CN101529673A - 用于可见波长区域的腔内变频固态激光器 - Google Patents

用于可见波长区域的腔内变频固态激光器 Download PDF

Info

Publication number
CN101529673A
CN101529673A CNA2007800397230A CN200780039723A CN101529673A CN 101529673 A CN101529673 A CN 101529673A CN A2007800397230 A CNA2007800397230 A CN A2007800397230A CN 200780039723 A CN200780039723 A CN 200780039723A CN 101529673 A CN101529673 A CN 101529673A
Authority
CN
China
Prior art keywords
laser
solid
cavity
gan
gain media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800397230A
Other languages
English (en)
Inventor
U·韦克曼
H·莫恩克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101529673A publication Critical patent/CN101529673A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1605Solid materials characterised by an active (lasing) ion rare earth terbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1628Solid materials characterised by a semiconducting matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0604Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising a non-linear region, e.g. generating harmonics of the laser frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1014Tapered waveguide, e.g. spotsize converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

本发明提供了一种可见波长区域用的腔内变频固态激光器。该激光器包括一个具有加长激光腔(2)的半导体激光器(1)。在所述加长激光腔(2)内部形成第二激光腔(4)。第二激光腔(4)包含吸收半导体激光器(1)的辐射并发射可见波长区域中更高波长的辐射的增益介质(3)。变频增益介质(3)由掺杂稀土的固态基质材料组成。所述的激光可以以高度集成的方式制造,用于产生可见波长区域的辐射,例如产生绿、红或蓝波长区域的辐射。

