CN101563735A - 纳米复合磁体的制造方法 - Google Patents

纳米复合磁体的制造方法 Download PDF

Info

Publication number
CN101563735A
CN101563735A CNA2007800466141A CN200780046614A CN101563735A CN 101563735 A CN101563735 A CN 101563735A CN A2007800466141 A CNA2007800466141 A CN A2007800466141A CN 200780046614 A CN200780046614 A CN 200780046614A CN 101563735 A CN101563735 A CN 101563735A
Authority
CN
China
Prior art keywords
manufacture method
precursor
particle
compound particles
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800466141A
Other languages
English (en)
Inventor
佐久间纪次
庄司哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN101563735A publication Critical patent/CN101563735A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种具有芯-壳结构的纳米复合磁体通过下述方法制造,所述芯-壳结构包含Nd2Fe14B化合物的硬磁相作为芯(1)和Fe的软磁相作为壳(2),所述方法包括:向含有表面活性剂的溶剂中添加并分散Nd2Fe14B化合物粒子,然后向其中添加Fe前体以使Fe粒子在所述Nd2Fe14B化合物的表面上沉积,以及将所述Nd2Fe14B化合物粒子干燥并烧结。

Description

纳米复合磁体的制造方法
技术领域
[0001]本发明涉及一种纳米复合磁体的制造方法,所述纳米复合磁体用作各种发动机等中的永久磁体。
背景技术
[0002]永久磁体用于多种领域,包括电子、信息和通信、工业和汽车用电动机等。对于永久磁体,需要进一步提高性能和进一步减小尺寸与重量。目前,Nd2Fe14B化合物(钕磁体)被广泛地用作高性能磁体,并且为了进一步改善性能,已提出各种建议。
[0003]一种公开在日本专利申请公布No.2003-59708(JP-A-2003-59708)中的用于这类提高性能的途径为纳米复合磁体的开发,在该纳米复合磁体中具有高磁化强度的软磁相和具有高矫顽力的硬磁相以相同的金属结构均匀地分布,并且所述软磁相和硬磁相由于交换相互作用而磁耦合。为了制造这种纳米复合磁体,将原料合金的熔体快速冷却以制造快速固化的合金。然后,对该快速固化的合金进行热处理以使Fe细粒子分散在硬磁相中,从而制造纳米复合磁体。日本专利申请公布No.2003-59708(JP-A-2003-59708)声称通过控制热处理的条件,使微细Fe相分散在纳米复合磁体中。
[0004]然而,上述方法具有以下问题。即,取决于热处理条件,Fe晶粒变得粗大,并且所述方法不适合于需要大量合成的工业技术。
发明内容
[0005]本发明的目的是提供一种纳米复合磁体的制造方法,所述纳米复合磁体含有合适粒径的Fe粒子。
[0006]本发明的第一方面涉及一种具有芯-壳结构的纳米复合磁体的制造方法,所述芯-壳结构包含Nd2Fe14B化合物的硬磁相作为芯和Fe的软磁相作为壳。在该制造方法中,将Nd2Fe14B化合物粒子添加并分散在含有表面活性剂的溶剂中。然后,将Fe前体添加到其中已添加有Nd2Fe14B化合物粒子的溶剂中,并且使Fe粒子在Nd2Fe14B化合物粒子的表面上沉积。然后,将其上沉积有Fe粒子的Nd2Fe14B化合物粒子干燥并烧结。
