CN101569104B - 便携式无线通信装置 - Google Patents

便携式无线通信装置 Download PDF

Info

Publication number
CN101569104B
CN101569104B CN2008800012567A CN200880001256A CN101569104B CN 101569104 B CN101569104 B CN 101569104B CN 2008800012567 A CN2008800012567 A CN 2008800012567A CN 200880001256 A CN200880001256 A CN 200880001256A CN 101569104 B CN101569104 B CN 101569104B
Authority
CN
China
Prior art keywords
conductor portion
circuit
wireless signal
signal
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008800012567A
Other languages
English (en)
Other versions
CN101569104A (zh
Inventor
山本温
岩井浩
坂田勉
小柳芳雄
林俊光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Corp of America
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN101569104A publication Critical patent/CN101569104A/zh
Application granted granted Critical
Publication of CN101569104B publication Critical patent/CN101569104B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Abstract

壳体天线20由第一导体部7、接地导体部9、以及第一供电部2构成。第一导体部7是折叠式手机的上部壳体的底板。接地导体部9是折叠式手机的下部壳体的底板。半波长缝隙天线30由第一导体部7、第二导体部8、三个短路导体部10~12、以及第二供电部3构成。第一供电部2是壳体天线20的供电部。第二供电部3是半波长缝隙天线30的供电部。第一及第二供电部2及3与无线通信电路4相连接,可以进行无线通信。

