CN101542950A - Ofdm调制波输出装置和失真补偿方法 - Google Patents

Ofdm调制波输出装置和失真补偿方法 Download PDF

Info

Publication number
CN101542950A
CN101542950A CNA2008800003445A CN200880000344A CN101542950A CN 101542950 A CN101542950 A CN 101542950A CN A2008800003445 A CNA2008800003445 A CN A2008800003445A CN 200880000344 A CN200880000344 A CN 200880000344A CN 101542950 A CN101542950 A CN 101542950A
Authority
CN
China
Prior art keywords
power amplifier
amplitude
power
data
ofdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008800003445A
Other languages
English (en)
Other versions
CN101542950B (zh
Inventor
藤本芳宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CN101542950A publication Critical patent/CN101542950A/zh
Application granted granted Critical
Publication of CN101542950B publication Critical patent/CN101542950B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3223Modifications of amplifiers to reduce non-linear distortion using feed-forward
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/62Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for providing a predistortion of the signal in the transmitter and corresponding correction in the receiver, e.g. for improving the signal/noise ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/361Modulation using a single or unspecified number of carriers, e.g. with separate stages of phase and amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0441Circuits with power amplifiers with linearisation using feed-forward

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

提供了OFDM(正交频分复用)调制波输出装置。幅度提取电路(108)提取OFDM调制波的幅度。功率放大器控制电路(114)当所提取的幅度超过特定幅度时将功率放大器(113)的功率供应设置为超过额定功率,以扩展所述功率放大器的饱和点。补偿值选择控制电路(116)当所述功率放大器控制部分扩展所述功率放大器的饱和点时补偿所述功率放大器的非线性特性。