[0007]在该制造方法中,Fe前体的添加量可为1.0~3.0摩尔%。
[0008]在该制造方法中,可通过还原Fe前体而使Fe粒子沉积。
[0009]Fe前体可为乙酰丙酮铁。
[0010]Fe前体可通过使用多元醇作为还原剂而被还原。
[0011]多元醇可为1,2-辛二醇、1,2-十二烷二醇、1,2-十四烷二醇和1,2-十六烷二醇中的至少一种。
[0012]当Fe前体被还原时,溶剂的温度可为230℃以上。
[0013]还原剂的量以摩尔比计可为被还原的Fe前体量的至少1.5倍。
[0014]可通过热分解Fe前体而使Fe粒子沉积。
[0015]Fe前体可为五羰基铁。
[0016]在Fe前体的热分解中加热温度可为170℃以上。
[0017]Fe前体可为Fe的盐。
[0018]Fe的盐可为FeCl3、FeSO4、FeCl2、Fe(OH)3和Fe(NO3)3中的至少一种。
[0019]表面活性剂可为双(2-乙基己基)磺基琥珀酸钠、聚乙二醇十六烷基醚或聚乙二醇壬基苯基醚。
[0020]Nd2Fe14B化合物粒子的直径可为500nm~2μm。
[0021]烧结可在250~600℃下进行。
[0022]烧结可在氢还原气氛下进行。
[0023]烧结的技术可为热压或放电等离子烧结。
[0024]根据本发明,使用Nd2Fe14B化合物粒子作为芯,通过使在Nd2Fe14B化合物粒子的表面上由Fe前体沉积出Fe而形成Fe的壳。由此可获得纳米级的复合化的高性能磁体,而不会使Nd2Fe14B化合物粒子粗大化。
附图说明
[0025]参考附图,本发明的上述和进一步特征和优点将从以下实施方式中变得明显,其中相同的附图标记用于表示相同的要素,并且其中:
图1为通过根据本发明的方法获得的纳米复合磁体的示意图;
图2为在本发明实施例中获得的Nd2Fe14B/Fe复合粒子的TEM(透射电子显微镜)照片;以及
图3为显示在实施例中获得的Nd2Fe14B/Fe复合粒子中Fe粒子的粒径分布图。
具体实施方式
[0026]以下将对根据本发明的纳米复合磁体的制造方法进行详细描述。在根据本发明的纳米复合磁体的制造方法中,Nd2Fe14B化合物粒子被添加并分散在含有表面活性剂的溶剂中。Nd2Fe14B化合物粒子可通过在切碎机中将Nd2Fe14B非晶带粉碎而获得,所述Nd2Fe14B非晶带在手套箱内的单辊炉中制造。为了达到与构成软磁相的Fe壳复合化的效果,优选Nd2Fe14B化合物粒子的粒径在亚微米级,即,在500nm~2μm范围内。Nd2Fe14B化合物粒子可在添加到溶剂中之前被粉碎以具有上述粒径,并且也可在添加到溶剂中之后通过珠磨机等粉碎。
[0027]由于在上述粉碎后,在使Fe沉积时需加热溶剂,因而还优选溶剂具有高沸点。例如,辛基醚、十八碳烯、角鲨烯、四甘醇、三苯甲烷等可用作溶剂。
[0028]作为表面活性剂,可使用油胺、油酸、四甘醇等。由于表面活性剂的添加,Nd2Fe14B化合物粒子可在溶剂中被保持在稳定分散的状态,并且可防止沉积的Fe的凝集。
[0029]在将Nd2Fe14B化合物粒子添加并分散在含有表面活性剂的溶剂中之后,将Fe前体添加到该溶剂中。作为Fe前体,由还原、热分解等能沉积出Fe的材料即可满足要求。例如,乙酰丙酮铁、五羰基铁、Fe的盐(例如FeCl3、FeSO4、FeCl2、Fe(OH)3、Fe(NO3)3)等可用作Fe前体。
[0030]相对于反应溶剂中存在的Fe前体的摩尔浓度,优选Fe前体的添加量为1.0~3.0摩尔%。以大于3.0摩尔%的量添加Fe前体有时会导致粗大的Fe粒子沉积,其不适合作为纳米复合磁体的软磁相。另一方面,如果Fe前体的添加量小于1.0摩尔%,则有时不能形成充分覆盖形成芯的Nd2Fe14B化合物粒子周围的壳。
[0031]在添加Fe前体之后,分散在溶剂中的Nd2Fe14B化合物粒子充当芯,并在其表面上沉积出Fe粒子。在乙酰丙酮铁用作Fe前体的情况中,由于乙酰丙酮铁溶解在上述高沸点溶剂中、使得铁以离子形式存在,因此Fe粒子可通过还原而被沉积。在这种情况下,优选使用多元醇作为还原剂并且进行多元醇还原。可以这种方式使用的多元醇包括1,2-辛二醇、1,2-十二烷二醇、1,2-十四烷二醇、1,2-十六烷二醇等。