Description

便携式无线通信装置
技术领域
本发明涉及一种用于无线通信装置的天线装置,该天线装置在利用了手机等的移动通信中的得到控制,从而使提高通信容量、实现高速通信的同时,保持良好的通信质量。本发明特别涉及具有多输入多输出天线或自适应阵列天线的无线通信装置。 
背景技术
作为一种采用了用多个天线来同时接收/发送多个信道的无线信号的多输入多输出(Multi-Input Multi-Output,以下简称MIMO)技术的天线装置,例如有专利文献1所公开的MIMO天线装置。 
专利文献1所记载的现有的MIMO天线装置是由以相同间隔设置的四个天线元件组及主体部构成的。各天线元件组分别包括极化方向互不相同的四个天线元件。而主体部包括:与各天线元件连接的开关部;经由开关部接收接收信号的信号接收部;生成针对开关部的控制信号的天线控制部;生成天线元件的组合,并将选择元件信息通知给天线控制部的天线选择部;以及根据由天线选择部生成的天线元件的组合所接收的接收信号来决定特定的天线元件的组合,并将决定元件信息通知给天线控制部的天线决定部。 
该现有的MIMO天线装置的目的在于:通过上述构成,从各个天线元件组中各选一个天线元件那样来决定天线元件的组合,从而降低天线元件之间的相关性,确保充分的传输容量。 
也就是说,现有的MIMO天线装置,通过多个天线元件同时工作,各 天线元件尽量获得大的接收功率,可以实现涉及经MIMO解调之后的多个信号序列的合计传输速度的高速化。为了达到上述目的,专利文献1所记载的MIMO天线装置具备比MIMO的同时通信信道的数目更多的天线元件,并选择其中接收信号强度大的天线元件来进行MIMO解调。 
在移动通信中,因移动站(使用者)的移动和周围环境的时间性变化而使主极化及交叉极化的信号强度呈时间性变化或者到达角度发生变化的情况下,如上所述的天线的选择方法特别有效。另外,通过使用极化特性不同的天线元件来对应极化方向的变化,并切换天线元件那样进行控制,可以克服时间性变化。 
综上所述,专利文献1所记载的MIMO天线装置包括由多个天线元件分别构成的多个天线元件组,利用开关部来选择相关性最低的天线元件的组合、或者传输容量最大的天线元件的组合,从而可以降低天线元件之间的相关性,并且提高传输容量。 
进一步,参照专利文献2及3,对于将便携式无线装置的一部分用作天线的便携式无线装置的一个例子进行说明。 
专利文献2所记载的便携式无线装置的目的在于,通过使便携式无线装置的壳体导体的一部分作为天线的一部分来工作,不需要将天线用作专用部件,从而可以减少部件的数目并减低生产成本,实现装置的薄型化及轻量化。另外,通过将壳体本身作为天线,能够构成更大的天线,从而实现天线的高灵敏度。这样,根据专利文献2所记载的便携式无线装置,追求小型化的便携式终端中,通过使壳体导体作为天线的一部分工作,可以实现完整性良好的无线通信。 
专利文献3所记载的手机的目的在于减小因使用者的手的状态而引起的增益变化,并具体公开了下述构成:在可折叠的手机1中,上部壳体3内的屏蔽盒14与下部壳体4内的发送电路15的输出端通过软电缆9连接, 将屏蔽盒14用作天线(专利文献3的附图3)。如此,通过采用将屏蔽盒14用作天线的构成,可以减小因使用者的手的状态而发生的增益变化。 
然而,在专利文献1所记载的现有的MIMO天线装置存在着以下问题。为了尽量获得大的接收功率,该现有的MIMO天线装置的构成为,如上所述那样,具备比MIMO的同时通信信道的数目更多的天线元件,并选择其中接收信号强度大的天线元件来进行MIMO解调。但是,如手机那样1个波长或更小尺寸的小型装置,如果搭载多个天线元件组,则天线之间的间隔变近,在极化一致的天线之间构成阵列而进行MIMO通信,因而会出现因天线之间的互耦而造成的辐射效率降低的问题。 
另一方面,专利文献2所记载的现有的便携式无线装置存在着以下问题。该现有的便携式无线装置通过将壳体导体的一部分用作天线来实现小型化,并且提出了适于单个天线或者与缝隙天线之间进行切换分集的结构。然而,由于在切换分集中工作的天线只有一个,不会出现天线之间互耦的问题,所以没有考虑到降低互耦的天线结构。即,在需要同时工作的多个天线的MIMO天线或者自适应阵列天线中,不能将专利文献2所记载的便携式无线装置用于MIMO天线。另外,至于专利文献3所记载的手机的现有的天线,同样只考虑了单个天线的工作,而没有考虑使多个天线同时工作的MIMO天线和自适应阵列天线的结构。【专利文献1】日本特开2004-312381号公报【专利文献2】日本特开2004-274730号公报【专利文献3】日本专利第3830773号说明书 
发明内容
因此,本发明的目的在于提供一种用于移动体的无线通信装置,该无 线通信装置虽然是小型形状,但是天线之间的互耦小,从而使多个供电天线元件同时保持良好的接收状态。 
本发明针对具备多个天线元件的便携式无线通信装置。而为了达到上述目的,本发明的一种形态包括:矩形形状的第一导体部;与第一导体部以规定间隔平行设置、并且形状与第一导体部的形状相同的第二导体部;三个短路导体部,分别实现第一导体部的任意三个边与正对该三个边的第二导体部的三个边之间的电连接;接地导体部,与第一导体部相隔规定距离;以及无线通信电路,经由设置于第一导体部与接地导体部之间的第一供电部,将第一导体部上的第一供电点与无线通信电路相连接,从而使第一导体部及接地导体部作为第一天线元件工作;经由设置于第一导体部与第二导体部之间的第二供电部,将第二导体部上的第二供电点与无线通信电路相连接,从而使第一导体部、第二导体部、以及三个短路导体部作为第二天线元件工作。 
如果将未与三个短路导体部连接的一个边的长度设定为通信信号波长的二分之一的长度,则可以使第二天线元件作为半波长缝隙天线工作。同时,可以只使相邻的两个短路导体部与第一及第二导体部相连接,并将未与两个短路导体部连接的两个边的长度的合计长度设定为通信信号波长的二分之一的长度。此外,可以将用导电性材料形成的便携式无线通信装置的壳体的一部分,作为第一导体部来使用。另外,无线通信电路也可以装设于第一导体部。 
另外,要使一个第二天线元件在两个不同的频率工作时,可以相应于各频率对任一个短路导体部进行切换控制。此时作为任一个短路导体部,可以考虑电感器与电容器的并联谐振电路,或由控制部控制的开关电路等。 
在此,如果还包括:自适应控制电路,对由第一及第二天线元件接收的无线信号分别执行自适应控制处理,并合并经自适应控制的无线信号;解调电路,将被合并的无线信号解调,同时将由第一天线元件单个接收的 无线信号及由第二天线元件单个接收的无线信号分别解调;以及装置控制电路,对解调被合并的无线信号而获得的信号完整性与解调由第一及第二天线元件接收的无线信号而获得的各信号完整性进行比较,并使具有经上述比较而判断出的最佳信号完整性的无线信号被接收那样来控制自适应控制电路,则本发明的便携式无线通信装置可以作为自适应天线工作。 