Description

OFDM调制波输出装置和失真补偿方法
技术领域
本发明涉及OFDM调制波输出装置和失真补偿方法,具体上涉及产生OFDM调制波的OFDM调制波输出装置和在这样的OFDM调制波输出装置内使用的失真补偿方法。
背景技术
在OFDM(正交频分复用)技术内,其中使用的信号的频谱接近矩形,由此获得较高的频率使用效率。另外,OFDM技术由于可以使得码元长度大于单个载波而相对于延迟波具有很大的阻抗,并且如果使用了保护间隔的话,则保护间隔的添加使得OFDM技术在多径环境内更强。另一方面,在执行其中存在大量副载波的多载波发送的OFDM技术内,如果副载波各自具有的峰值彼此重叠,则OFDM信号具有较大的峰值功率。如果这样的OFDM信号被输入到具有非线性特性的功率放大器,则出现诸如发送特性变差和带外辐射增加之类的特性变差。
作为用于对付在OFDM技术内的非线性失真的措施,已知多种技术,包括预失真技术(在专利公布1和文献1内所述)、LCP-COFDM(线性化的恒定峰值功率编码的OFDM)技术(在文献2内所述)、部分发送序列(PTS)技术(在文献3内所述)、LCP-COFDM/部分发送序列组合技术和在产生峰值功率时的线性改善技术(在专利公布2内所述)。以下将说明这些技术的概观。
所述预失真技术(文献1)向功率放大器的输入信号加上功率放大器的输入-输出特性的反相特性,以消除功率放大器的输入-输出特性的非线性。功率放大器的输出信号是由具有足够的线性的放大器放大的信号,由此消除非线性失真,并且改善带外辐射。LCP-COFDM(文献2)与预失真技术相结合地被使用,并且在其中施加预失真之前将OFDM信号抑制在饱和的功率电平之下。
所述部分发送序列技术(文献3)将通过OFDM的副载波发送的信号划分为多个子块,执行每个子块的傅立叶变换,其后将每个子块的相位沿着时间轴移位一个量,该移位量是相位加权的以便峰值功率取最小值,由此减少OFDM信号的峰值功率。这个相位加权作为边信息(sideinformation)被发送到接收侧,所述边信息用于接收侧的解调。
所述LCP-COFDM/部分发送序列组合技术(文献4)是将LCP-COFDM技术与所述部分发送序列技术组合的技术。在产生峰值功率时的线性改善技术(专利公布2)使得当产生峰值功率时向功率放大器暂时地施加高电压或者大电流,由此改善其线性。这种技术改善了OFDM信号的发送特性和带外特性,只要不超过在高功率功率放大器内的部件的最大额定值,并且不引发不利的影响。
文献和公布的列表
文献1:K.Wesolowski and J.Pochmara,“Efficient algorithm foradjustment of adaptive predistorter in OFDM transmitter”,IEEE VTS-Fall VTC2000,vol.5,pp.2491-2496,Sept.2000
文献2:S.Uwano and Y.Matsumoto,and M.Mizoguchi,“Linearizedconstant peak-power coded OFDM transmission for broadband wireless accesssystems”,Proc.IEEE PIMRC’99,pp.358-362,Sept.1999
文献3:Seog Geun Kang,Jeong Goo Kim and Eon Kyeong Jo,“A novelsubblock partition scheme for partial transmit sequence OFDM”,IEEETransactions on Broadcasting,Vol.45,Issue:3,pp.333-338,Sep 1999
文献4:Takaaki Horiuchi,Yo Iso,Tomoaki Otsuki,Iwao Sasase,“Characteristic evaluation of OFDM nonlinear distortion compensationtechnique using predistortion and partial transmit sequence”,Singakuron(B)Vol.J85-B,No.11,pp.1865-1873,Nov,2002
专利公布1:JP-2000-252946A
专利公布2:JP-2001-292034A