[0032]为了溶解Fe前体并还原Fe前体,优选加热反应体系。特别地,为了完全进行还原,优选加热反应体系至230℃以上。加热时间(还原时间)随着加热温度改变,并且选择成使得充分进行还原并引起Fe粒子沉积。优选还原剂的添加量以摩尔比计为被还原的Fe前体添加量的至少1.5倍。
[0033]在五羰基铁(Fe(CO)5)用作Fe前体的情况中,Fe粒子可通过热分解五羰基铁而沉积。优选用于热分解的加热温度为170℃以上。
[0034]在Fe的盐用作Fe前体的情况中,由于Fe的盐不溶于有机溶剂,因而通过形成Fe的盐的反胶束并且将它们分散在溶剂中而沉积出Fe粒子。通常,胶束指其中油滴由于表面活性剂的作用而被包在水相中的体系,而反胶束指其中水滴由于表面活性剂的采用而被包在油相中的体系,特别是指其中Fe的盐由于表面活性剂而被包在溶剂中的体系。本文可用的表面活性剂包括AOT(双(2-乙基己基)磺基琥珀酸钠)、聚乙二醇十六烷基醚、聚乙二醇壬基苯基醚等,它们常用于形成反胶束。本文可用的溶剂包括异辛烷、己烷等。
[0035]通过如上所述使Fe粒子在Nd2Fe14B化合物粒子上沉积,获得了如图1所示的芯-壳结构,该芯-壳结构具有Nd2Fe14B化合物粒子1作为芯和在该粒子1表面上由Fe粒子形成的壳2。
[0036]干燥并烧结由此获得的粒子,以获得纳米复合磁体。所述烧结优选在这样的温度(250~600℃)下进行,所述温度正好在加速Fe自扩散的温度以上,并且所述温度尽可能低从而抑制构成壳的Fe粒子的生长。至于烧结的技术,优选在氢还原气氛下进行SPS(放电等离子烧结)、热压等。
[0037]使用切碎机将在手套箱内的单辊炉中制备的Nd2Fe14B非晶带粉碎。将通过切碎机粉碎的Nd2Fe14B添加到通过将油酸和油胺添加到辛基醚中而形成的体系中,并且在使用
Figure A20078004661400091
的珠的珠磨机中粉碎6小时。将0.3g由此获得的Nd2Fe14B粒子与作为溶剂的8mL油酸和8.5mL油胺一起添加到4颈烧瓶中。
[0038]其次,添加下表1中所示量的乙酰丙酮铁,并且将混合物加热至160℃,获得了均匀溶液。在用力搅拌的同时将该溶液加热至230℃后,添加表1中所示量的十六烷二醇,然后保持该混合物1小时。随后,将该混合物冷却至室温。在添加己烷以溶解酰胺之后,在水浴中于30℃下保持溶液以使Nd2Fe14B/Fe复合粒子沉降。在除去上清液之后,添加丙酮以进一步使Nd2Fe14B/Fe复合粒子沉降。在重复该操作几次之后,进行离心分离,并且在手套箱中干燥Nd2Fe14B/Fe复合粒子。
表1实验条件
  Nd2Fe14B   乙酰丙酮铁   十六烷二醇
  样品1   0.3g   1.766g(5.0毫摩尔,9摩尔%)   1.9400g(7.50毫摩尔)
  样品2   0.3g   0.530g(1.5毫摩尔,2.9摩尔%)   0.5815g(2.25毫摩尔)
  样品3   0.3g   0.317g(0.9毫摩尔,1.7摩尔%)   0.3489g(1.35毫摩尔)
  样品4   0.3g   0.177g(0.5毫摩尔,1.0摩尔%)   0.1938g(0.75毫摩尔)
[0039]所获得的样品的TEM观察结果在图2中示出。此外,由该TEM图像测量所产生的Fe粒子的粒径。测量结果在图3中示出。确认在任何一个样品中,均在微米级Nd2Fe14B粒子上产生约10~20nm的球形Fe纳米粒子。然而,在样品1中,除球形粒子外,还存在粗大的立方形粒子。在其它样品中,确认了仅有约10nm的球形粒子。特别地,在样品3中,平均粒径最接近10nm,并且也确认了在Nd2Fe14B粒子上产生Fe纳米粒子。
[0040]虽然已参考其示例性实施方式对本发明进行了描述,但应当理解本发明并不限于所述的实施方式或构成。另一方面,本发明意在覆盖各种修改和等效布置。另外,虽然在各种实施例组合和构成中示出了所揭示的本发明的各种要素,但包括更多、更少或仅单个要素的其它组合和构成也在所附权利要求的范围内。