另外,如果还包括:第一处理电路,对由第一及第二天线元件接收的无线信号执行自适应控制处理;第二处理电路,对由第一及第二天线元件接收的无线信号执行选择分集处理;以及选择电路,对从第一处理电路输出的无线信号的信号完整性与从第二处理电路输出的无线信号的信号完整性进行比较,选择并输出具有良好的信号完整性的信号,则本发明的便携式无线通信装置可以作为选择分集天线工作。 
另外,如果还包括自适应控制电路,对由第一及第二天线元件接收的无线信号分别执行自适应控制处理,并合并经自适应控制的无线信号;以及装置控制电路,检测由第一及第二天线元件接收的各无线信号的相位及振幅,并控制自适应控制电路,以将无线信号进行最大比合并,则本发明的便携式无线通信装置可以作为合并分集天线工作。 
进一步,如果还包括MIMO解调电路,该MIMO解调电路对由第一及第二天线元件接收的无线信号分别执行MIMO解调处理,并输出一个解调信号,则本发明的便携式无线通信装置可以作为MIMO天线工作。发明效果 
根据上述本发明,不用大幅度增加天线的部件数目,而能够在小型终端中实现阵列天线。并且,通过将壳体本身作为天线,能够使天线尽量大型化。另外,通过将缝隙天线的短路边设置为面对壳体天线的供电部,能够降低天线之间的互耦。进一步,通过以使天线的辐射方向性不同的方式进行设置,能够降低天线之间的相关性系数。由此,作为阵列天线的性能 有希望得到提高,可以提供具有更好的工作性能的MIMO天线和自适应阵列天线。 
附图说明
图1是表示本发明的第一实施方式所涉及的便携式无线通信装置的内部构成的图。图2是表示壳体天线20的构成的图。图3是表示壳体天线20的电流方向,电场方向,以及辐射图形的概略图。图4是表示半波长缝隙天线30的构成的图。图5是表示由半波长缝隙天线30激励的电场的方向以及辐射图形的概略图。图6是说明壳体天线20的试制例的图。图7是表示图6的壳体天线20的阻抗特性的图。图8是表示图6的壳体天线20的辐射图形的图。图9是说明半波长缝隙天线30的试制例的图。图10是表示图9的半波长缝隙天线30的阻抗特性的图。图11是表示图9的半波长缝隙天线30的辐射图形的图。图12是表示组合了两种天线的天线阵列的试制例的图。图13是表示图12的天线阵列的阻抗特性的图。图14是表示图12的天线阵列的反射特性和互耦特性的图。图15是表示天线阵列中的壳体天线20的辐射方向性的图。图16是表示天线阵列中的半波长缝隙天线30的辐射方向性的图。图17是表示本发明的第一实施方式所涉及的其它便携式无线通信装置的内部构成的图。图18是表示用于本发明的第二实施方式所涉及的便携式无线通信装置的短路导体部12的具体的电路例的图。图19是图18所示的电路的史密斯圆图。图20是表示用于实现短路导体部12的其它具体电路例的图。 图21是表示本发明的第三实施方式所涉及的自适应天线装置的构成的图。图22是表示由图21的控制器103执行的自适应控制处理的流程图。图23是表示本发明的第四实施方式所涉及的选择分集式天线装置的构成的图。图24是表示本发明的第五实施方式所涉及的合并分集式天线装置的构成的图。图25是表示本发明的第六实施方式所涉及的MIMO天线装置的构成的图。符号说明 
2,3  供电部4  无线通信电路5,6  供电线路7,8  导体部9  接地导体部10~12  短路导体部20  壳体天线30  缝隙天线41  电感器42  电容器43  开关100a~d、201、202、401a~c、501a~c、507  天线元件101、502A/D  转换电路102  自适应控制电路103、405、505  控制器104a~d、402a~c  可变放大器105a~d、403a~c  可变移相器106、406  信号合并器 107  解调器109  判定器203、204  处理电路205、206  检波器207  信号完整性监测电路208  选择电路404a~c  接收信号检波器503  MIMO解调电路504  信号电平比较电路506  无线发送电路 
具体实施方式
以下,参照附图,对于本发明的实施方式加以详细地说明。在此,对于所有用于说明本发明的实施方式的附图,具有相同作用的构成要素使用相同的参照符号,并省略重复的说明。 
(第一实施方式)图1是表示本发明的第一实施方式所涉及的便携式无线通信装置的内部构成的正面图及侧面图。图1中,第一实施方式所涉及的便携式无线通信装置包括:第一及第二供电部2及3,无线通信电路4,第一及第二供电线路6及5,第一及第二导体部7及8,接地导体部9,以及三个短路导体部10~12。第一导体部7与第二导体部8具有相同的矩形形状。 
该第一实施方式所涉及的便携式无线通信装置在天线阵列的构成中包括:壳体导体的一部分作为天线使用的壳体天线以及该壳体导体的一部分作为底板的半波长缝隙天线。第一供电部2是经由第一供电线路6向壳体天线供给电源的供电部。第二供电部3是经由第二供电线路5向半波长缝隙天线供给电源的供电部。第一及第二供电部2及3被连接于无线通信电路4,从而能够进行无线通信。该无线通信电路4中包括滤波器、放大器和 频率转换混频器等高频电路、以及调制器和解调器等基带电路。 
首先,用图2及图3对于壳体天线20的工作进行说明,用图4及图5对于半波长缝隙天线30的工作进行说明。 
图2表示壳体天线20的概略构成。该壳体天线20由第一导体部7、接地导体部9、以及第一供电部2构成。第一导体部7是折叠式手机的上部壳体的底板。接地导体部9是折叠式手机的下部壳体的底板。第一供电部2设于连接第一导体部7与接地导体部9的合页部分。 
图3表示壳体天线20的电流方向、电场方向、以及辐射图形的概略图。如图3所示那样,壳体天线20中,在第一导体部7及接地导体部9流过高频电流24,由此辐射电波。由于电流的流动方式与偶极子天线相同,所以获得如下辐射方向性,即对于纸面(ZY面)成为8字方向性25,而在垂直于纸面的面(XY面)成为无方向性。另外,辐射电波的电场的方向26平行于高频电流24。 
图4表示半波长缝隙天线30的构成。该半波长缝隙天线30由第一导体部7、第二导体部(上层导体部)8、三个短路导体部10~12、以及第二供电部3构成。第一导体部7,与第二导体部8相隔规定间隔平行设置,通过以该规定间隔为宽度的三个短路导体部10~12,三个边之间分别实现电连接。即,半波长缝隙天线30具有以短路导体部10为底面,短路导体部11、短路导体部12、第一导体部7、以及第二导体部8为侧面的一面敞开的盒子的形状。第二供电部3在第一导体部7与第二导体部8之间进行供电。该半波长缝隙天线30中,未与短路导体部10~12连接的第一导体部7(或者第二导体部8)的一个边的长度(线a)被设计为通信信号波长的二分之一的长度。 