在所述预失真技术内,不可能补偿等于或者大于功率放大器的饱和峰值功率的峰值功率。在LCP-COFDM技术内,在产生较高的峰值功率时,输出的调制波容易收到噪声的影响,这是因为信号功率被控制到较低的电平。所述部分发送序列技术虽然可以通过减少峰值功率来减少带外失真,但对于能够通过相位加权而减小的峰值功率具有限制,因此,不可能在其绝对值上抑制峰值功率。
在LCP-COFDM/部分发送序列技术内,存在一个缺陷:虽然可以实现通过两种所述技术的特性改善,但也需要边信息的发送。在产生峰值功率时的线性改善技术内,虽然可以通过暂时施加较高的电压或者较大的电流来改善线性,但是如此实现的功率放大器的线性改善伴有放大器的小信号增益、延迟时间特性、非线性特性(AM(调幅)-AM特性或者AM-PM(调相)特性)上的改变,由此当处理较高峰值功率时引发信号的质量变差。
发明内容
本发明的一个目的在于提供一种OFDM调制波输出装置和一种失真补偿方法,它们能够以较短的延迟时间补偿当OFDM调制波具有峰值时产生的失真。
本发明提供了一种使用预失真技术的OFDM调制波输出装置,该装置包括:幅度提取部分,其根据输入数据提取OFDM调制波的幅度;功率放大器控制部分,其在由所述幅度提取部分提取的幅度大于特定幅度的情况下将放大所述OFDM调制波的功率放大器的供应功率设置为超过其额定功率,由此扩展所述功率放大器的饱和点;以及补偿值选择控制部分,其当所述功率放大器控制部分扩展所述功率放大器的饱和点时,根据用于当扩展所述功率放大器的饱和点时补偿所述功率放大器的非线性特性的第一补偿值数据表来确定在所述幅度的预失真中的加权因子。
本发明提供了一种在使用预失真技术的OFDM发送系统内的失真补偿方法,该方法包括:根据输入数据来提取OFDM调制波的幅度;如果所提取的幅度大于特定幅度,则将放大所述OFDM调制波的功率放大器的供应功率设置为超过其额定功率,由此扩展所述功率放大器的饱和点;并且,根据用于当扩展所述功率放大器的饱和点时补偿所述功率放大器的非线性特性的第一补偿值数据表来确定在所述幅度的预失真中的加权因子。
通过下面参考附图的说明,本发明的上述和其他目的、特征和优点将变得更清楚。
附图说明
图1是示出了根据本发明的一个实施例的OFDM调制波输出装置的配置的方框图。
图2是示出了映射输入数据的示例的图。
图3是示出了功率放大器的输入输出特性和在预失真内添加的反相特性的图。
图4是示出了在重写补偿值数据表期间的配置的方框图。
具体实施方式
以下,将参考附图详细说明本发明的一个示例实施例。图1示出了根据本发明的所述实施例的OFDM调制波输出装置的配置。所述OFDM调制波输出装置100包括串行/并行转换电路(S-P转换电路)101、IFFT电路(逆快速傅立叶变换电路)102和105、GI(保护间隔)增加电路103和106、加权D/A转换器104和107、正交调制电路112、功率放大器113、幅度提取电路108、GI对应物增加电路109、持续峰值控制电路110、加权D/A(数字/模拟)转换器111、功率放大器控制电路114、功率放大器特性补偿数据表115和补偿值选择控制电路116。
S-P转换电路101将输入的串行数据串转换为并行数据。IFFT(Qch)102和IFFT(Pch)105接收被转换为并行数据的输入数据,并且分别对于其实部和虚部执行逆快速傅立叶变换。IFFT(Qch)102的输出经由加权D/A转换器104被输入到正交调制电路112,该输出在GI增加电路103内被加上了保护间隔。IFFT(Pch)105的输出经由加权D/A转换器107被输入到正交调制电路112,该输出在GI增加电路106内被加上了保护间隔。正交调制电路112执行这两个信号的正交调制。功率放大器113放大和提供正交调制电路112的输出。到这个操作为止的操作类似于在通常的OFDM调制波产生方案内的操作。
幅度提取电路108提取输入数据的组合的幅度。在OFDM调制内,并行转换后的输入数据基于副载波而被编组,并且对于每个副载波进行幅度相位(频率)映射。图2示出了在幅度相位平面上映射的输入数据串。这个示例涉及16QAM。被映射的信号通过逆快速傅立叶变换从在频率轴上的信号转换为时间信号。通过使用所产生的时间信号来应用正交调制而获得OFDM调制波。在所述OFDM调制内,当映射数据序列时,可以判定每个副载波的调制波的幅度相位状态。幅度提取电路108通过使用每个副载波的幅度相位来执行副载波的向量构成,并且从其中取出幅度分量的绝对值,以由此提取OFDM调制波的幅度分量。
