CN103221998A - 磁交换耦合的核-壳纳米磁体 - Google Patents

磁交换耦合的核-壳纳米磁体 Download PDF

Info

Publication number
CN103221998A
CN103221998A CN2011800546176A CN201180054617A CN103221998A CN 103221998 A CN103221998 A CN 103221998A CN 2011800546176 A CN2011800546176 A CN 2011800546176A CN 201180054617 A CN201180054617 A CN 201180054617A CN 103221998 A CN103221998 A CN 103221998A
Authority
CN
China
Prior art keywords
shell
nuclear
core
magnetic
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800546176A
Other languages
English (en)
Inventor
Y-K·洪
S·白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Alabama UA
Original Assignee
University of Alabama UA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Alabama UA filed Critical University of Alabama UA
Publication of CN103221998A publication Critical patent/CN103221998A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

永久性磁体(12)被制造成具有由薄软磁性壳(15)包围的硬磁性核(14)。所述硬磁性核可提供相对高的矫顽力(Hci),并且所述软磁性壳可提供相对高的磁通密度(B)。由于所述核和壳之间的磁交换耦合,可在宽温度范围内,包括高于150℃的温度,实现相对高的最大磁能积(BH)max。此外,无需使用稀土金属或者贵重金属即可实现该效果,这有助于使磁体的制造成本保持为较低。为了允许在所述核和壳之间进行充分的磁交换耦合,所述壳的宽度小于约40纳米,并且控制整体尺寸,以使所述壳的宽度小于所述核的布洛赫畴壁厚度的两倍。

