CN101556868B - 一种富氧超级电容器碳质电极材料的制备方法 - Google Patents
一种富氧超级电容器碳质电极材料的制备方法 Download PDFInfo
- Publication number
- CN101556868B CN101556868B CN2009100649571A CN200910064957A CN101556868B CN 101556868 B CN101556868 B CN 101556868B CN 2009100649571 A CN2009100649571 A CN 2009100649571A CN 200910064957 A CN200910064957 A CN 200910064957A CN 101556868 B CN101556868 B CN 101556868B
- Authority
- CN
- China
- Prior art keywords
- oxygen
- carbon
- koh
- electrode material
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 21
- 239000001301 oxygen Substances 0.000 title claims abstract description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 239000007772 electrode material Substances 0.000 title claims abstract description 17
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 10
- 239000003990 capacitor Substances 0.000 title claims abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 230000004913 activation Effects 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract 2
- 239000002243 precursor Substances 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 6
- 239000002802 bituminous coal Substances 0.000 claims description 5
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 6
- 238000007598 dipping method Methods 0.000 abstract 1
- 238000001035 drying Methods 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 239000011148 porous material Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000004321 preservation Methods 0.000 description 4
- -1 wash to neutrality) Chemical class 0.000 description 4
- 239000000843 powder Substances 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000004966 Carbon aerogel Substances 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
一种富氧超级电容器碳质电极材料的制备方法,其特征在于:所述制备方法包括下述步骤:a、将碳含量>60%,氧含量>10%的粒径为100~200μm的富氧碳质前躯体与纯度90%以上的颗粒KOH按质量比1∶1~1∶5进行混合、浸渍;b、将步骤a所得混合物置于KOH活化釜中,以20~50℃/min的升温速率升温至600~900℃,之后直接自然冷却至室温;c、将步骤b所得物质先后用5mol/L HCl、去离子水洗去残留的金属K及其它残留物,在110℃条件下烘干。
Description
技术领域
本发明涉及一种富氧超级电容器碳质电极材料的制备方法,该方法特别适用于高比电容、高比功率超级电容器用比表面积为1000~2600m2/g体相的碳质电极材料的制备。
背景技术
超级电容器以其充放电速度快、循环寿命长、能量密度高和无污染等优异特性而成为新能源领域的研究热点,其在混合动力汽车、太阳能、风能等方面的应用预期将会对节约能源、城市环境控制产生根本性影响。电极材料是超级电容器的核心。目前研究较多的电极材料是基于双电层理论的超级活性炭、炭气凝胶、纳米碳管等炭质多孔材料。虽然理论上双电层电容正比于材料的有效比表面积,但有效比表面积的提高必须综合考虑材料的孔结构、电阻率及密度等对电极性能的制约,因而双电层比电容C存在极限值。近期,研究者通过对炭质多孔电极材料的比表面积、孔径分布及导电网络进行定向控制,但提升空间已非常有限,致使所制电容器的能量密度E(E∝C·U2)最高仅为10Wh/kg。因此,更高能量密度、比功率炭质电极材料的制备极为重要。
发明内容
本发明的目的目的正是针对上述现有技术中所存在的不足之处而提供一种比表面积为1000~2600m2/g体相的富氧超级电容器碳质电极材料的制备方法。该方法工艺简单,所制碳质电极材料兼具体相含氧量高、赋存稳定,比表面积大,孔径分布宽,导电性好,对无机电解液的浸润性好等性能。
本发明的目的可通过下述技术方案实现:
本发明的制备方法包括下述步骤:
本发明的富氧超级电容器碳质电极材料的制备方法包括下述步骤::
a、将碳含量>60%,氧含量>10%的粒径为100~200μm的富氧碳质前躯体与纯度90%以上的颗粒KOH按质量比1∶1~1∶5进行混合、浸渍;
b、将步骤a所得混合物置于KOH活化釜中,以20~50℃/min的升温速率升温至600~900℃,之后直接自然冷却至室温;
c、将步骤b所得物质先后用5mol/L HCl、去离子水洗去残留的金属K及其化合物,在110℃条件下烘干。
本发明中所述富氧碳质前躯体可以是烟煤、沥青、纤维素或椰壳中的任意一种高含氧量生物质类物质;所述富氧碳质前躯体最好是选用富氧的烟煤,通过高升温速率、零保温时间制备而成,以使前驱体中的氧原子保留到炭基体骨架中,实现氧原子在活性炭中的稳定赋存。
本发明的有益效果如下:
由于本发明选用富氧的碳质材料作为前驱体,通过高升温速率、零保温时间,使前驱体中的氧原子保留到炭基体骨架中,实现氧原子在活性炭中的稳定赋存。制备工艺简单,原材料来源广泛,价格低廉。所制材料兼具体相含氧量高、赋存稳定,比表面积大,孔径分布宽,导电性好,对无机电解液的浸润性好等性能。作为超级电容器的电极材料使用时,由于氧的赋存稳定,电容器的循环性能稳定。
