对-二氧六环-水的溶液2天来进行水杨酸(~15重量%)的负载,然后冻干溶液以产生干燥样品。
通过1H NMR分析(附有谱图)证明水杨酸负载进入了纳米笼中。负载有水杨酸的纳米笼样品在3233cm-1处也显示IR吸收,而纳米笼9则没有该吸收。轻敲模式的AFM测量表明在负载水杨酸之前和之后纳米笼具有可检测的但不明显的尺寸变化。在负载前,纳米笼具有20-45nm的直径,在云母上具有低于1.5nm的高度;负载后,纳米笼具有20-50nm的直径,在云母上具有低于1.5nm的高度。顺便指出,纳米笼样品的水溶解性可能由于冻干而降低。

Claims (6)

1.一种式1的共聚物:
式1
其中,M1是可从开环易位聚合(ROMP)获得的单元;
R是烷基、醚、酯或芳基单元;
M2和M3独立地选自可通过可逆加成断裂链转移聚合(RAFT)获得的单元;
X是选自二硫代酯、三硫代碳酸酯、黄原酸酯的末端单元;且
m是2-1,000,000的整数,n是2-500,000的整数,和k是2-500,000的整数。
2.如权利要求1所述的共聚物,具有式2的结构:
Figure A2007800438440002C2
式2
其中,m是2-1,000,000的整数,n是2-500,000的整数,且k是2-500,000的整数。
3.如权利要求1所述的共聚物,具有式3的结构:
Figure A2007800438440002C3
式3
其中,m是2-1,000,000的整数,x是0-1的值,n是2-500,000的整数,且k是2-500,000的整数。
4.如前述任一项权利要求所述的共聚物,其为纳米笼的形式。
5.一种制造如前述任一项权利要求所述的共聚物的方法,其中,所述制造方法包括串联的ROMP(开环易位聚合)和RAFT(可逆加成断裂链转移聚合)的步骤。
6.如权利要求5所述的制造共聚物的方法,包括以下反应序列:
Figure A2007800438440003C1
CNA2007800438442A 2006-11-27 2007-11-02 刷状共聚物 Pending CN101578316A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06124832 2006-11-27
EP06124832.4 2006-11-27

Publications (1)

Publication Number Publication Date
CN101578316A true CN101578316A (zh) 2009-11-11

Family

ID=37903627

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800438442A Pending CN101578316A (zh) 2006-11-27 2007-11-02 刷状共聚物

Country Status (9)

Country Link
US (1) US7960479B2 (zh)
EP (1) EP2121796A1 (zh)
JP (1) JP2010511065A (zh)
CN (1) CN101578316A (zh)
AR (1) AR063931A1 (zh)
BR (1) BRPI0717701A2 (zh)
MX (1) MX2009005623A (zh)
RU (1) RU2009124478A (zh)
WO (1) WO2008064972A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732629A (zh) * 2011-08-23 2014-04-16 3M创新有限公司 加成-断裂剂
CN104049461A (zh) * 2012-11-19 2014-09-17 罗门哈斯电子材料有限公司 自-组装结构、其制造方法和包含其的制品
CN104781295A (zh) * 2012-11-12 2015-07-15 3M创新有限公司 加成-断裂剂

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382387B2 (en) 2012-03-13 2016-07-05 California Institute Of Technology Rapid self-assembly of block copolymers to photonic crystals
US9045579B2 (en) 2012-03-13 2015-06-02 California Institute Of Technology Periodic nanostructures from self assembled wedge-type block-copolymers
US9453943B2 (en) 2012-06-28 2016-09-27 California Institute Of Technology Photonic structures from self assembly of brush block copolymers and polymer blends
US20140121034A1 (en) * 2012-10-26 2014-05-01 Mikhail Lewis Novak Semitransparent grips for use with athletic equipment
US9223214B2 (en) 2012-11-19 2015-12-29 The Texas A&M University System Self-assembled structures, method of manufacture thereof and articles comprising the same
US9447220B2 (en) 2012-11-19 2016-09-20 Rohm And Haas Electronic Materials Llc Self-assembled structures, method of manufacture thereof and articles comprising the same
US8822130B2 (en) * 2012-11-19 2014-09-02 The Texas A&M University System Self-assembled structures, method of manufacture thereof and articles comprising the same
US9169334B2 (en) * 2013-01-30 2015-10-27 Exxonmobil Chemical Patents Inc. Preparation of bottlebrush polymers via ring-opening metathesis polymerization
CN103214606B (zh) * 2013-04-28 2015-06-10 苏州大学 一种环状聚醋酸乙烯酯的制备方法
US10078261B2 (en) 2013-09-06 2018-09-18 Rohm And Haas Electronic Materials Llc Self-assembled structures, method of manufacture thereof and articles comprising the same
US9405189B2 (en) 2013-09-06 2016-08-02 Rohm And Haas Electronic Materials Llc Self-assembled structures, method of manufacture thereof and articles comprising the same
US10153513B2 (en) 2015-03-09 2018-12-11 California Institute Of Technology Triblock brush block copolymers
JP6968101B2 (ja) * 2016-05-13 2021-11-17 エボニック オペレーションズ ゲーエムベーハー ポリオレフィン骨格およびメタクリレート側鎖をベースとするグラフトコポリマー
US11053356B2 (en) 2017-03-07 2021-07-06 California Institute Of Technology Control of polymer architectures by living ring-opening metathesis copolymerization
KR102349029B1 (ko) * 2019-04-18 2022-01-10 한양대학교 에리카산학협력단 자극 반응성을 가진 양친성 노보넨 기반 블럭 공중합체, 이의 고분자 브러쉬, 이의 초분자 자가조립 나노구조체, 이의 제조 방법 및 이의 응용
KR102267670B1 (ko) * 2019-04-18 2021-06-22 한양대학교 에리카산학협력단 자극 반응성을 가진 양친성 노보넨 기반 이중블럭 공중합체, 이의 고분자 브러쉬, 이의 계층적 자가조립 나노구조체, 이의 제조 방법 및 이의 응용
JP7374466B2 (ja) * 2019-11-19 2023-11-07 国立研究開発法人物質・材料研究機構 複合体、成形体、車両用部材、及び、ボトルブラシポリマー