另外,第一实施方式中对一面敞开的盒子的形状的半波长缝隙天线30进行了说明,但可以省略短路导体部11或者短路导体部12。即,若将未与 短路导体部10及12连接的第一导体部7的两个边的长度(线a和线b)的合计长度设计为通信信号波长的二分之一的长度,则不需要短路导体部11。并且,若将未与短路导体部10及11连接的第一导体部7的两个边的长度(线a和线c)的合计长度设计为通信信号波长的二分之一的长度,则不需要短路导体部12。 
图5表示由半波长缝隙天线30激励的电场的方向及辐射图形的概略图。如图5所示那样,在半波长缝隙天线30中,由于第二供电部3的供电在第一导体部7与第二导体部8之间产生电场35,并且短路导体部10起反射板的作用,因此在Z方向上得到较强的辐射方向性36。 
下面,用图6~图11对壳体天线20及半波长缝隙天线30的试制例分别加以说明。 
图6是壳体天线20的试制例。该试制例中,将第一导体部7及接地导体部9的形状均作为45mm×90mm的长方形,将第一导体部7与接地导体部9之间的距离为5mm。另外,图7及图8表示阻抗特性(输入VSWR(voltage standing wave ratio:电压驻波比))及辐射图形(XY面)。由图7可知,壳体天线20在1.4GHz谐振。此外,图8表示在频率为1.6GHz的情况下的辐射图形。由图8可知,在X方向上得到了稍强的方向性。这是因为供电部相对天线不对称。然而,可看到得到了大致无方向性。 
图9表示半波长缝隙天线30的试制例。该试制例中,将第一导体部7及第二导体部8作为45mm×90mm的长方形,将短路导体部10作为90mm×5mm的长方形,将短路导体部11及12作为45mm×5mm的长方形。另外,图10及图11表示阻抗特性(输入VSWR)及辐射图形(XY面)。由图10可知,半波长缝隙天线30在1.6GHz谐振。图11表示在频率为1.6GHz的情况下的辐射图形。由图11可知,在Y方向上得到了稍强的方向性。这是因为,如图5所示那样,短路导体部10起反射板的作用。 
如上所述,壳体天线20与半波长缝隙天线30,由于辐射方向性不同,所以可以设想天线之间的相关性系数较小。因此,可以期望作为MIMO天线、自适应阵列天线、以及最大比合并等的阵列天线,得到良好的阵列特性。 
下面,对于组合壳体天线20与半波长缝隙天线30而构成的天线阵列加以说明。图12表示组合图6的壳体天线20与图9的半波长缝隙天线30而构成的天线阵列的试制例。另外,图13表示上述两种天线的阻抗特性(输入VSWR),图14表示上述两种天线的反射特性和互耦特性(天线之间通过特性)。 
由图13可知,天线阵列在1.6GHz谐振。通过将图13与图7及图10相比可知,天线阵列的阻抗特性与天线单个的阻抗特性相比几乎没有变化。由此可知,构成天线阵列的两种天线互相不容易受到对方的影响。这是因为设置于壳体天线20的第一供电部2与半波长缝隙天线30的第二供电部3之间的短路导体部10~12提高了屏蔽效果。 
由此可以将每一根天线单个进行设计,从而可以得到提高设计的容易性的效果。进一步,由图14可知,互耦特性在-35dB以下。因此,一方的天线的功率被另一方的天线吸收的功率为十分之一以下,一方的天线的辐射效率的下降程度在-0.5dB以下,可以得到下降率小的良好的辐射效率。 
图15及图16表示构成天线阵列时的壳体天线20及半波长缝隙天线30的辐射方向性。通过与各个天线单个时相比可知,虽然在图16中的半波长缝隙天线30的辐射方向性有所变小,但是与壳体天线20同样,均得到了与天线单个时相同的方向性,因天线阵列化而产生的方向性的变化不大。 
如上所述,根据本发明的第一实施方式所涉及的便携式无线通信装置, 天线之间的互耦较小,方向性不同,可以得到良好的阵列特性,并且可以实现最适合于小型便携式无线装置的天线。 
上述第一实施方式中说明了无线通信电路4装设于接地导体部9上的例子。但是,如图17所示那样,无线通信电路4也可以装设于第一导体部7上。通过采用这样的构成,可以产生使配线到第二供电部3的第二供电线路5缩短的效果。此外,由于第一导体部7成为第一供电部2及第二供电部3的共用接地,所以还有可以实现接地稳定化和构造简单化的优点。 
另外,上述第一实施方式中将图1所示的折叠式便携式无线通信装置作为一个例子进行了说明,但本发明的天线阵列构成还可以适用于其它各种各样的构造(直立式和滑盖式)的便携式无线通信装置。再者,如果便携式无线通信装置的壳体的一部分由导电性材料形成,则可以将该一部分作为第一导体部7来使用。 
(第二实施方式)本发明的第二实施方式所涉及的是,通过切换上述第一实施方式所涉及的便携式无线通信装置的短路导体部12(或者短路导体部11,下同),使半波长缝隙天线30在不同的两个频率谐振的便携式无线通信装置。 
为了实现在两个频率产生谐振,半波长缝隙天线30的短路导体部12如下动作,即,要实现在第一频率产生谐振则成为开路状态,而要实现在第二频率产生谐振则成为短路状态。由此可以实现两个正交的谐振。 
图18表示短路导体部12的具体的电路例。图18表示由电感器41与电容器42并联的谐振电路,该电路在谐振频率之处阻抗成为无限大,而成为开路状态。图19表示上述情况下的史密斯圆图。在此例中,电感器41及电容器42的大小被设定为在第一频率f1之处谐振的大小,该并联谐振电路在第一频率f1之处成为开路状态,在高于第一频率f1的第二频率f2之处阻抗变低而成为短路状态。 
另一方面,还可以用图20所示的开关43替换短路导体部12来使用。在此情况下,在以第一频率工作时,连接开关43,而在以第二频率使工作时,则断开开关43。 
如上所述那样,根据本发明的第二实施方式所涉及的便携式无线通信装置,通过使阻抗根据频率变化的电路用作短路导体部12,可以实现一个装置在两个频率产生谐振的动作。 
(第三实施方式)图21是表示本发明的第三实施方式所涉及的自适应天线装置的构成的图。在图21中,第三实施方式所涉及的自适应天线装置包括:四根天线元件100a~d,模拟/数字转换电路(A/D转换电路)101,自适应控制电路102,控制器103,判定器109,以及解调器107。作为该四根天线元件100a~d之中的任两根,使用上述第一实施方式中所说明过的壳体天线20及半波长缝隙天线30。 
在图21中,由各天线元件100a~d接收的无线信号分别被输入到A/D转换电路101及自适应控制电路102。A/D转换电路101包括对应于各天线元件100a~d的A/D转换器,将由各天线元件100a~d接收的模拟无线信号分别转换为数字信号之后,输出到控制器103。 
自适应控制电路102由四个可变放大器104a~d、四个可变移相器105a~d、以及信号合并器106构成。可变放大器104a~d的可变振幅量及可变移相器105a~d的移相量受到控制器103的控制。由天线元件100a接收的无线信号经由可变放大器104a及可变移相器105a,由天线元件100b接收的无线信号经由可变放大器104b及可变移相器105b,由天线元件100c接收的无线信号经由可变放大器104c及可变移相器105c,由天线元件100d接收无线信号经由可变放大器104d及可变移相器105d,分别被输出到信号合并器106。信号合并器106将被输入的四个无线信号进行合并(加算)并输 出到解调器107。 