由幅度提取电路108提取的幅度被在GI对应物增加电路109内加上对应于保护间隔的幅度,并且被输入到加权D/A转换器111。加权D/A转换器111对于所述幅度值进行加权,并且输出与输入的幅度值对应的值。被应用到输入幅度上的加权因子以函数、表格等的形式存储在存储装置内。根据加权D/A转换器111的输出,功率放大器控制电路114控制功率放大器113的供应电压或者电流,以控制功率放大器控制电路114的功率。如果由幅度提取电路108提取的幅度大于一特定幅度,则功率放大器控制电路114根据加权D/A转换器的输出,将供应到功率放大器113的电功率提高到一超过额定功率的功率,以扩展功率放大器113的饱和点。例如,功率放大器控制电路114在由幅度提取电路108提取的幅度是0到5V的情况下,将功率放大器113中的供应电压设置在5V,并且如果所述幅度是10V,则将功率放大器113中的供应电压设置在12V。功率放大器控制电路114在所述幅度是6V的情况下将功率放大器113中的供应电压设置为6V,并且如果所述幅度是9V,则将功率放大器113中的供应电压设置为10V。
图3示出了功率放大器113的输入输出特性。功率放大器113的输出相对于输入为非线性,如曲线a1所示。为了补偿这一点,通过在功率放大器113的前级提供功率放大器113的输入输出特性的反相特性,执行预失真,如曲线b1所示。具体上,使用加权D/A转换器104和107,将功率放大器113的反相特性与IFFT(Qch)电路102和IFFT(Pch)电路105的输出相加,以执行预失真。由加权D/A转换器104和107增加的反相特性被存储在功率放大器特性补偿数据表115内。补偿值选择控制电路116根据IFFT(Qch)102的输出值和IFFT(Pch)105的输出值参考功率放大器特性补偿数据表115而确定加权D/A转换器104和107的加权因子。
在此,如果功率放大器113的功率被功率放大器控制电路114提高以使得饱和点从c1扩展到c2,则功率放大器113的输入和输出特性伴随所述扩展而改变到曲线a2。为了补偿这一点,除了用于正常状态的表格之外,在功率放大器特性补偿数据表115内预先准备另一个表格,该表格指定对应于在扩展功率放大器113的饱和点时提供的功率供应的补偿值。如果由幅度提取电路108提取的幅度值是使得功率放大器113的饱和点扩展的幅度值,则补偿值选择控制电路116选择指定曲线b2的表格,所述曲线b2对应于在使得饱和点扩展时的输入和输出特性的反相特性。其后,参考所选择的表,根据IFFT(Qch)102的输出值和IFFT(Pch)105的输出值来确定加权D/A转换器104和107的加权因子。因此,可以补偿在扩展饱和点时产生的非线性。
类似于诸如雷达的发射机,功率放大器113在不超过绝对最大额定值的平均功率的范围内对于瞬时的峰值功率具有很大的阻抗。因此,当OFDM波形取最大峰值功率时,功率放大器控制电路114可以通过仅在该级提高其供应电压或者电流而扩展功率放大器113的饱和点,而没有任何问题。但是,如果峰值持续,则功率放大器113的时间平均的功率可能超过绝对最大额定值。在持续的峰值的情况下,功率放大器113的功率被降低以保护功率放大器113。
持续峰值控制电路110根据幅度提取电路108的输出检测持续的峰值,并且如果所述峰值持续,则降低加权D/A转换器111的输出电平以降低功率放大器113的功率。持续峰值控制电路110例如对幅度提取电路108的输出进行积分,并且如果积分值超过特定值,则判定出现持续,并且降低功率放大器的功率。因此,可以避免功率放大器113的时间平均功率超过绝对最大额定值的情况。功率降低的速率大致使得在接收侧中AGC(自动增益控制)可以跟踪该降低。
如果通过持续峰值控制电路110的操作而改变功率放大器113的功率,则功率放大器113的输入输出特性与之相对应地改变。为了处理这一点,补偿值选择控制电路116按照功率放大器113的功率改变而改变要使用的特性补偿数据表。由于补偿值选择控制电路116按照功率放大器113的功率而选择所述表格,因此在加权D/A转换器104和107内执行的加权被改变,由此保持功率放大器113的输出的线性。
图4示出了在校准补偿数据表时的配置。在校准时,控制部分120将功率放大器113的功率设置在超过其额定值的功率。S-P转换电路101在这种状态下接收来自校准用参考数据表121的已知数据,并且加权D/A转换器104和107每个都输出对应于输入数据的OFDM调制波。正交解调器117将OFDM调制波解调,并且获取P信号和Q信号。PQ模板118在其中存储与包括在校准用参考数据表121内的数据相对应的P信号和Q信号,并且比较器部分119将通过解调获得的P信号和Q信号分别与在PQ模板118内存储的P信号和Q信号相比较。控制部分120从比较器部分119提取误差信息,并且对功率放大器特性补偿数据表115执行表格重写,以便所述误差取最小值。通过迭代地执行这个表格重写,获得对应于功率放大器113的每个功率的特性补偿数据表。