Claims (18)

1.一种具有芯壳结构的纳米复合磁体的制造方法,所述芯壳结构包含Nd2Fe14B化合物的硬磁相作为芯和Fe的软磁相作为壳,所述制造方法包括:
向含有表面活性剂的溶剂中添加并分散Nd2Fe14B化合物粒子;
然后,将Fe前体添加到所述已添加有Nd2Fe14B化合物粒子的溶剂中,并且使Fe粒子在所述Nd2Fe14B化合物粒子的表面上沉积;以及
将其上沉积有Fe粒子的Nd2Fe14B化合物粒子干燥并烧结。
2.根据权利要求1所述的制造方法,其中所述Fe前体的添加量为1.0~3.0摩尔%。
3.根据权利要求1或2所述的制造方法,其中通过将所述Fe前体还原而使所述Fe粒子沉积。
4.根据权利要求3所述的制造方法,其中所述Fe前体为乙酰丙酮铁。
5.根据权利要求3或4所述的制造方法,其中所述Fe前体通过使用多元醇作为还原剂而被还原。
6.根据权利要求5所述的制造方法,其中所述多元醇为1,2-辛二醇、1,2-十二烷二醇、1,2-十四烷二醇和1,2-十六烷二醇中的至少一种。
7.根据权利要求3~6中任一项所述的制造方法,其中在所述Fe前体被还原时,所述溶剂的温度为230℃以上。
8.根据权利要求5~7中任一项所述的制造方法,其中所述还原剂的量以摩尔比计为被还原的所述Fe前体量的至少1.5倍。
9.根据权利要求1或2所述的制造方法,其中通过将所述Fe前体热分解而使所述Fe粒子沉积。
10.根据权利要求9所述的制造方法,其中所述Fe前体为五羰基铁。
11.根据权利要求9或10所述的制造方法,其中在所述Fe前体的热分解中加热温度为170℃以上。
12.根据权利要求1或2所述的制造方法,其中所述Fe前体为Fe的盐。
13.根据权利要求12所述的制造方法,其中所述Fe的盐为FeCl3、FeSO4、FeCl2、Fe(OH)3和Fe(NO3)3中的至少一种。
14.根据权利要求12或13所述的制造方法,其中所述表面活性剂为双(2-乙基己基)磺基琥珀酸钠、聚乙二醇十六烷基醚和聚乙二醇壬基苯基醚中的至少一种。
15.根据权利要求1~14中任一项所述的制造方法,其中所述Nd2Fe14B化合物粒子的直径为500nm~2μm。
16.根据权利要求1~15中任一项所述的制造方法,其中所述烧结在250~600℃下进行。
17.根据权利要求1~16中任一项所述的制造方法,其中所述烧结在氢还原气氛下进行。
18.根据权利要求17所述的制造方法,其中所述烧结的技术为热压或放电等离子烧结。
CNA2007800466141A 2006-11-01 2007-11-01 纳米复合磁体的制造方法 Pending CN101563735A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006297893A JP2008117855A (ja) 2006-11-01 2006-11-01 ナノコンポジット磁石の製造方法
JP297893/2006 2006-11-01

Publications (1)

Publication Number Publication Date
CN101563735A true CN101563735A (zh) 2009-10-21

Family

ID=39310027

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800466141A Pending CN101563735A (zh) 2006-11-01 2007-11-01 纳米复合磁体的制造方法

Country Status (5)