Description

磁交换耦合的核-壳纳米磁体
相关申请的交叉引用
本申请要求2010年11月15日申请的、题为“磁交换耦合的核-壳纳米磁体(Magnetic Exchange Coupled Core-Shell Nanomagnets)”的美国临时专利申请61/413,869的优先权,通过引用的方式将其合并于此。
背景技术
当前,永久磁体广泛应用于各种应用领域,包括诸如电动车和风力发电机的电动机应用。不幸的是,很多永久性磁体的性能在高温时会降低,这使得它们不适合于某些应用中,例如,温度经常超过150摄氏度(℃)的电动机应用。此外,很多永久性磁体由昂贵的材料制成,例如,贵重金属或者稀土金属,这使永久性磁体具有有限的可用性。
作为例子,一些包括Nd2Fe14B、镝掺杂的Nd2Fe14B、SmCo和Sm2Fe17N3的稀土磁体已经用于或者考虑用于混合电动机和电动车。这种磁体中的Nd2Fe14B通常可提供最高的最大磁能积(BH)max。然而,该磁体的工作温度限制在大约150℃,这归因于大约为310到400℃的低居里温度。此外,磁化强度随着温度降低,并且通常会在居里温度附近消失。为了提高工作温度,可在磁体中加入镝,但是,在磁体中加入镝会提高矫顽力,并降低磁化强度。因此,替代效果相对的不明显。
因此,本领域需要一种至今尚未解决的能够在高温下有效的工作的廉价永磁体。
附图说明
参考附图能够更好的理解本发明。附图中的元件并没有按照彼此之间的实际尺寸来绘制,而将重点放在了清楚地示出本发明的原理上。此外,在一些附图中,相同的参考标记表示相应的部件。
图1示出了具有由软磁性壳包围的硬磁性核的纳米磁性颗粒的示例性实施方式。
图2是具有由软磁性壳(坡莫合金)包围的硬磁性核(MnAl)的纳米磁体颗粒的最大磁能积(BH)max的图。
图3是具有由软磁性壳包围的硬磁性核(τ-MnAl)的纳米磁体颗粒在300开尔文(K)处的、基于硬磁相的(BH)max的体积分数(fh)图,其中,Mr/Ms=1,并且软壳的饱和磁化在1.3到2.2T的范围之间。
图4是具有由软磁性壳包围的硬磁性核(τ-MnAl)的纳米磁体颗粒在300开尔文(K)处的、基于硬磁相的(BH)max的体积分数(fh)图,其中,Mr/Ms=0.7,并且软壳的饱和磁化在1.3到2.2T的范围之间。
图5是具有由软磁性壳包围的硬磁性核(τ-MnAl)的纳米磁体颗粒在450开尔文(K)处的、基于硬磁相的(BH)max的体积分数(fh)图,其中,Mr/Ms=1,并且软壳的饱和磁化在1.3到2.2T的范围之间。
图6是具有由软磁性壳包围的硬磁性核(τ-MnAl)的纳米磁体颗粒在450开尔文(K)处的、基于硬磁相的(BH)max的体积分数(fh)图,其中,Mr/Ms=0.7,并且软壳的饱和磁化在1.3到2.2T的范围之间。
图7是具有由软磁性壳包围的硬磁性核(MnBi)的纳米磁体颗粒在300开尔文(K)处的、基于硬磁相的(BH)max的体积分数(fh)图,其中,Mr/Ms=1,并且软壳的饱和磁化在1.3到2.2T的范围之间。
图8是具有由软磁性壳包围的硬磁性核(MnBi)的纳米磁体颗粒在450开尔文(K)处的、基于硬磁相的(BH)max的体积分数(fh)图,其中,Mr/Ms=1,并且软壳的饱和磁化在1.3到2.2T的范围之间。
图9是具有由软磁性壳包围的硬磁性核(BaM)的纳米磁体颗粒在300开尔文(K)处的、基于硬磁相的(BH)max的体积分数(fh)图,其中,Mr/Ms=1,并且软壳的饱和磁化在1.3到2.2T的范围之间。
图10是具有由软磁性壳包围的硬磁性核(BaM)的纳米磁体颗粒在450开尔文(K)处的、基于硬磁相的(BH)max的体积分数(fh)图,其中,Mr/Ms=1,并且软壳的饱和磁化在1.3到2.2T的范围之间。
具体实施方式
本发明总体上涉及磁交换耦合的核-壳纳米磁体。在一个示例性的实施方式中,永久性磁体被制造成具有由薄软磁性壳包围的硬磁性核。所述硬磁性核可提供相对高的矫顽力(Hci),并且所述软磁性壳可提供相对高的磁通密度(B)。由于核和壳之间的磁交换耦合,可在宽温度范围内(包括高于150℃的温度)实现相对高的最大磁能积(BH)max。此外,无需使用稀土金属或者贵重金属即可实现该效果,这有助于使磁体的制造成本保持为较低。为了允许在核和壳之间进行充分的磁交换耦合,而控制整个壳的厚度,以使壳的宽度小于核的布洛赫(Bloch)畴壁厚度的两倍。