在本实施例内,在幅度提取电路108内从输入数据串提取幅度值,以根据所提取的幅度值来控制功率放大器113的功率。在本实施例内,与LCP-OFDM技术不同,仅当OFDM波形取最大峰值功率时提高供应电压或者电流,由此扩展功率放大器113的饱和点。以这种方式,可以保证在出现峰值功率时的线性。当OFDM调制波不取峰值功率时,通过以较小的回退(back-off)来操作而获得较小的功耗。另外,如果使用PTS(部分发送序列)技术的话,与PTS技术的组合提供了较宽的动态范围和较低的功耗。
作为现有技术,已知一种技术,该技术仅仅从被转换为模拟信号的P信号和Q信号提取幅度分量,将其返回成数字信号,并且以步进的方式来使用功率放大器执行幅度调制。但是,在这种技术内,彼此分离地执行相位调制和幅度调制,这带来了在同步上的严重的问题,因此不实用。通过计算IFFT变换后的正交的P信号和Q信号的向量和,可以获得与上述实现方式类似的实现方式。但是,因为出现与用于计算向量和的时间长度相对应的延迟,因此必须延迟所述P信号和Q信号以补偿所述延迟。为了实现较高速度的数据发送,必须尽可能地减少由那些计算引发的绝对延迟。如果串行执行那些计算,则存在所述绝对延迟被提高的缺陷,因此,较高速度的发送是不可能的。在本实施例内,并行地执行正交的P信号和Q信号的计算和幅度的提取,由此实现较高速度的数据发送。
当根据从输入数据串提取的幅度而改变功率放大器113的功率时,出现由于增益的改变导致的相位超前或者相位滞后(在AM-PM转换内),这是因为功率放大器113的饱和点被改变。为了补偿这一点,预先了解功率放大器113的特性,并且对OFDM调制波预先进行预失真,以消除由用于控制饱和点的信号引起的相位/幅度误差。这保持了线性。虽然在功率放大器113增益改变时的滞后现象根据输入数据串的模式而引起非线性失真所需要的不同补偿量,但是本实施例的OFDM调制波输出装置可以处理这样的不同补偿量。在本实施例内,如果峰值持续,则功率放大器113的功率被持续峰值控制电路110逐渐地降低。以这种方式,可以保护功率放大器113。
在上述实施例内,根据输入数据来提取幅度,并且如果所提取的幅度大于特定幅度,则功率放大器的功率被设置在超过额定功率的功率,以扩展所述功率放大器的饱和点。以较小的回退来操作所述功率放大器,以当OFDM调制波不取峰值功率时实现较小的功耗,而当OFDM调制波取峰值功率时,将饱和点扩展以保持其线性。根据输入数据来执行幅度的提取。虽然也有对执行逆快速傅立叶变换后的P信号和Q信号提取幅度的另一种技术,但是在这种情况下,延迟时间变长,这是因为串行地执行所述逆快速傅立叶变换和幅度提取。在上述的实施例内,可以通过并行地执行逆快速傅立叶变换和幅度提取来减少延迟时间。
在上述实施例内的功率放大器的功率的控制中,根据所提取的幅度以步进的方式来提高功率放大器的功率。这种配置可以根据OFDM调制波的峰值来扩展功率放大器的饱和功率。
在上述实施例所使用的配置中,在扩展功率放大器的饱和点时使用的功率放大器特性补偿数据表包括与所述功率放大器的多个功率相对应的补偿数据表,并且补偿值选择控制电路选择与在功率放大器中设置的功率相对应的补偿数据表。在这种情况下,可以对于功率放大器的每个功率保持输入和输出特性的线性。
在上述的实施例内,通过输入数据的逆傅立叶变换获得的数字值和被确定的加权因子被输入到加权D/A转换器,由此同时执行所述数字值的D/A转换和预失真中的加权。这种配置提供了预失真中的功率放大器的输入的较高速度的校正。
在上述的实施例内,根据在将所述功率放大器的功率设置在超过额定功率的功率时的输入数据和通过解调对应于输入数据的OFDM调制波而获得的数据之间的误差,对用于补偿在扩展功率放大器的饱和点时的功率放大器的非线性特性的功率放大器特性补偿数据表进行重写。由于这种配置,可以通过确定功率放大器特性补偿数据表的值来获得在扩展功率放大器的饱和点时的补偿值,以便误差取最小值。
在上述的实施例内,当功率放大器的功率被降低时,功率放大器的功率以在用于接收OFDM调制波的接收装置内的增益控制的响应速度之内的速率降低。由于这种配置,功率放大器的功率改变对于接收侧的影响被抑制到最小。
虽然已经参考示例实施例而具体示出和描述了本发明,但是本发明不限于这些实施例和修改。本领域内的技术人员可以明白,在不脱离在权利要求内所限定的本发明的精神和范围的情况下,可以在其中进行各种改变。
本申请基于在2007年3月8日提交的日本专利申请第2007-058565号并要求其优先权,该在先申请的公开内容通过引用被整体包含在此。