具体实施方式
本发明以下将结合实施例作进一步详述:
实施例1
a、将碳含量>60%,氧含量>10%的粒径为100~200μm的烟煤粉末与纯度90%以上的颗粒KOH按质量比1∶4进行混合并浸渍24小时;
b、将步骤a所得混合物置于KOH活化釜中,在氮气保护下,以30℃/min的升温率升温至800℃,不经保温,自然冷却至室温;
c、将步骤b所得物质先后用5mol/L HCl、去离子水洗去残留的金属K及其化合物(即水洗至中性),在110℃条件下烘干后,制得超高比表面积的活性炭。
其BET比表面积为1950m2/g,孔径集中分布在0.5~8.0nm。以3mol/LKOH为电解液时,该电极材料的比电容为370F/g。
实施例2
a、将碳含量>60%,氧含量>10%的粒径为100~200μm的烟煤粉末与纯度90%以上的颗粒KOH按质量比1∶4进行混合并浸渍24小时;
b、将步骤a所得混合物置于KOH活化釜中,在氮气保护下,以30℃/min的升温率升温至700℃,不经保温,自然冷却至室温;
c、将步骤b所得物质先后用5mol/L HCl、去离子水洗去残留的金属K及其化合物(即水洗至中性),在110℃条件下烘干后,制得超高比表面积的活性炭。
其BET比表面积为1820m2/g,孔径集中分布在0.5~8.0nm。以3mol/LKOH为电解液时,该电极材料的比电容为350F/g。
实施例3
a、将碳含量>60%,氧含量>10%的粒径为100~200μm的烟煤粉末与纯度90%以上的颗粒KOH按质量比1∶4进行混合并浸渍24小时;
b、将步骤a所得混合物置于KOH活化釜中,在氮气保护下,以30℃/min的升温率升温至800℃,不经保温,自然冷却至室温;
c、将步骤b所得物质先后用5mol/L HCl、去离子水洗去残留的金属K及其化合物(即水洗至中性),在110℃条件下烘干后,制得超高比表面积的活性炭。
其BET比表面积为1950m2/g,孔径集中分布在0.5~8.0nm。以1mol/L四乙基胺四氟化硼为电解液时,该电极材料的比电容为150F/g。
实施例4
a、将粒径为100~200μm的纤维素与纯度90%以上的颗粒KOH按质量比1∶4进行混合并浸渍24小时;
b、将步骤a所得混合物置于KOH活化釜中,在氮气保护下,以30℃/min的升温率升温至800℃,不经保温,自然冷却至室温;
c、将步骤b所得物质先后用5mol/L HCl、去离子水洗去残留的金属K及其化合物(即水洗至中性),在110℃条件下烘干后,制得超高比表面积的活性炭。
其BET比表面积为2000m2/g,孔径集中分布在0.5~7.0nm。以3mol/LKOH为电解液时,该电极材料的比电容为320F/g。
Claims (1)
1.一种富氧超级电容器碳质电极材料的制备方法,其特征在于:该方法以富氧烟煤或纤维素为碳质前躯体,通过20~50℃/min的高升温速率、零保温时间、快速降温制备而成,使前驱体中的氧原子保留到炭基体骨架中,实现氧原子在活性炭中的稳定赋存,其制备方法包括下述步骤:
a、将碳含量>60%,氧含量>10%的粒径为100~200μm的所述碳质前躯体与纯度90%以上的颗粒KOH按质量比1∶1~1∶5进行混合、并浸渍24小时;
b、将步骤a所得混合物置于KOH活化釜中,以20~50℃/min的升温速率升温至600~900℃,之后不经保温,在室温环境下直接冷却至室温;
c、将步骤b所得物质先后用5mol/L HCl、去离子水洗去残留的金属K及其它残留物,在110℃条件下烘干。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100649571A CN101556868B (zh) | 2009-05-20 | 2009-05-20 | 一种富氧超级电容器碳质电极材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100649571A CN101556868B (zh) | 2009-05-20 | 2009-05-20 | 一种富氧超级电容器碳质电极材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101556868A CN101556868A (zh) | 2009-10-14 |
CN101556868B true CN101556868B (zh) | 2011-05-04 |
Family
ID=41174938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100649571A Expired - Fee Related CN101556868B (zh) | 2009-05-20 | 2009-05-20 | 一种富氧超级电容器碳质电极材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101556868B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114267829A (zh) * | 2021-12-08 | 2022-04-01 | 新疆大学 | 一种锂/钠离子电池的煤基多孔碳纤维负极材料的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020048144A1 (en) * | 2000-07-25 | 2002-04-25 | Kuraray Co., Ltd. Kurashiki-Shi Japan | Activated carbon, process for producing the same, polarizable electrode, and electric double layer capacitor |
CN101177266A (zh) * | 2007-11-29 | 2008-05-14 | 同济大学 | 一种超级电容器用活性炭电极材料的制备方法 |
CN101295587A (zh) * | 2008-06-05 | 2008-10-29 | 华东理工大学 | 一种高比能量超级电容器碳质电极材料的制备方法 |
-
2009
- 2009-05-20 CN CN2009100649571A patent/CN101556868B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020048144A1 (en) * | 2000-07-25 | 2002-04-25 | Kuraray Co., Ltd. Kurashiki-Shi Japan | Activated carbon, process for producing the same, polarizable electrode, and electric double layer capacitor |
CN101177266A (zh) * | 2007-11-29 | 2008-05-14 | 同济大学 | 一种超级电容器用活性炭电极材料的制备方法 |