解调器107将从信号合并器106输入的合并无线信号以规定的数字解调方式来解调为作为解调信号的基带信号,并输出到输出端108及判定器109。判定器109,根据包含在被输入的基带信号并且预先决定的参照模式期间内的参照模式,测定错误率,并输出到控制器103。控制器103采用下面详细说明的自适应控制方法,使具有最佳信号完整性的无线信号被接收并被解调那样来控制自适应控制电路102。 
另外,在图21中省略了用于处理无线信号的基本构成,如高频滤波器、高频放大器、高频电路、中频电路、以及信号处理电路等。即,在该自适应控制电路102中,既可以用载频执行处理,也可以用中频执行处理。另外,在自适应控制电路102中,可变放大器104a~d与可变移相器105a~d的构成顺序可以颠倒。 
首先,对于自适应天线装置的自适应控制方法进行如下说明。自适应天线装置采用的是,在期望波到来的方向上使天线的辐射图形最大(即,将天线的辐射图形中的主波束实质上朝向期望波方向),在造成妨碍的干扰波的方向上使NULL朝向辐射图形(即,将天线的辐射图形中的NULL实质上朝向干扰波方向),从而实现稳定的无线通信这样的自适应技术。一般来说,自适应天线装置,通过对由各天线元件100a~d接收的无线信号(或者,从无线信号经频率转换的中频信号)给予振幅差及相位差来得到最大的期望信号功率和最小的干扰信号功率那样进行控制。 
各天线元件100a~d一般不仅接收期望波,也接收热噪声成分。另外,有时还可能接收从相邻的基站发送的频率相同的相同信道的干扰波,或虽然是期望波但是由于经由大的路径到达,所以产生时间上的延迟的延迟波。延迟波在电视广播和无线电广播等模拟无线通信系统中,例如成为在电视机上显示的重影而使画面的显示质量变差。另一方面,在数字无线通信系统中,热噪声成分,相同信道的干扰波以及延迟波均成为误码而带来影响, 直接导致信号完整性的恶化。在此,将期望波功率作为C,将热噪声功率作为N,将包括相同信道的干扰波和延迟波的干扰波功率作为I,较佳的是,自适应天线装置进行自适应控制,以使C/(N+I)为最大,从而改善信号完整性。 
下面,具体说明自适应天线装置的自适应控制的动作。由各天线元件100a~d接收的无线信号在A/D转换电路101被转换成数字信号x(t)(本实施方式中具有四个要素的信号向量),并输入到控制器103。控制器103将自适应控制电路102中的可变放大器104a~d的振幅量及可变移相器105a~d的移相量决定为使从自适应控制电路102输出的无线信号y(t)的信号完整性最好的振幅量及移相量。 
包括这些振幅量及移相量的加权系数的计算方法如下。在此,加权系数Wi由振幅量Ai和移相量φi,通过下述算式(1)定义。Wi=Ai×exp(j×φi)    …(1)在此,j为虚数单位。并且,i可取1~4的值,分别与处理由各天线元件100a~d接收的无线信号的系统相对应。定义以加权系数Wi为分量的加权系数向量W,下面示出求加权系数Wi的方法。 
有多种求加权系数Wi的方法,在此示出采用最速下降法(最小均方,LMS:Least Means Squares)的例子。该方法中,自适应天线装置预先存储参照信号r(t),即为已知的期望波中所包含的信号系列,并使被接收的无线信号中所包含的信号系列近于参照信号r(t)那样进行控制。在此,作为一个例子示出控制器103中预先存储着参照信号r(t)的情况。具体而言,控制器103以对无线数字信号x(t)乘以具有振幅量及移相量的成分的加权系数w(t)的方式来控制自适应控制电路102。用以下算式(2)来求该加权系数w(t)乘以无线数字信号x(t)后的乘法结果与参照信号r(t)之间的残差e(t)。e(t)=r(t)-W(t)×x(t)    …(2) 
在此,残差e(t)取正或负值。因此,通过进行反复计算来递推地求出由 上述算式(2)求出的残差e(t)的平方值的最小值。也就是说,通过反复计算得到的第(m+1)次的加权系数w(t,m+1),可用第m次的加权系数w(t,m)通过以下算式(3)得到。W(t,m+1)=W(t,m)+u×x(t)×e(t,m)    …(3) 
在此,u被称为步长,步长u若大,则有加权系数w收敛到最小值的反复计算次数变少的优点,但步长u若过大,则有在最小值附近振动的缺点。因此,需要充分注意按照系统来选定步长u。相反,通过使步长u变小,加权系数w可稳定地收敛到最小值。但反复计算的次数会增加。而反复计算的次数增加,则求加权系数所需时间会变长。假如,在加权系数w的计算时间比周围环境的变化时间(例如,几毫米秒)更长的情况下,不可能利用该加权系数w来改善信号完整性。于是,当决定步长u时需要选择尽量高速而且稳定的收敛条件。另外,对残差e(t,m)通过以下算式(4)来定义。e(t,m)=r(t)-W(t,m)×x(t)    …(4) 
用该算式(4)的值来递推地更新算式(3)。另外,为求加权系数w而进行的最大的反复计算次数,被设定为使加权系数计算时间不迟于无线系统的切换时间的次数。 
在此,作为一个例子说明了基于最速下降法的无线通信系统的自适应控制的判定法,但本发明不局限于此,还可以采用例如能够更快地作出判定的递归最小二乘方(RLS:Recursive Least-Squares)法、样本矩阵求逆(SMI:Sample Matrix inversion)法。采用该方法虽然可以使判定速度更快,但是判定器109所进行的计算变得复杂。另外,在信号系列的调制方式为如数字相位调制那样的具有一定的包络线的低包络线调制的情况下,可以采用恒模算法(CMA:Constant Modulus Algorithm)。 
图22是表示由图21的控制器103执行的自适应控制处理的流程图。图22中,首先,控制器103从A/D转换电路101获取各天线元件100a~d的接收数据(步骤S1)。其次,控制器103根据获取的接收数据,计算自适应控制所需的振幅量及移相量(步骤S2),再根据该计算出的振幅量和移相量,控制自适应控制电路102(步骤S3)。解调器107将从自适应控制电路102输出的接收信号进行解调(步骤S4)。判定器109判定由解调器107解调的接收信号的信号完整性(步骤S4)。控制器103获取由判定器109判定出的信号完整性、即错误率(步骤S4)。然后,控制器103判定获取的错误率是否处于规定的阈值以上(步骤S5)。
在步骤S5错误率被判定为10-5以上时,控制器103从A/D转换电路101再次获取各天线元件100a~d的接收数据(步骤S1)。另一方面,在步骤S5错误率被判定为未满10-5时,控制器103控制自适应控制电路102,并从判定器109分别获取各天线元件100a~d单个时的错误率(步骤S6)。 