Claims (16)

1.一种使用预失真技术的OFDM调制波输出装置,包括:
幅度提取部分,其根据输入数据提取OFDM调制波的幅度;
功率放大器控制部分,其在由所述幅度提取部分提取的幅度大于特定幅度的情况下将放大所述OFDM调制波的功率放大器的供应功率设置为超过其额定功率,从而扩展所述功率放大器的饱和点;以及,
补偿值选择控制部分,其当所述功率放大器控制部分扩展所述功率放大器的饱和点时,根据第一补偿值数据表来确定在所述幅度的预失真中的加权因子,所述第一补偿值数据表用于当扩展所述功率放大器的饱和点时补偿所述功率放大器的非线性特性。
2.根据权利要求1的OFDM调制波输出装置,其中,所述功率放大器控制部分根据由所述幅度提取部分提取的幅度以步进的方式来提高所述功率放大器的功率。
3.根据权利要求2的OFDM调制波输出装置,其中,所述第一补偿值数据表包括与所述功率放大器的多个供应功率相对应的多个补偿值数据表,并且所述补偿值选择控制部分选择与由所述功率放大器控制部分确定的所述功率供应之一相对应的所述补偿值数据表之一。
4.根据权利要求1-3的任何一个的OFDM调制波输出装置,还包括:加权数模转换器,其接收通过所述输入数据的逆傅立叶变换而获得的数字值和由所述补偿值选择控制部分确定的加权因子,用于同时执行所述数字值的数模转换和预失真中的加权。
5.根据权利要求1-4的任何一个的OFDM调制波输出装置,其中,如果所述提取的幅度小于所述特定幅度,则所述补偿值选择控制部分根据第二补偿值数据表来确定预失真中的所述加权因子,所述第二补偿值数据表用于补偿在正常状态下的所述功率放大器的非线性特性。
6.根据权利要求1-5的任何一个的OFDM调制波输出装置,还包括:控制部分,其根据在将所述功率放大器的供应功率设置为超过所述额定功率时的特定输入数据和通过解调对应于所述特定输入数据的OFDM调制波而获得的数据之间的误差来重写所述第一补偿值数据表。
7.根据权利要求1-6的任何一个的OFDM调制波输出装置,还包括:持续峰值控制部分,其检测所述OFDM调制波中的持续峰值,并且逐渐地降低所述功率放大器的功率。
8.根据权利要求7的OFDM调制波输出装置,其中,所述持续峰值控制部分以在用于接收所述OFDM调制波的接收装置的增益控制的响应速度之内的速率来降低所述功率放大器的功率。
9.一种在使用预失真技术的OFDM发送系统中的失真补偿方法,包括:
根据输入数据来提取OFDM调制波的幅度;
如果所提取的幅度大于特定幅度,则将放大所述OFDM调制波的功率放大器的供应功率设置为超过其额定功率,从而扩展所述功率放大器的饱和点;并且,
根据第一补偿值数据表来确定在所述幅度的预失真中的加权因子,所述第一补偿值数据表用于当扩展所述功率放大器的饱和点时补偿所述功率放大器的非线性特性。
10.根据权利要求9的失真补偿方法,其中,所述将放大所述OFDM调制波的功率放大器的功率设置为超过所述功率放大器的额定功率根据所提取的幅度以步进的方式提高所述功率放大器的功率。
11.根据权利要求10的失真补偿方法,其中,所述第一补偿值数据表包括与所述功率放大器的多个供应功率相对应的多个补偿值数据表,并且选择与在所述功率放大器中设置的功率相对应的所述表之一。
12.根据权利要求9-11的任何一个的失真补偿方法,包括:在加权数模转换器中接收通过所述输入数据的逆傅立叶变换而获得的数字值和所确定的加权因子,并且同时执行所述数字值的数模转换和预失真中的加权。
13.根据权利要求9-12的任何一个的失真补偿方法,包括:如果所述提取的幅度小于所述特定幅度,则选择第二补偿值数据表,所述第二补偿值数据表用于补偿在正常状态下的所述功率放大器的非线性特性。
14.根据权利要求9-13的任何一个的失真补偿方法,包括:根据在将所述功率放大器的供应功率设置为超过所述额定功率时的特定输入数据和通过解调对应于所述特定输入数据的OFDM调制波而获得的数据之间的误差来重写所述第二补偿值数据表。
15.根据权利要求9-14的任何一个的失真补偿方法,包括:检测所述OFDM调制波中的持续峰值,并且逐渐地降低所述功率放大器的功率。
16.根据权利要求15的失真补偿方法,其中,所述功率放大器的功率的所述降低以在用于接收所述OFDM调制波的接收装置的增益控制的响应速度之内的速率来降低所述功率放大器的功率。
CN200880000344.5A 2007-03-08 2008-03-06 Ofdm调制波输出装置和失真补偿方法 Expired - Fee Related CN101542950B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007058565 2007-03-08
JP058565/2007 2007-03-08
PCT/JP2008/054010 WO2008111471A1 (ja) 2007-03-08 2008-03-06 Ofdm変調波出力装置、及び、歪補償方法