图1示出了示例性的核-壳纳米磁性颗粒,所述核-壳纳米磁性颗粒12被制造成具有由硬磁性材料组成的核14和由软磁性材料组成的壳15。在一个示例性的实施方式中,核14的材料包括锰、铝、铋、锶、铅、铁或氧(至少有一个硬磁性元素,但更优选的是具有至少两个硬磁元素),壳的材料包括铁,钴,镍,铝,硅,氮或氧(至少有一个软磁性元素,但更优选的是具有至少两个软磁性元素)。作为例子,硬磁性核14可由铝化锰(MnAl)、M型六角铁氧体(BaFe12O19)或锰铋(MnBi)组成,软磁性壳15可以由Fe65Co35,坡莫合金(Fe20Ni80)或铁硅铝磁合金(FeAlSi)组成。然而,在其它实施方式中,其它元素和/或元素的组合也是可能的。
如同核14一样,核-壳颗粒12的形状通常是球形,然而,在其他实施方式中,它还可以具有其他形状,例如,针状或者六角形。此外,壳15形成了环绕并包围核14的中空的球体,并且核14填充在所述中空球体的空间内。在一个实施方式中,其他形状(例如,圆柱形、立方体形、或者六角形)的壳15也是可能的。在一个示例性的实施方式中,壳15的厚度(δs)大约为20nm到40nm之间,该厚度小于核14的布洛赫(Bloch)畴壁厚度的两倍。此外,围绕着核14的壳15的厚度是均匀的。然而,应该强调的是,在其他实施方式中,核-壳颗粒12的其他形状和配置也是可能的。
核-壳颗粒12的(BH)max可由以下公式表示(假设Mr=Ms):
(1)Mr=fhMh+fsMs,当Ms=Mr时,→等式(6),R.Skomski
第3591页,E.Kneller
(2) μ 0 H N = 2 f s K s + f h K h f s M s + f h M h →等式(8),R.Skomski
Figure BDA00003182184200042
Mr:硬磁相+软磁相的剩磁
Ms:软磁相的饱和磁化
Mh:硬磁相的饱和磁化
Kh:硬磁相的磁各向异性能量
Ks:软磁相的磁各向异性能量
fh:硬磁相的体积分数
fs:软磁相的体积分数
μ0:4π×10-7N/A2
[参考文献1]R.Skomski和J.M.D.Coey,”Giant energy product innanostructured two-phase magnets”,phys.Rev.B,48,21(1993)
[参考文献2]E.F.Kneller和R.Hawig,”The exchange-spring magnet:Anew material principle for permanent magnets”,IEEE Trans,Magn.27,pp.3588-3600,(1991)
假设Mr=0.7Ms,Br=μ0Mr,那么,Br=0.7μ0Ms,Br=0.7Bs
(5)
M r = f h B r _ hard + f s B r _ soft μ 0 = f h B r _ hard + ( 1 - f h ) B r _ soft μ 0 [ A / m ] = 0.7 [ B s _ soft - f h ( B s _ soft - B s _ hard ) ] μ 0
H N > M r 2
(6)
( BH ) max = μ 0 M r 2 4 = μ 0 { 0.7 [ B s _ soft - f h ( B s _ soft - B s _ hard ) ] μ 0 } 2 4 [ N A 2 A 2 m 2 ] = [ N A · m A m ] = [ T · A / m ]
= 0.49 π [ B s _ soft - f h ( B s _ soft - B s _ hard ) ] 2 10 5 × μ 0 = 4.9 π [ B s _ soft - f h ( B s _ soft - B s _ hard ) ] 2 10 6 × μ 0 [ MG · Oe ]
H N < M r 2
(7)
( BH ) max = &mu; 0 H N M r 2 = 2 ( f s K s + f h K f s M s + f h M h ) ( f s M s + f h M h ) 2 = f s K s + f h K h
= ( 1 - f h ) K s + f h K h = K s + f h ( K h - K s ) = 4 &pi; [ K s + f h ( K h - K s ) ] 10 5 [ MG &CenterDot; Oe ]
[ J m 3 ] = [ kg &CenterDot; m 2 sec 2 m 3 ] = [ kg sec 2 m A A ] = [ kg sec 2 m A m ] = [ T A m ] = [ N m 2 ]
Bs_soft:软磁相的Bs[T]
Bh_hard:硬磁相的Bs[T]