在此,各天线元件100a~d单个时指的是仅使天线元件100a~d中的任一个工作的状态。例如,天线元件100a单个时意味着仅使天线元件100a工作而使天线元件100b~d不工作的状态。在此情况下,具体而言,将可变放大器104a的放大度设定为“1”并且将可变移相器105a的移相量设定为“0”,将可变放大器104b~d的放大度设定为“0”。 
最后,控制器103对自适应控制合并输出时的错误率与各天线元件100a~d单个时的接收信号的错误率分别进行比较,选择最佳错误率,并使具有被选择的最佳错误率的接收信号被接收那样来控制自适应控制电路102(步骤S7)。此外,图22中,从步骤S5返回到步骤S1时,或者从步骤S7返回到步骤S1时,最好等待规定的时间。 
如上所述,根据本发明的第三实施方式所涉及的自适应天线装置,用四根天线元件100a~d一边进行自适应控制一边检查错误率,当错误率为未满规定的阈值时,测定各天线元件100a~d单个时的各接收信号的错误率,并使具有最佳错误率的接收信号被接收那样来控制自适应控制电路102。如此,通过进行自适应控制与各天线元件单个时之间的切换控制,可以一直选择具有最佳信号完整性的接收信号。 
(第四实施方式)图23是表示本发明的第四实施方式所涉及的选择分集天线装置的构成的图。图23中,第四实施方式所涉及的选择分集天线装置包括:两根天线元件201及202,两个处理电路203及204,信号完整性监测电路207,以及选择电路208。作为该两根天线元件201及202,使用上述第一实施方式中所说明的壳体天线20及半波长缝隙天线30。 
首先,由天线元件201及202接收的各无线信号分别输入到处理电路203及204。处理电路203对于被输入的无线信号执行自适应控制处理之后,将其输出到检波器205及信号完整性监测电路207。在此,处理电路203抑制所接收的无线信号中的干扰波,从而保持良好的信号完整性。即,在延迟波或来自相邻基站的相同信道的干扰波到达的情况下,产生很大的效果。另外,处理电路204对于被输入的无线信号执行选择分集处理之后,将其输出到检波器206及信号完整性监测电路207。在此,处理电路204从由天线元件201及202分别接收的各无线信号中,选择具有较大的接收功率的无线信号,从而保持良好的信号完整性。即,在诸如衰落那样的接收功率变动较大的情况下,产生很大的效果。 
在此,信号完整性监测电路207,判定将由处理电路203执行了自适应控制之后的无线信号进行了解调的基带信号的信号完整性、以及由处理电路204执行了选择分集处理之后的无线信号的信号完整性。然后,选择电路208根据信号完整性监测电路207的判定结果,选择来自与具有更良好的信号完整性的信号对应的检波器205或206的基带信号,并将所选择的基带信号输出到输出端209。 
如上所述那样,根据本发明的第四实施方式所涉及的选择分集式天线装置,移动通信系统中导致接收信号的信号完整性恶化的两大原因、即干扰波及衰落都可以得到解决。 
(第五实施方式)图24是表示本发明的第五实施方式所涉及的合并分集式天线装置的构成的图。图24中,第五实施方式所涉及的合并分集式天线装置包括:三根天线元件401a~c、可变放大器402a~c、可变移相器403a~c、信号合并器406、接收信号检波器404a~c、以及控制器405。可变放大器402a~c是具有正或负的放大幅度的放大器,也可以起衰减器的作用。作为该三根天线元件401a~c的任两根,采用上述第一实施方式所说明的壳体天线20及半波长缝隙天线30。 
图24中,由各天线元件401a~c接收的无线信号分别输入到可变放大器402a~c及接收信号检波器404a~c。各接收信号检波器404a~c检测各无线信号的相位及振幅,并将该检测数据输出到控制器405。控制器405利用已知的适应控制方法,控制可变放大器402a~c的放大幅度以及可变移相器403a~c的移相量,以使由天线元件401a~c接收的三个无线信号进行最大比合并。即,可变放大器402a~c相应于无线信号之间的比率将无线信号放大或衰减,另一方面,可变移相器403a~c使无线信号的相位一致,并将其输出到信号合并器406。信号合并器406将被输入的三个无线信号通过最大比合并方式进行同相合并之后,输出到输出端407。 
如上所述那样,根据本发明的第五实施方式所涉及的合并分集天线装置可以获取稳定的接收功率。 
(第六实施方式)图25是表示本发明的第六实施方式所涉及的MIMO天线装置的构成的图。图25中,第六实施方式所涉及的MIMO装置包括:三根供电天线元件501a~c、模拟/数字转换电路(A/D转换电路)502、MIMO解调电路503、信号电平比较电路504、控制器505、无线发送电路506、以及发送天线元件507。作为该三根供电天线元件501a~c中任两根,使用上述第一实施方式所说明的壳体天线20及半波长缝隙天线30。 
三根供电天线元件501a~c是为了分别接收从MIMO发送侧基站装置(未图示)利用规定的MIMO调制方式来发送的三个不同的无线信号而设置的。供电天线元件501a~c将所接收的各无线信号输入到A/D转换电路502。A/D转换电路502对应于所输入的各无线信号具备三个A/D转换器,用这些A/D转换器对各无线信号个别执行A/D转换处理,将处理之后的各信号(以下称为接收信号)分别输出到MIMO解调电路503及信号电平比较电路504。 
MIMO解调电路503对于三个接收信号执行MIMO解调处理,并输出一个解调信号。信号电平比较电路504将三个接收信号的信号电平相互进行比较,将比较结果信息输出到控制器505。控制器505可以根据MIMO适应控制处理的结果,而变更MIMO发送侧基站装置及MIMO解调电路503所使用的MIMO通信方式。即,控制器505,利用无线发送电路506及发送天线元件507,发送控制信号,以要求MIMO发送侧基站装置变更在MIMO发送侧基站装置中使用的MIMO调制方式,与此同时使MIMO解调电路503所使用的MIMO解调方式变更。 
较佳的是,第六实施方式所涉及的MIMO天线装置在A/D转换电路502的前段,按照需要装备从供电天线元件501a~c所接收的各无线信号中分离规定频率的信号的高频滤波器、以及用于放大信号的高频放大器。另外,较佳的是,第六实施方式所涉及的MIMO天线装置在MIMO解调电路503的前段,按照需要装备用于转换从A/D转换电路502输出的各接收信号的频率的混频器(Mixer)等高频电路、中频电路及信号处理电路等。为了简化说明,本申请的说明书及附图上省略了上述构成要素。工业实用性 
本发明可以用于具备MIMO天线和自适应阵列天线的无线通信装置等,特别是适于在利用手机等的移动通信中,在提高通信容量而实现高速通信的同时,保持良好的通信质量那样进行控制的情况等。 