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040218A1 (en) * 2001-11-09 2003-05-15 Polymerat Pty Ltd Porous polymer films

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732629A (zh) * 2011-08-23 2014-04-16 3M创新有限公司 加成-断裂剂
CN103732629B (zh) * 2011-08-23 2015-10-21 3M创新有限公司 加成-断裂剂
CN104781295A (zh) * 2012-11-12 2015-07-15 3M创新有限公司 加成-断裂剂
CN104049461A (zh) * 2012-11-19 2014-09-17 罗门哈斯电子材料有限公司 自-组装结构、其制造方法和包含其的制品

Also Published As

Publication number Publication date
JP2010511065A (ja) 2010-04-08
BRPI0717701A2 (pt) 2013-11-05
MX2009005623A (es) 2009-06-08
RU2009124478A (ru) 2011-01-10
US20100022741A1 (en) 2010-01-28
US7960479B2 (en) 2011-06-14
EP2121796A1 (en) 2009-11-25
WO2008064972A1 (en) 2008-06-05
AR063931A1 (es) 2009-02-25

Similar Documents

Publication Publication Date Title
CN101578316A (zh) 刷状共聚物
Deng et al. Constructing well-defined star graft copolymers
Yuan et al. Synthesis, characterization, and controllable drug release of dendritic star-block copolymer by ring-opening polymerization and atom transfer radical polymerization
Lapienis Star-shaped polymers having PEO arms
Cai et al. Morphology transitions in RAFT polymerization
Wang et al. Synthesis of well-defined, polymer-grafted silica nanoparticles via reverse ATRP
Li et al. Preparation and characterization of hyperbranched polymer grafted mesoporous silica nanoparticles via self-condensing atom transfer radical vinyl polymerization
Wooley et al. Amphiphilic core–shell nanospheres obtained by intramicellar shell crosslinking of polymer micelles with poly (ethylene oxide) linkers
CN105968367B (zh) 一种两亲性聚肽共聚物、自组装体及制备方法和应用
Goffin et al. New organic–inorganic nanohybrids via ring opening polymerization of (di) lactones initiated by functionalized polyhedral oligomeric silsesquioxane
KR20010040476A (ko) 메틸리덴 말로네이트계 신규 계면활성제 공중합체
WO2002002674A1 (en) Physically crosslinked amphiphilic networks, methods of preparation, and uses thereof
Riza et al. Graft copolymers having hydrophobic backbone and hydrophilic branches. X. Preparation and properties of water‐dispersible polyanionic microspheres having poly (methacrylic acid) branches on their surfaces
Murthy et al. Fundamental design aspects of amphiphilic shell-crosslinked nanoparticles for controlled release applications
Moughton et al. Hollow nanostructures from self-assembled supramolecular metallo-triblock copolymers
Mecerreyes et al. Synthesis of dendritic–linear block copolymers by living ring‐opening polymerization of lactones and lactides using dendritic initiators
Wang et al. Reverse ATRP grafting from silica surface to prepare well-defined organic/inorganic hybrid nanocomposite
Lu et al. Tailor-made starch-based conjugates containing well-defined poly (vinyl acetate) and its derivative poly (vinyl alcohol).
Nikfarjam et al. Preparation of pH-sensitive nanoparticles with core-shell-corona morphology as an oral drug carrier
WO2009148712A1 (en) Highly efficient agents for dispersion of nanoparticles in matrix materials
Hong et al. Drug release behavior of poly (ε-caprolactone)-b-Poly (acrylic acid) Shell Crosslinked Micelles below the Critical Micelle Concentration
Li et al. Well‐defined amphiphilic graft copolymer consisting of hydrophilic poly (acrylic acid) backbone and hydrophobic poly (vinyl acetate) side chains
Bernard et al. Synthesis and properties of PS–PEO core–shell amphiphilic dendrigrafts
Han et al. A novel strategy for synthesis of amphiphilic π-shaped copolymers by RAFT polymerization
Lee et al. Step-growth polymerization of supracolloidal chains from patchy micelles of diblock copolymers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20091111