Publications (2)

Publication Number Publication Date
CN101542950A true CN101542950A (zh) 2009-09-23
CN101542950B CN101542950B (zh) 2014-02-19

Family

ID=39759413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880000344.5A Expired - Fee Related CN101542950B (zh) 2007-03-08 2008-03-06 Ofdm调制波输出装置和失真补偿方法

Country Status (8)

Country Link
US (1) US20090310705A1 (zh)
EP (1) EP2026487B1 (zh)
JP (1) JP4905551B2 (zh)
KR (1) KR100991469B1 (zh)
CN (1) CN101542950B (zh)
CA (1) CA2656447A1 (zh)
TW (1) TW200904082A (zh)
WO (1) WO2008111471A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365369B2 (ja) * 2009-06-26 2013-12-11 富士通株式会社 送信装置、歪み補償装置及び歪み補償方法
EP2525499B1 (en) * 2010-01-12 2018-11-21 Nec Corporation Ofdm modulated wave transmitter apparatus, ofdm modulated wave transmission method, and program
US8154432B2 (en) 2010-03-22 2012-04-10 Raytheon Company Digital to analog converter (DAC) having high dynamic range
CN102948095B (zh) * 2010-05-12 2016-03-02 比勒陀利亚大学 Ofdm信号的调制解调方法,调制解调装置以及通信装置
US8829993B2 (en) 2012-10-30 2014-09-09 Eta Devices, Inc. Linearization circuits and methods for multilevel power amplifier systems
JP6580488B2 (ja) * 2012-11-27 2019-09-25 イーティーエー デバイシズ, インコーポレイテッド マルチレベル電力増幅器システムのための線形化回路および方法
CN105099972B (zh) * 2012-12-11 2018-05-04 华为技术有限公司 发射机的发射通道间干扰消除方法及装置
JP6064714B2 (ja) 2013-03-19 2017-01-25 富士通株式会社 歪補償装置及び歪補償方法
CN111656682B (zh) * 2018-02-12 2022-01-14 华为技术有限公司 功率调整的方法、装置和介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044057B2 (ja) * 1990-03-27 2000-05-22 日本電信電話株式会社 出力可変送信装置
JP3131931B2 (ja) * 1992-03-13 2001-02-05 日本電信電話株式会社 高周波高出力増幅装置
JPH10209770A (ja) * 1997-01-27 1998-08-07 Toshiba Corp 電力増幅器及びこの電力増幅器を用いた無線電話装置
JP2001244828A (ja) * 2000-03-02 2001-09-07 Hitachi Kokusai Electric Inc 電力増幅器
JP2003168931A (ja) * 2001-12-04 2003-06-13 Nec Corp 歪補償回路
US7091777B2 (en) * 2002-09-30 2006-08-15 Lucent Technologies Inc. Controller for an RF power amplifier
US6907025B2 (en) * 2003-06-06 2005-06-14 Interdigital Technology Corporation Adjusting the amplitude and phase characteristics of transmitter generated wireless communication signals in response to base station transmit power control signals and known transmitter amplifier characteristics
JP3841416B2 (ja) * 2003-10-07 2006-11-01 松下電器産業株式会社 送信装置、送信出力制御方法、および無線通信装置
JP4199680B2 (ja) 2004-01-08 2008-12-17 パナソニック株式会社 送信装置
JP4505238B2 (ja) * 2004-02-25 2010-07-21 株式会社日立国際電気 歪補償回路
JP4747297B2 (ja) 2005-08-24 2011-08-17 国立大学法人鳥取大学 健康診断用の自己組織化マップ、その表示装置及び表示方法並びに健康診断用の自己組織化マップの表示プログラム
US8032097B2 (en) * 2006-02-03 2011-10-04 Quantance, Inc. Amplitude error de-glitching circuit and method of operating
US8195103B2 (en) * 2006-02-15 2012-06-05 Texas Instruments Incorporated Linearization of a transmit amplifier