Claims (24)

1.具备多个天线元件的便携式无线通信装置,包括:
矩形形状的第一导体部;
与所述第一导体部以规定间隔平行设置、并且形状与所述第一导体部的形状相同的第二导体部;
三个短路导体部,分别实现所述第一导体部的任意三个边与正对该三个边的所述第二导体部的三个边之间的电连接;
接地导体部,与所述第一导体部相隔规定距离;以及
无线通信电路,
上述第一导体部的未与所述三个短路导体部连接的一个边的长度被设定为通信信号波长的二分之一的长度,
经由设置于所述第一导体部与所述接地导体部之间的第一供电部,将所述第一导体部与所述无线通信电路相连接,从而使所述第一导体部及所述接地导体部作为壳体天线工作;
经由设置于所述第一导体部与所述第二导体部之间的第二供电部,将所述第二导体部与所述无线通信电路相连接,从而使所述第一导体部、所述第二导体部、以及所述三个短路导体部作为半波长缝隙天线工作。
2.根据权利要求1所述的便携式无线通信装置,其特征在于,将用导电性材料形成的所述便携式无线通信装置的壳体的一部分,作为所述第一导体部来使用。
3.根据权利要求1所述的便携式无线通信装置,其特征在于,所述无线通信电路装设于所述第一导体部上。
4.根据权利要求1所述的便携式无线通信装置,还包括:
自适应控制电路,对由所述壳体天线及半波长缝隙天线接收的无线信号分别执行自适应控制处理,并合并经自适应控制的无线信号;
解调电路,将所述被合并的无线信号解调,同时将由所述壳体天线单个接收的无线信号及由所述半波长缝隙天线单个接收的无线信号分别解调;以及
装置控制电路,对解调所述被合并的无线信号而获得的信号完整性与解调由所述壳体天线及半波长缝隙天线接收的无线信号而获得的各信号完整性进行比较,并控制所述自适应控制电路,以使具有经上述比较而判断出的最佳信号完整性的无线信号被接收。
5.根据权利要求1所述的便携式无线通信装置,还包括:
第一处理电路,对由所述壳体天线及半波长缝隙天线接收的无线信号执行自适应控制处理;
第二处理电路,对由所述壳体天线及半波长缝隙天线接收的无线信号执行选择分集处理;以及
选择电路,对从所述第一处理电路输出的无线信号的信号完整性与从所述第二处理电路输出的无线信号的信号完整性进行比较,选择并输出具有良好的信号完整性的信号。
6.根据权利要求1所述的便携式无线通信装置,还包括:
自适应控制电路,对由所述壳体天线及半波长缝隙天线接收的无线信号分别执行自适应控制处理,并合并经自适应控制的无线信号;以及
装置控制电路,检测由所述壳体天线及半波长缝隙天线接收的各无线信号的相位及振幅,并控制所述自适应控制电路,以将由壳体天线及半波长缝隙天线接收的无线信号进行最大比合并。
7.根据权利要求1所述的便携式无线通信装置,还包括多输入多输出解调电路,对由所述壳体天线及半波长缝隙天线接收的无线信号分别执行多输入多输出解调处理,并输出一个解调信号。
8.具备多个天线元件的便携式无线通信装置,包括:
矩形形状的第一导体部;
与所述第一导体部以规定间隔平行设置、并且形状与所述第一导体部的形状相同的第二导体部;
两个短路导体部,分别实现所述第一导体部的相邻的任意两个边与正对该两个边的所述第二导体部的两个边之间的电连接;
接地导体部,与所述第一导体部相隔规定距离;以及
无线通信电路,
上述第一导体部的未与所述两个短路导体部连接的两个边的长度的合计长度被设定为通信信号波长的二分之一的长度,
经由设置于所述第一导体部与所述接地导体部之间的第一供电部,将所述第一导体部与所述无线通信电路相连接,从而使所述第一导体部及所述接地导体部作为壳体天线工作,
经由设置于所述第一导体部与所述第二导体部之间的第二供电部,将所述第二导体部与所述无线通信电路相连接,从而使所述第一导体部、所述第二导体部、以及所述两个短路导体部作为半波长缝隙天线工作。
9.根据权利要求8所述的便携式无线通信装置,其特征在于,将用导电性材料形成的所述便携式无线通信装置的壳体的一部分,作为所述第一导体部来使用。
10.根据权利要求8所述的便携式无线通信装置,其特征在于,所述无线通信电路装设于所述第一导体部上。
11.根据权利要求8所述的便携式无线通信装置,其特征在于,还包括:
自适应控制电路,对由所述壳体天线及半波长缝隙天线接收的无线信号分别执行自适应控制处理,并合并经自适应控制的无线信号;
解调电路,将所述被合并的无线信号解调,同时将由所述壳体天线单个接收的无线信号及由所述半波长缝隙天线单个接收的无线信号分别解调;以及
装置控制电路,对解调所述被合并的无线信号而获得的信号完整性与解调由所述壳体天线及半波长缝隙天线接收的无线信号而获得的各信号完整性进行比较,并控制所述自适应控制电路,以使具有经上述比较而判断出的最佳信号完整性的无线信号被接收。
12.根据权利要求8所述的便携式无线通信装置,还包括:
第一处理电路,对由所述壳体天线及半波长缝隙天线接收的无线信号执行自适应制处理;
第二处理电路,对由所述壳体天线及半波长缝隙天线接收的无线信号执行选择分集处理;以及
选择电路,对从所述第一处理电路输出的无线信号的信号完整性与从所述第二处理电路输出的无线信号的信号完整性进行比较,选择并输出具有良好的信号完整性的信号。
13.根据权利要求8所述的便携式无线通信装置,还包括:
自适应控制电路,对由所述壳体天线及半波长缝隙天线接收的无线信号分别执行自适应控制处理,并合并经自适应控制的无线信号;以及
装置控制电路,检测由所述壳体天线及半波长缝隙天线接收的各无线信号的相位及振幅,并控制所述自适应控制电路,以将由壳体天线及半波长缝隙天线接收的无线信号进行最大比合并。
14.根据权利要求8所述的便携式无线通信装置,还包括多输入多输出解调电路,对由所述壳体天线及半波长缝隙天线接收的无线信号分别执行多输入多输出解调处理,并输出一个解调信号。
15.具备多个天线元件的便携式无线通信装置,包括:
矩形形状的第一导体部,
与所述第一导体部以规定间隔平行设置、并且形状与所述第一导体部的形状相同的第二导体部;
两个短路导体部,设置于所述第一导体部的相邻的任意两个边与正对该两个边的所述第二导体部的两个边之间;
并联谐振电路,设置于所述第一导体部的另一个边与正对该另一个边的所述第二导体部的另一个边之间的、电容器与电感器并联连接而成;
接地导体部,与所述第一导体部相隔规定距离;以及
无线通信电路,
所述并联谐振电路,使所述第一导体部与所述第二导体部针对第一频率的信号实现电连接,针对第二频率的信号断开电连接,
经由设置于所述第一导体部与所述接地导体部之间的第一供电部,将所述第一导体部与所述无线通信电路相连接,从而使所述第一导体部及所述接地导体部作为壳体天线工作,
经由设置于所述第一导体部与所述第二导体部之间的第二供电部,将所述第二导体部与所述无线通信电路相连接,从而使所述第一导体部、所述第二导体部、所述并联谐振电路、以及所述两个短路导体部作为半波长缝隙天线工作。
16.根据权利要求15所述的便携式无线通信装置,其特征在于,还包括:
自适应控制电路,对由所述壳体天线及半波长缝隙天线接收的无线信号分别执行自适应控制处理,并合并经自适应控制的无线信号;
解调电路,解调所述被合并的无线信号,同时将由所述壳体天线单个接收的无线信号及由所述半波长缝隙天线单个接收的无线信号分别解调;以及
装置控制电路,对解调所述被合并的无线信号而获得的信号完整性与解调由所述壳体天线及半波长缝隙天线接收的无线信号而获得的各信号完整性进行比较,并控制所述自适应控制电路,以使具有经上述比较而判断出的最佳信号完整性的无线信号被接收。
17.根据权利要求15所述的便携式无线通信装置,还包括:
第一处理电路,对由所述壳体天线及半波长缝隙天线接收的无线信号执行自适应制处理;
第二处理电路,对由所述壳体天线及半波长缝隙天线接收的无线信号执行选择分集处理;以及
选择电路,对从所述第一处理电路输出的无线信号的信号完整性与从所述第二处理电路输出的无线信号的信号完整性进行比较,选择并输出具备良好的信号完整性的信号。
18.根据权利要求15所述的便携式无线通信装置,还包括:
自适应控制电路,对由所述壳体天线及半波长缝隙天线接收的无线信号分别执行自适应控制处理,并合并经自适应控制的无线信号;以及
装置控制电路,检测由所述壳体天线及半波长缝隙天线接收的各无线信号的相位及振幅,并控制所述自适应控制电路,以将由壳体天线及半波长缝隙天线接收的无线信号进行最大比合并。
19.根据权利要求15所述的便携式无线通信装置,还包括多输入多输出解调电路,将由所述壳体天线及半波长缝隙天线接收的无线信号分别执行多输入多输出解调处理,并输出一个解调信号。
20.具备多个天线元件的便携式无线通信装置,包括:
矩形形状的第一导体部,
与所述第一导体部以规定间隔平行配置、并且形状与所述第一导体部的形状相同的第二导体部;
两个短路导体部,设置于所述第一导体部的相邻的任意两个边、与正对该两个边的所述第二导体部的两个边之间;
开关电路,设置于所述第一导体部的另一个边与正对该另一个边的所述第二导体部的另一个边之间;
接地导体部,与所述第一导体部相隔规定距离;
无线通信电路;以及
控制部,当接收第一频率的信号时使所述开关电路短路,当接收第二频率的信号时使所述开关电路开路,
经由设置于所述第一导体部与所述接地导体部之间的第一供电部,将所述第一导体部与所述无线通信电路相连接,从而使所述第一导体部及所述接地导体部作为壳体天线工作,
经由设置于所述第一导体部与所述第二导体部之间的第二供电部,将所述第二导体部与所述无线通信电路相连接,从而使所述第一导体部、所述第二导体部、所述开关电路、以及所述两个短路导体部作为半波长缝隙天线工作。
21.根据权利要求20所述的便携式无线通信装置,还包括:
自适应控制电路,对由所述壳体天线及半波长缝隙天线接收的无线信号分别执行自适应控制处理,并合并经自适应控制的无线信号;
解调电路,将所述被合并的无线信号解调,同时将由所述壳体天线单个接收的无线信号及由所述半波长缝隙天线单个接收的无线信号分别解调;以及
装置控制电路,对解调所述被合并的无线信号而获得的信号完整性与解调由所述壳体天线及半波长缝隙天线接收的无线信号而获得的各信号完整性进行比较,并控制所述自适应控制电路,以使具有经上述比较而判断出的最佳信号完整性的无线信号被接收。
22.根据权利要求20所述的便携式无线通信装置,还包括:
第一处理电路,对由所述壳体天线及半波长缝隙天线接收的无线信号执行自适应制处理;
第二处理电路,对由所述壳体天线及半波长缝隙天线接收的无线信号执行选择分集处理;以及
选择电路,对从所述第一处理电路输出的无线信号的信号完整性与从所述第二处理电路输出的无线信号的信号完整性进行比较,选择并输出具有良好的信号完整性的信号。
23.根据权利要求20所述的便携式无线通信装置,还包括:
自适应控制电路,对由所述壳体天线及半波长缝隙天线接收的无线信号分别执行自适应控制处理,并合并经自适应控制的无线信号;以及
装置控制电路,检测由所述壳体天线及半波长缝隙天线接收的各无线信号的相位及振幅,并控制所述自适应控制电路,以将由壳体天线及半波长缝隙天线接收的无线信号进行最大比合并。
24.根据权利要求20所述的便携式无线通信装置,还包括多输入多输出解调电路,将由所述壳体天线及半波长缝隙天线接收的无线信号分别执行多输入多输出解调处理,并输出一个解调信号。
CN2008800012567A 2007-10-02 2008-09-30 便携式无线通信装置 Active CN101569104B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007258655 2007-10-02
JP258655/2007 2007-10-02
PCT/JP2008/002753 WO2009044541A1 (ja) 2007-10-02 2008-09-30 携帯無線通信装置