Country Link
US (1) US20100104767A1 (zh)
EP (1) EP2087493A2 (zh)
JP (1) JP2008117855A (zh)
CN (1) CN101563735A (zh)
WO (1) WO2008053371A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102366832A (zh) * 2011-06-30 2012-03-07 燕山大学 各向异性钐钴/钴纳米复合磁体的制备方法
CN103221998A (zh) * 2010-11-15 2013-07-24 代表阿拉巴马大学的阿拉巴马大学理事会 磁交换耦合的核-壳纳米磁体
CN103890869A (zh) * 2012-02-03 2014-06-25 Lg电子株式会社 具有硬-软磁性异质结构的核-壳结构的纳米粒子、利用所述纳米粒子制备的磁体及它们的制备方法
CN105551708A (zh) * 2016-03-08 2016-05-04 佛山市程显科技有限公司 一种增材制造磁芯以及使用该磁芯的磁性器件
CN105788800A (zh) * 2016-03-08 2016-07-20 佛山市程显科技有限公司 一种采用增材制造技术制备的磁芯结构以及其应用
CN108987015A (zh) * 2018-06-28 2018-12-11 宁波招宝磁业有限公司 一种高性能钕铁硼磁体的制备方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304376B2 (ja) * 2009-03-26 2013-10-02 日立金属株式会社 複合粒子の製造方法
JP2011159733A (ja) * 2010-01-29 2011-08-18 Toyota Motor Corp ナノコンポジット磁石の製造方法
CN102000816B (zh) * 2010-10-27 2013-07-03 华南理工大学 一种交换耦合双相纳米复合永磁颗粒及其制备方法
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
CN102956337B (zh) * 2012-11-09 2016-05-25 厦门钨业股份有限公司 一种烧结Nd-Fe-B系磁铁的省却工序的制作方法
CN105074836B (zh) 2013-02-07 2018-01-05 明尼苏达大学董事会 氮化铁永磁体和形成氮化铁永磁体的技术
KR101665648B1 (ko) 2013-06-27 2016-10-12 리전츠 오브 더 유니버시티 오브 미네소타 질화철 재료 및 질화철 재료를 포함하는 자석
KR101936174B1 (ko) 2013-11-05 2019-01-08 가부시키가이샤 아이에이치아이 희토류 영구자석 및 희토류 영구자석의 제조 방법
JP2017517630A (ja) 2014-03-28 2017-06-29 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ コーティングされたナノ粒子を含む鉄窒化物磁性材料
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
CA2957732A1 (en) 2014-08-08 2016-02-11 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
CN107408435A (zh) 2015-01-26 2017-11-28 明尼苏达大学董事会 铁氮化物磁体中应变的保持
JP6365447B2 (ja) * 2015-07-08 2018-08-01 トヨタ自動車株式会社 ロータの製造方法
US11657935B2 (en) 2018-07-17 2023-05-23 Korea Institute Of Materials Science Iron oxide magnetic powder and manufacturing method therefor
JP7278768B2 (ja) * 2018-12-27 2023-05-22 キヤノン株式会社 磁石、および磁石の製造方法
US12018386B2 (en) 2019-10-11 2024-06-25 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4072893B2 (ja) * 2002-06-14 2008-04-09 株式会社安川電機 永久磁石用粒子とその製造方法及び永久磁石並びに磁性体微粒子
JP4525003B2 (ja) * 2003-06-06 2010-08-18 株式会社安川電機 永久磁石用粒子の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9406418B2 (en) 2010-11-15 2016-08-02 The Board Of Trustees Of The University Of Alabama, For And On Behalf Of The University Of Alabama Magnetic exchange coupled core-shell nanomagnets
CN103221998A (zh) * 2010-11-15 2013-07-24 代表阿拉巴马大学的阿拉巴马大学理事会 磁交换耦合的核-壳纳米磁体
CN102366832B (zh) * 2011-06-30 2013-07-03 燕山大学 各向异性钐钴/钴纳米复合磁体的制备方法
CN102366832A (zh) * 2011-06-30 2012-03-07 燕山大学 各向异性钐钴/钴纳米复合磁体的制备方法
CN103890869A (zh) * 2012-02-03 2014-06-25 Lg电子株式会社 具有硬-软磁性异质结构的核-壳结构的纳米粒子、利用所述纳米粒子制备的磁体及它们的制备方法
CN103890869B (zh) * 2012-02-03 2017-09-26 Lg 电子株式会社 具有硬‑软磁性异质结构的核‑壳结构的纳米粒子、利用所述纳米粒子制备的磁体及它们的制备方法
US9362034B2 (en) 2012-02-03 2016-06-07 Lg Electronics Inc. Method of preparing core-shell structured nanoparticle having hard-soft magnetic heterostructure
CN105788800A (zh) * 2016-03-08 2016-07-20 佛山市程显科技有限公司 一种采用增材制造技术制备的磁芯结构以及其应用
CN106782991A (zh) * 2016-03-08 2017-05-31 佛山市程显科技有限公司 一种增材制造磁芯以及使用该磁芯的磁性器件
CN105788800B (zh) * 2016-03-08 2017-09-12 佛山市程显科技有限公司 一种采用增材制造技术制备的磁芯结构以及其应用
CN105551708A (zh) * 2016-03-08 2016-05-04 佛山市程显科技有限公司 一种增材制造磁芯以及使用该磁芯的磁性器件
CN106782991B (zh) * 2016-03-08 2018-09-11 佛山市程显科技有限公司 一种增材制造磁芯以及使用该磁芯的磁性器件
CN108987015A (zh) * 2018-06-28 2018-12-11 宁波招宝磁业有限公司 一种高性能钕铁硼磁体的制备方法
CN108987015B (zh) * 2018-06-28 2020-06-30 宁波招宝磁业有限公司 一种高性能钕铁硼磁体的制备方法