CN101295587A (zh) * | 2008-06-05 | 2008-10-29 | 华东理工大学 | 一种高比能量超级电容器碳质电极材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101556868A (zh) | 2009-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | N-doped honeycomb-like porous carbon towards high-performance supercapacitor | |
Hu et al. | Reliable and general route to inverse opal structured nanohybrids of carbon‐confined transition metal sulfides quantum dots for high‐performance sodium storage | |
Cao et al. | Ultra‐high capacity lithium‐ion batteries with hierarchical CoO nanowire clusters as binder free electrodes | |
CN108063056B (zh) | 多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用 | |
Zhang et al. | Structure and interface engineering of ultrahigh‐rate 3D bismuth anodes for sodium‐ion batteries | |
Tian et al. | Constructed nitrogen and sulfur codoped multilevel porous carbon from lignin for high-performance supercapacitors | |
Yu et al. | Advancements and prospects of graphite anode for potassium‐ion batteries | |
Ma et al. | Simple preparation of Si/N-doped carbon anodes from photovoltaic industry waste for lithium-ion batteries | |
Li et al. | Composite of hierarchical interpenetrating 3D hollow carbon skeleton from lotus pollen and hexagonal MnO 2 nanosheets for high-performance supercapacitors | |
CN106910880B (zh) | 一种钠离子电池碳球负极材料及其制备方法 | |
CN1848490A (zh) | 一种核壳结构的碳质锂离子电池负极材料及其制备方法 | |
CN104103430A (zh) | 具有高体积比电容的氟氮共掺杂石墨化碳微球的制备方法 | |
CN107579214A (zh) | 一种以硅酸盐玻璃为原料制备硅碳复合材料的方法、其产品和应用 | |
CN113307254A (zh) | 采用低温双盐化合物制备三维多孔石墨烯片的方法及应用 | |
Ge et al. | Hydrothermal synthesis of hybrid rod‐like hollow CoWO4/Co1− xS for high‐performance supercapacitors | |
Zhang et al. | Waxberry‐shaped ordered mesoporous P‐TiO2− x microspheres as high‐performance cathodes for lithium–sulfur batteries | |
Li et al. | Three-dimensional porous Si@ SiOx/Ag/CN anode derived from deposition silicon waste toward high-performance Li-ion batteries | |
Li et al. | In Situ Wrapping SiO with Carbon Nanotubes as Anode Material for High‐Performance Li–Ion Batteries | |
Wang et al. | ZIF-67-derived porous nitrogen-doped carbon shell encapsulates photovoltaic silicon cutting waste as anode in high-performance lithium-ion batteries | |
Liu et al. | Nitrogen‐doped carbon networks with consecutive conductive pathways from a facile competitive carbonization‐etching strategy for high‐performance energy storage | |
Li et al. | Coal tar electrode pitch modified rice husk ash as anode for lithium ion batteries | |
Jing et al. | Multiple active components synergistically driven heteroatom-doped porous carbon as high-performance counter electrode in dye-sensitized solar cells | |
CN101295587A (zh) | 一种高比能量超级电容器碳质电极材料的制备方法 | |
Gong et al. | In Situ Microwave Synthesis of SnO2‐Porous Biomass Carbon as Anode Materials for Lithium‐Ion Batteries | |
Zeng et al. | Construction of Carbon‐Coated Cobalt Sulfide Hybrid Networks Inter‐Connected by Carbon Nanotubes for Performance‐Enhanced Potassium‐Ion Storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110504 Termination date: 20130520 |