图2示出了τ相MnAl-坡莫合金核-壳纳米磁体的(BH)max根据硬核的体积分数(fh)的变化。其中使用了硬磁性τ-MnAl核(饱和磁化=0.7T;磁性各向异性常数Kh=1MJ/m3)和软磁性坡莫合金壳(饱和磁化=1T;磁性各向异性常数Ks=0.01MJ/m3)。
使用等式(6)和(7)来分别在
Figure BDA00003182184200065
Figure BDA00003182184200066
时计算MnAl-坡莫合金核-壳纳米磁体的(BH)max。需要指出的是,在Hn=Mr/2和fh=8%处,(BH)max大约为12MGOe,而纯(fh=100%)MnAl纳米磁体的(BH)max大约为7MGOe。
τ相MnAl核-软壳纳米磁体(即,纳米磁体具有形成硬磁性核14的τ相MnAl)用于使用等式(6)和(7)来根据饱和磁化(Ms)和壳的厚度(δs)计算(BH)max,其中,壳15由软磁性合金组成。然而,通常希望壳的厚度(δs)小于核14的布洛赫(Bloch)畴壁厚度的两倍,以允许在核14和壳15之间进行有效的磁交换耦合。这是因为当壳的厚度增加到大于布洛赫(Bloch)畴壁厚度时,磁交换耦合会变得较弱。τ相MnAl的布洛赫(Bloch)畴壁厚度大约为15nm[G.G.Korznikova,J.of Microscopy,第239,239,2010卷]。因此,壳的厚度最好小于30nm。图3示出了当存在交换耦合时,MnAl-CoFe(2.2T)核-壳纳米磁体的(BH)max变成大约55MGOe。这种高(BH)max归因于交换耦合。
在另外一个实施方式中,钡铁氧体(BaM:BaFe12O19)-Fe65Co35核-壳纳米磁体用于计算(BH)max。图9示出了这种磁体的(BH)max作为硬BaM核的体积分数(fh)的函数。当fh等于55%时,(BH)max估计为大约22.5MGOe。由于钡铁氧体的布洛赫(Bloch)畴壁厚度大约为14nm,因此希望用于100nm的钡铁氧体颗粒的壳的厚度大约为11nm,以提供约22.5MGOe[M.Zises和M.j.Thornton,Spin Electronics,第220页,2001年春]。
图4-10示出了各种核-壳纳米磁体在不同温度下的(BH)max估计。特别的,图3示出了当Mr/Ms=1时,使用了τ-MnAl的核14在300K处的(BH)max的图,图4示出了当Mr/Ms=0.7时,使用了τ-MnAl的核14在300K处的(BH)max的图,图5示出了当Mr/Ms=1时,使用了τ-MnAl的核14在450K处的(BH)max的图,图6示出了当Mr/Ms=0.7时,使用了τ-MnAl的核14在450K处的(BH)max的图,图7示出了当Mr/Ms=1时,使用了MnBi的核14在300K处的(BH)max的图,图8示出了当Mr/Ms=1时,使用了MnBi的核14在450K处的(BH)max的图,图9示出了当Mr/Ms=1时,使用了BaM的核14在300K处的(BH)max的图,以及图10示出了当Mr/Ms=1时,使用了BaM的核14在450K处的(BH)max的图。
需要指出的是,能够使用各种技术来制造纳米磁体,如在此所描述的,包括化学镀、化学和物理综合以及在聚合物基体中嵌入核-壳纳米磁体。
在一个示例性的实施方式中,在蒸馏水中混合M型六角铁氧体纳米颗粒和阴离子表面活性剂,同时进行带有氩气吹扫的机械搅拌,并随后利用去离子水进行清洗。所述阴离子表面活性剂使得Fe2+和Co2+阳离子能够附着到核六角铁氧体颗粒上。当阴离子表面活性剂分散在水中时,亲水头可能会亲水,而疏水尾则会憎水。可供选择的阴离子表面活性剂可以是十二烷基硫酸钠(SDS)、十二烷基硫酸钠(sodium laurilsulfate或sodium laurylsulfate)(SLS),当然其他阴离子表面活性剂也是可能的。SDS的水溶液已经常用于分散或者悬浮磁铁矿(Fe3O4)颗粒。需要指出的是,M型六角铁氧体核颗粒已经是氧化物。因此,六角铁氧体不是Fe和Co,其化学性质稳定。在将FeCl2·4H2O和CoCl2·6H2O这两种初始的壳材料添加到该溶液中之前,可通过氩气吹扫来对含有阴离子表面活性剂的溶液进行脱气。优选的持续进行该吹扫,直到涂层过程结束。以期望的流动速率将还原剂NdBH4滴入到该溶液中,过渡金属离子从而达到它们的金属状态。对涂敷有Co-Fe的M型六角铁氧体进行过滤,并在大约80℃的烘箱中进行干燥。该相同的过程也适用于在惰性气体环境下制造MnAl和MnBi核-壳纳米颗粒。在其它实施方式中,其他的技术可用于制造纳米磁性颗粒。