Also Published As

Publication number Publication date
EP2087493A2 (en) 2009-08-12
WO2008053371A2 (en) 2008-05-08
WO2008053371A3 (en) 2008-07-17
US20100104767A1 (en) 2010-04-29
JP2008117855A (ja) 2008-05-22

Similar Documents

Publication Publication Date Title
CN101563735A (zh) 纳米复合磁体的制造方法
Gandha et al. High energy product developed from cobalt nanowires
Yu et al. Structural characteristics and magnetic properties of chemically synthesized CoPt nanoparticles
Yang et al. Single domain SmCo5@ Co exchange-coupled magnets prepared from core/shell Sm [Co (CN) 6]· 4H2O@ GO particles: a novel chemical approach
Sakthivel et al. Synthesis of magnetite powder from iron ore tailings
Yue et al. A facile synthesis of anisotropic SmCo5 nanochips with high magnetic performance
Zhang et al. Mechanochemical synthesis of Fe3O4@(Mg-Al-OH LDH) magnetic composite
Castle et al. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering
Zhu et al. Surfactant‐assisted synthesis and characterization of novel chain‐like CoNi alloy assemblies
CN102909381A (zh) 一种钴纳米颗粒掺杂制备高矫顽力锰铋磁粉的方法
Agusu et al. Crystal and microstructure of MnFe2O4 synthesized by ceramic method using manganese ore and iron sand as raw materials
CN108831653A (zh) 高剩磁高矫顽力低重稀土的钕铁硼制备方法
Xu et al. Chemically synthesizing exchange-coupled SmCo 5/Sm 2 Co 17 nanocomposites
CN105081338B (zh) 一种单分散钕铁硼纳米粒子的制备方法
Liu et al. Exchange‐Coupled fct‐FePd/α‐Fe Nanocomposite Magnets Converted from Pd/Fe3O4 Core/Shell Nanoparticles
JP4363440B2 (ja) ナノコンポジット磁石の製造方法
Jamil et al. Morphologically controlled synthesis, characterization, and applications of molybdenum oxide (MoO3) nanoparticles
Niu et al. Au-Fe3O4 decorated polydopamine hollow nanoparticles as high performance catalysts with magnetic responsive properties
CN107585747B (zh) 一种硫属化合物异质结磁性纳米材料及其制备方法
Semaida et al. Magnetization performance of hard/soft Nd9. 6Fe80. 3Zr3. 7B6. 4/α-Fe magnetic nanocomposites produced by surfactant-assisted high-energy ball milling
Zheng et al. Core/shell SmCo 5/Sm 2 O 3 magnetic composite nanoparticles
Tang et al. High coercivity SmCo5 synthesized with assistance of colloidal SiO2
Zheng et al. Effect of surfactant-assisted low-temperature annealing on the refinement of particle size and enhancement of magnetic properties of SrFe12O19 ferrite
Wang et al. Preparation of high-performance Nd–Fe–B magnetic powder by hydrothermal method assisted via ball milling
Wang et al. Hydrothermal Synthesis of Nd–Fe–B Nanoparticles with Enhanced Magnetic Properties by Nd Content Tunning and Dy Doping

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20091021