Publications (2)

Publication Number Publication Date
CN101569104A CN101569104A (zh) 2009-10-28
CN101569104B true CN101569104B (zh) 2012-12-26

Family

ID=40525973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800012567A Active CN101569104B (zh) 2007-10-02 2008-09-30 便携式无线通信装置

Country Status (4)

Country Link
US (1) US8200301B2 (zh)
JP (1) JP5427039B2 (zh)
CN (1) CN101569104B (zh)
WO (1) WO2009044541A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751462B2 (ja) * 2009-04-16 2011-08-17 パナソニック株式会社 携帯無線機
JP5478104B2 (ja) * 2009-04-17 2014-04-23 三菱電機株式会社 アンテナ装置
JP2011101112A (ja) * 2009-11-04 2011-05-19 Nec Casio Mobile Communications Ltd 無線通信装置、無線通信方法及びプログラム
US20110145063A1 (en) * 2009-12-15 2011-06-16 Microsoft Corporation Targeting applications with advertisements
WO2011152427A1 (ja) * 2010-06-02 2011-12-08 シャープ株式会社 携帯無線機
WO2012041213A1 (zh) * 2010-09-30 2012-04-05 联想(北京)有限公司 一种电子设备
JP5805786B2 (ja) * 2011-11-28 2015-11-10 京セラ株式会社 無線通信システム、無線通信システムの制御方法、及び基地局
JP6666615B2 (ja) * 2014-01-29 2020-03-18 国立大学法人富山大学 アンテナ装置
KR102164704B1 (ko) 2015-11-13 2020-10-12 삼성전자주식회사 금속 프레임 안테나를 구비한 전자 장치
KR102550706B1 (ko) * 2016-07-20 2023-07-03 삼성전자 주식회사 코일 공유 방법 및 장치
EP3738170A1 (en) * 2018-01-10 2020-11-18 INTEL Corporation Folded planar antenna
CN112018495B (zh) * 2019-05-31 2022-12-27 Oppo广东移动通信有限公司 电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1763145A1 (en) * 2005-06-30 2007-03-14 Matsushita Electric Industrial Co., Ltd. Portable wireless device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040205B2 (ja) * 1980-12-18 1985-09-10 日本電信電話株式会社 無線機用アンテナ
JPS62154902A (ja) * 1985-12-27 1987-07-09 Toshiba Corp 合成ダイバ−シチ受信アンテナ
JP2002341965A (ja) * 2001-05-14 2002-11-29 Alps Electric Co Ltd カードを備えた情報機器
GB0209959D0 (en) * 2002-05-01 2002-06-05 Koninkl Philips Electronics Nv Improvements in or relating to wireless terminals
JP2004129234A (ja) * 2002-08-29 2004-04-22 Matsushita Electric Ind Co Ltd アンテナ装置
JP3841291B2 (ja) * 2002-11-19 2006-11-01 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 携帯無線装置
JP4101187B2 (ja) 2003-02-06 2008-06-18 松下電器産業株式会社 携帯無線通信装置
JP4184854B2 (ja) 2003-04-07 2008-11-19 株式会社エヌ・ティ・ティ・ドコモ 電波送受信装置及び電波送受信方法
JP4728597B2 (ja) * 2004-06-09 2011-07-20 日本無線株式会社 アレイアンテナ通信装置
JP2006319864A (ja) * 2005-05-16 2006-11-24 Matsushita Electric Ind Co Ltd アンテナ装置およびアンテナ装置を用いた無線通信システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1763145A1 (en) * 2005-06-30 2007-03-14 Matsushita Electric Industrial Co., Ltd. Portable wireless device

Also Published As

Publication number Publication date
WO2009044541A1 (ja) 2009-04-09
JP5427039B2 (ja) 2014-02-26
US8200301B2 (en) 2012-06-12
US20100056234A1 (en) 2010-03-04
JPWO2009044541A1 (ja) 2011-02-03
CN101569104A (zh) 2009-10-28

Similar Documents

Publication Publication Date Title
CN101569104B (zh) 便携式无线通信装置
CN101569105B (zh) 便携式无线通信装置
US7999749B2 (en) Antenna assembly
US7439918B2 (en) Adaptive antenna apparatus including adaptive controller for adaptive controlling at least two antenna elements
JP4753884B2 (ja) アダプティブアンテナ装置
US7525493B2 (en) Adaptive antenna apparatus including a plurality sets of partial array antennas having different directivities
US7538740B2 (en) Multiple-element antenna array for communication network
Payandehjoo et al. Employing EBG structures in multiantenna systems for improving isolation and diversity gain
KR100998426B1 (ko) Mimo 통신용 사용자 단말기 안테나 배열
US6934511B1 (en) Integrated repeater
JP5053087B2 (ja) アダプティブアンテナ装置及び無線通信装置
US20070188390A1 (en) Antenna system having receiver antenna diversity and configurable transmission antenna and method of management thereof
US20070069962A1 (en) Antenna system for a radiocommunication station, and radiocommunication station having such antenna system
JP2008017098A (ja) Mimoアンテナ装置及びそれを備えた無線通信装置
CN110535488A (zh) 一种基于方向固定的方向性天线的毫米波通信系统
EP3252964B1 (en) Adjusting an antenna configuration of a terminal device in a cellular communication system
JP2004260319A (ja) アレイアンテナ装置、これを用いた携帯端末および相互結合補償方法
JP2007288547A (ja) Mimo受信装置及びmimo対応送信装置
CN111509405B (zh) 一种天线模组及电子设备
WO2007136747A2 (en) Closely coupled antennas for supergain and diversity
Karaboikis et al. Three-branch antenna diversity systems on wireless devices using various printed monopoles
JP3974584B2 (ja) アレイアンテナ装置
CN106992802A (zh) 用于用户终端的信号收发装置、用户终端和信号传输方法
Tsakalaki et al. Reduced-complexity radio architectures for enhanced receive selection combining in multiuser diversity systems
JPH09214237A (ja) 位相制御アレーアンテナ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: MATSUSHITA ELECTRIC (AMERICA) INTELLECTUAL PROPERT

Free format text: FORMER OWNER: MATSUSHITA ELECTRIC INDUSTRIAL CO, LTD.

Effective date: 20140930

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140930

Address after: Seaman Avenue Torrance in the United States of California No. 2000 room 200

Patentee after: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA

Address before: Osaka Japan

Patentee before: Matsushita Electric Industrial Co.,Ltd.