Claims (3)

1.一种核-壳纳米磁体颗粒(12),包括:
硬磁性材料的核(14)和
用于包围所述核的软磁性材料的壳(15),
其中,所述壳的厚度小于40纳米,并且小于所述核的布洛赫畴壁厚度的两倍。
2.根据权利要求1所述的核-壳纳米磁体颗粒,其中,围绕着所述核的所述壳的厚度是均匀的。
3.根据权利要求1所述的核-壳纳米磁体颗粒,其中,所述核不包括稀土元素。
CN2011800546176A 2010-11-15 2011-11-15 磁交换耦合的核-壳纳米磁体 Pending CN103221998A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US41386910P 2010-11-15 2010-11-15
US61/413,869 2010-11-15
PCT/US2011/060879 WO2012068178A1 (en) 2010-11-15 2011-11-15 Magnetic exchange coupled core-shell nanomagnets

Publications (1)

Publication Number Publication Date
CN103221998A true CN103221998A (zh) 2013-07-24

Family

ID=46084386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800546176A Pending CN103221998A (zh) 2010-11-15 2011-11-15 磁交换耦合的核-壳纳米磁体

Country Status (5)

Country Link
US (2) US9076579B2 (zh)
EP (1) EP2641245A4 (zh)
KR (1) KR20140033315A (zh)
CN (1) CN103221998A (zh)
WO (1) WO2012068178A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586465A (zh) * 2013-11-12 2014-02-19 河北工业大学 一种Sm-Co基纳米磁性材料的制备方法
CN105551708A (zh) * 2016-03-08 2016-05-04 佛山市程显科技有限公司 一种增材制造磁芯以及使用该磁芯的磁性器件
CN107564643A (zh) * 2017-09-25 2018-01-09 北京航空航天大学 一种纳米颗粒基各向异性双相复合磁体及制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140033315A (ko) * 2010-11-15 2014-03-18 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 알라바마 포 앤드 온 비하프 오브 더 유니버시티 오브 알라바마 자기 교환 결합형 코어-셀 나노자석
KR101778164B1 (ko) * 2012-02-03 2017-09-13 엘지전자 주식회사 코어-쉘 구조를 가지는 경-연자성 혼성 구조의 나노입자, 상기 나노입자를 이용하여 제조한 자석 및 이들의 제조방법
DE102013213646A1 (de) * 2013-07-12 2015-01-15 Siemens Aktiengesellschaft Anisotroper seltenerdfreier matrixgebundener hochperformanter Permanentmagnet mit nanokristalliner Struktur und Verfahren zu dessen Herstellung
KR20150010519A (ko) * 2013-07-19 2015-01-28 삼성전자주식회사 연자성 자기교환결합 복합 구조체 및 이를 포함한 고주파소자 부품, 안테나 모듈 및 자기저항소자
KR20150010520A (ko) * 2013-07-19 2015-01-28 삼성전자주식회사 경자성 자기교환결합 복합 구조체 및 이를 포함한 수직자기기록매체
DE102015204617A1 (de) * 2015-03-13 2016-09-15 Siemens Aktiengesellschaft Anisotroper Hochleistungspermanentmagnet mit optimiertem nanostrukturellem Aufbau und Verfahren zu dessen Herstellung
CN106024030A (zh) * 2016-05-11 2016-10-12 电子科技大学 一种软/硬磁交换耦合结构
WO2021002564A1 (ko) * 2019-07-02 2021-01-07 한양대학교에리카산학협력단 섬유형 자성 구조체 및 그 제조 방법
KR102266497B1 (ko) * 2019-07-02 2021-06-17 한양대학교 에리카산학협력단 섬유형 자성 구조체 및 그 제조 방법
AU2022338349A1 (en) * 2021-09-01 2024-03-21 The University Of Sydney Magnetic nanoparticles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040134565A1 (en) * 2003-01-13 2004-07-15 International Business Machines Corporation Process of forming magnetic nanocomposites via nanoparticle self-assembly
CN101563735A (zh) * 2006-11-01 2009-10-21 丰田自动车株式会社 纳米复合磁体的制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214205A (ja) * 1990-12-12 1992-08-05 Fuji Electric Co Ltd 薄膜磁気ヘッドおよびその製造方法
JP3838730B2 (ja) * 1997-02-13 2006-10-25 株式会社メイト 軟磁性複合材料
US6045925A (en) 1997-08-05 2000-04-04 Kansas State University Research Foundation Encapsulated nanometer magnetic particles
DE19944874C1 (de) * 1999-09-18 2001-04-19 Degussa Verfahren zur Herstellung von Cyclooctanol
JP2001217109A (ja) * 2000-02-03 2001-08-10 Tdk Corp 磁石組成物及びこれを用いるボンド磁石
US6548264B1 (en) * 2000-05-17 2003-04-15 University Of Florida Coated nanoparticles
WO2004083290A2 (en) * 2003-03-17 2004-09-30 University Of Rochester Core-shell magnetic nanoparticles and nanocomposite materials formed therefrom
EP1814172A1 (en) 2006-01-27 2007-08-01 IEE International Electronics &amp; Engineering S.A.R.L. Magnetic field sensing element
WO2007123846A2 (en) * 2006-04-17 2007-11-01 Rensselaer Polytechnic Institute Synthesis, functionalization and assembly of monodisperse high-coercivity silica-capped fept nanomagnets of tunable size, composition and thermal stability from microemulsions
DE102006028389A1 (de) * 2006-06-19 2007-12-27 Vacuumschmelze Gmbh & Co. Kg Magnetkern und Verfahren zu seiner Herstellung
US8354841B2 (en) * 2007-01-24 2013-01-15 Koninklijke Philips Electronics N.V. Method for influencing and/or detecting magnetic particles in a region of action, magnetic particles and the use of magnetic particles
KR101157942B1 (ko) 2007-04-25 2012-06-22 도요타 지도샤(주) 코어/셀 복합 나노입자를 제조하는 방법
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
US20100054981A1 (en) 2007-12-21 2010-03-04 Board Of Regents, The University Of Texas System Magnetic nanoparticles, bulk nanocomposite magnets, and production thereof
US8465855B2 (en) * 2008-07-16 2013-06-18 International Business Machines Corporation Protective coating of magnetic nanoparticles
KR20140033315A (ko) * 2010-11-15 2014-03-18 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 알라바마 포 앤드 온 비하프 오브 더 유니버시티 오브 알라바마 자기 교환 결합형 코어-셀 나노자석