Also Published As

Publication number Publication date
KR20090080475A (ko) 2009-07-24
CA2656447A1 (en) 2008-09-18
JPWO2008111471A1 (ja) 2010-06-24
JP4905551B2 (ja) 2012-03-28
US20090310705A1 (en) 2009-12-17
EP2026487A4 (en) 2013-01-23
EP2026487B1 (en) 2014-07-30
EP2026487A1 (en) 2009-02-18
TW200904082A (en) 2009-01-16
KR100991469B1 (ko) 2010-11-04
WO2008111471A1 (ja) 2008-09-18
CN101542950B (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
CN101542950B (zh) Ofdm调制波输出装置和失真补偿方法
US11418155B2 (en) Digital hybrid mode power amplifier system
CN104468437B (zh) 数字预失真发射机及其控制方法
US7463697B2 (en) Multicarrier transmitter and methods for generating multicarrier communication signals with power amplifier predistortion and linearization
US9998241B2 (en) Envelope tracking (ET) closed-loop on-the-fly calibration
KR101815329B1 (ko) 변조 방식에 무관한 디지털 하이브리드 모드 전력 증폭기 시스템 및 그 방법
CN1130819C (zh) 移动无线通讯系统中的功率放大器线性化的装置和方法
CN102037699B (zh) 失真补偿电路和失真补偿方法
CN101626356B (zh) 一种多输入多输出终端及其射频发射方法
US20100074367A1 (en) Adaptive combiner error calibration algorithms in all-digital outphasing transmitter
US20050118965A1 (en) Signal transmitter
JP4968331B2 (ja) ピーク抑圧方法
CN101662821B (zh) 信号处理方法及通信系统
KR20100017270A (ko) 디지털 하이브리드 모드 전력 증폭기 시스템
US20080146168A1 (en) Methods of Enhancing Power Amplifier Linearity
US11115068B2 (en) Data-based pre-distortion for nonlinear power amplifier
JP3451947B2 (ja) Ofdm変調器
Bulusu et al. PA linearization of FBMC-OQAM signals with overlapped recursive error correcting predistortion
Brandon et al. Linearity improvement thanks to the association of active constellation extension and digital predistortion for OFDM
US8538349B2 (en) Method and device for pre-distorting an exciter and predistortion exciter
Santucci et al. A block adaptive predistortion algorithm for transceivers with long transmit-receive latency
Bulusu et al. HPA linearization for FBMC-OQAM signals with fast convergence-digital predistortion
CN113285727B (zh) 一种无线信号的发射装置及其处理方法
CN113054917B (zh) 校正非线性功率放大器的失真的方法和系统、预失真部件
KR20140076144A (ko) 왜곡 보상 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140219

Termination date: 20160306