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040134565A1 (en) * 2003-01-13 2004-07-15 International Business Machines Corporation Process of forming magnetic nanocomposites via nanoparticle self-assembly
CN101563735A (zh) * 2006-11-01 2009-10-21 丰田自动车株式会社 纳米复合磁体的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
伍静: "纳米复合永磁薄膜的制备及磁性能模拟", 《中国优秀硕士学位论文全文数据库》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586465A (zh) * 2013-11-12 2014-02-19 河北工业大学 一种Sm-Co基纳米磁性材料的制备方法
CN105551708A (zh) * 2016-03-08 2016-05-04 佛山市程显科技有限公司 一种增材制造磁芯以及使用该磁芯的磁性器件
CN106782991A (zh) * 2016-03-08 2017-05-31 佛山市程显科技有限公司 一种增材制造磁芯以及使用该磁芯的磁性器件
CN106782991B (zh) * 2016-03-08 2018-09-11 佛山市程显科技有限公司 一种增材制造磁芯以及使用该磁芯的磁性器件
CN107564643A (zh) * 2017-09-25 2018-01-09 北京航空航天大学 一种纳米颗粒基各向异性双相复合磁体及制备方法

Also Published As

Publication number Publication date
WO2012068178A1 (en) 2012-05-24
EP2641245A4 (en) 2016-02-17
US20150287506A1 (en) 2015-10-08
US20130342297A1 (en) 2013-12-26
EP2641245A1 (en) 2013-09-25
US9406418B2 (en) 2016-08-02
KR20140033315A (ko) 2014-03-18
US9076579B2 (en) 2015-07-07

Similar Documents

Publication Publication Date Title
CN103221998A (zh) 磁交换耦合的核-壳纳米磁体
Coey Hard magnetic materials: A perspective
Radmanesh et al. Synthesis and magnetic properties of hard/soft SrFe12O19/Ni0. 7Zn0. 3Fe2O4 nanocomposite magnets
Zhang et al. Synthesis and assembly of magnetic nanoparticles for information and energy storage applications
Li et al. Prospect and status of iron-based rare-earth-free permanent magnetic materials
Strnat The hard-magnetic properties of rare earth-transition metal alloys
Zhao et al. Coercivity mechanisms in nanostructured permanent magnets
Jimenez-Villacorta et al. Advanced permanent magnetic materials
Shao et al. Rare-earth-free magnetically hard ferrous materials
Coey et al. New bonded magnet materials
Tan et al. Effect of Dy substitution on the microstructure and magnetic properties of high (BH) max Nd-Dy-Fe-Co-B nanoparticles prepared by microwave processing
Xu et al. Rare earth permanent magnetic nanostructures: chemical design and microstructure control to optimize magnetic properties
Alahmari et al. Synthesis and characterization of electrospun Ni0. 5Co0. 5− xCdxNd0. 02Fe1. 78O4 nanofibers
Cabral et al. Preparation and magnetic study of the CoFe 2 O 4-CoFe 2 nanocomposite powders
Tang et al. Combustion assisted preparation of high coercivity Sm–Co hard magnet with stable single-domain size
Jasrotia et al. Hard ferrites for permanent magnets
Trinh et al. Synthesis of mesoscopic particles of multi-component rare earth permanent magnet compounds
Sellmyer et al. Handbook of advanced magnetic materials
Skomski et al. Intrinsic and extrinsic properties of advanced magnetic materials
Long et al. Synthesis of Cobalt and Its Metallic Magnetic Nanoparticles
JP2008179841A (ja) ニッケル―鉄―モリブデン合金ナノ粒子の製造方法およびニッケル―鉄―モリブデン合金ナノ粒子
Harris et al. Magnetic materials
Freire et al. Bimagnetic core/shell nanoparticles: current status and future possibilities
Kumar et al. Magnetic alloy materials, properties and applications
Shield Cluster-assembled magnetic nanostructures and materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130724