Description

用于可见波长区域的腔内变频固态激光器
技术领域
本发明涉及腔内变频固态激光器,该固态激光器包括具有加长(extended)激光腔的半导体激光器,尤其是GaN激光器。
激光器的固有的高辐射性使它们成为用于具有高光学需求应用的光源的理想侯选者。半导体激光器的可能的高集成度对于要求小尺寸、高强度光源的应用非常有利,例如用来代替投射用的UHP灯。对于这样的应用,在蓝、绿、红波长区域(RGB)发射的激光器是必需的。但是,直到现在,集成的绿色激光器还不能提供。
发明背景
在绿色波长区域的集成的激光源的缺乏至今一直阻碍着激光器在显示或照明应用中的广泛使用。当今,对于绿色波长区域所用的激光源依赖于变频,该变频或者通过上变频(upconversion)或者通过红外激光源的二次谐波发生(SHG)。
从红外波长区域的上变频的替代方法是蓝色激光源的变频。随着近来用于蓝紫区域的基于GaN的激光二极管的发展,这个方案对于在可见波长的所有固态设备变得更有吸引力了。
US 2005/0265411A1描述了一种二极管泵浦固态激光器,其包括在掺杂稀土的材料中泵浦吸收跃迁的短波长半导体激光器。该激光器二极管泵浦源可以包括基于GaN的半导体激光器。分离的固态激光器基于掺杂稀土离子的玻璃或者晶体基质(host)材料。基于稀土的固态激光器吸收由GaN激光二极管发射的辐射并发射想要的可见波长区域的辐射。
发明内容
本发明的目的是提供一种可以以高集成方式制作的在可见波长区域发射的固态激光器。
该目的通过根据权利要求1的腔内变频固态激光器来实现。该固态激光器的优选实施例是从属权利要求的主题或在下面的说明以及用于实现本发明的实施例中被描述。
本发明的腔内变频固态激光器包括具有加长激光腔的半导体激光器。第二激光腔放置在所述的加长激光腔的内部。第二激光腔包含增益介质,该增益介质吸收半导体激光器的辐射并且发射可见波长区域内更高波长的辐射,即,下变频(downconvert)半导体激光器的辐射到较低的光子能量。第二激光腔中的增益介质由掺杂有适当的稀土离子的固态基质材料形成。
因此,本发明提出一种基于半导体激光器(特别是GaN激光二极管)的腔内变频的用于可见波长区域的高集成固态激光器。该半导体激光器用加长激光腔工作。在该加长腔内,掺杂稀土离子的固态材料吸收半导体激光器的一部分泵浦辐射并发射可见波长范围的辐射。该固态材料的发射波长取决于所选择的稀土离子和第二激光腔的激光反射镜的反射率。在掺杂稀土的材料中未被吸收的半导体激光器的泵浦辐射被反射回半导体激光器增益材料中并用作对泵浦激光器的反馈。
第二激光腔的增益介质,即,掺杂稀土离子的固态材料,是根据被用作泵浦激光器的半导体激光器的波长和本发明的固态激光器的想要的发射波长来选择的。适当的半导体激光器和掺杂稀土的基质在本领域是已知的。当使用基于GaN的泵浦激光器时,该激光器主要以在380nm到480nm之间的波长发射,在几种基质材料中的不同稀土离子可以被用于向红、绿、蓝的变频。用于红色波长的非常有效的材料是掺杂Pr3+的氟化物,比如ZBLAN,CaF2,LiLuF4或者YLF,它们可以由基于GaN的激光二极管泵浦并且在红色跃迁上以635nm最有效地发射。在Pr3+中的次有效跃迁可以用于发射大约520nm的绿色激光辐射。用于产生绿色激光辐射的另一种离子是Tb3+,以542nm的波长发射。该离子可以被结合到不同的基质材料中而且由基于GaN的泵浦激光器在380nm直接泵浦。其他例子是Tb:YAG或Pr:YAlO3。此外,共同掺杂的材料,尤其是共同掺杂的Tb材料,可以用于实现想要的可见波长,例如用于绿色波长区域的Ce和Tb的组合或者Dy和Tb的组合。当然除红色和绿色外的波长的产生也可以通过选择其他稀土离子或者稀土离子的组合来进行。
在本发明的固态激光器的有利实施例中,用于第二增益介质的基质材料是基于GaN的材料,该基于GaN的材料提供固态激光器在晶片级别上的完全集成的可能性。在该实施例中,用基于GaN的半导体激光器,实现了高集成的固态激光器。对于稀土离子基于GaN的基质材料的使用确保了制作GaN二极管泵浦激光器本身所用的材料和过程的兼容性。在该上下文中,术语基于GaN应包括可以包含一小部分其他材料的GaN材料,所述其它材料例如Al或者In,其浓度典型地在百分之几到百分之十以上。
所述半导体激光器优选地被设计成边缘发射激光器并且和下变频(downconvert)增益介质一起设置在一共同的衬底上。在一个优选实施例中,半导体激光器的增益介质和下变频增益介质形成用于半导体激光器辐射和下变频的辐射的波导。为了保证在下变频增益介质内部半导体激光器辐射的足够高强度,由下变频增益介质形成的波导结构比由半导体增益介质形成的波导具有更小的横截面。这两种波导优选地由逐渐变细的(tapered)区域连接。
稀土离子的使用结合以半导体激光器(尤其是GaN激光二极管)的最佳效率的光学泵浦允许可见激光波长的广泛选择。GaN作为对于这些离子的基质材料的优选允许激光器在晶片级别上的集成不仅用于单个波长设备而且用于RGB激光源。RGB激光源的实施例是通过在一个共同衬底上并排放置至少三个本发明的固态激光器以及结合第二激光腔的适当反射镜选择用于所述三个激光器的下变频增益材料的不同掺杂剂来实现的。由于腔内泵浦一小部分泵浦功率(pump power)的概念,该小部分泵浦功率没有被吸收,并且没有损耗而是被反馈回到激光二极管中。这允许较低稀土掺杂或更短的波导结构。
本发明的这些和其他方面将会参照以后描述的实施例而变得明白并得以阐明。
附图说明
本发明的腔内变频激光器在下面通过实例结合附图进行描述,并不限制由权利要求书所限定的保护范围。附图:
图1表示腔内变频固态激光器的基本布局;和
图2表示腔内变频固态激光器的另一个实例的顶视图。
具体实施方式
图1中绘制出了本发明的固态激光器的基本布局的一个实例。该固态激光器包括基于GaN的激光二极管1,其一端面具有用于基于GaN的激光二极管1(即用于泵浦辐射)的抗反射涂层6。基于GaN的激光二极管1的腔包括端反射镜5和7,所述端反射镜5和7形成加长的泵浦激光腔2。这两个反射镜5和7是用于泵浦辐射的高反射率反射镜。来自激光二极管1的辐射由一些光学器件9准直并且被聚焦到一块下变频材料3中,该下变频材料吸收部分泵浦辐射并将频率向可见波长区域转换。该下变频材料3是掺杂稀土的固态材料,例如Tb:GaN,Pr:GaN,Pr:ZBLAN或者Tb:YAG。
这块转换材料3的一端载有涂层8,该涂层8对于通过下变频产生的可见波长是高反射的且对于泵浦辐射是抗反射的。该块的另一端由反射镜7覆盖,该反射镜7不仅对泵浦辐射是高反射的而且反射可见波长,同时确保一部分可见波长的辐射经过该反射镜7耦合输出。因此,反射镜7形成泵浦激光腔2的谐振器反射镜和可见激光腔4谐振器反射镜(连同反射镜8),并且用作对于可见激光腔4(可见输出10)的输出耦合器。
在GaN激光二极管1的一个端面上的抗反射涂层6的反射率也可以被选择>0以增加反馈。另一方面,该反射率必须足够低以确保基于GaN的二极管激光器1不在比加长的泵浦激光腔2短的腔内发射激光。
基于GaN的激光二极管1连同下变频材料3被设置在一个共同的衬底上并且被形成用于基于GaN的激光二极管的本领域中已知的波导结构。在这样的波导结构中,基于GaN的激光二极管的活性材料(增益材料)夹在具有低折射率的材料层之间以形成波导结构。用于制作这种基于GaN的激光二极管(特别地诸如边缘发射激光器)的方法是在这个领域里已知的。
图2显示了在如图1的顶视图中的腔内变频可见固态激光器的完全集成装置。该固态激光器包括基于GaN的泵浦激光器1和在共同衬底上形成波导的波长转换材料3的层。基于GaN的泵浦激光器在端反射镜5和端反射镜7之间有一个泵浦激光腔2,两个端反射镜对泵浦辐射都是高反射的。端反射镜7同时用作对于变换后的辐射的输出耦合器。可见激光器的激光腔由反射一部分可见辐射的端反射镜7和对可见辐射是高反射的且形成对于泵浦辐射的抗反射涂层的端反射镜8形成。
在这个实施例中的波长转换层具有波导的形式,该波导具有在基于GaN的泵浦激光二极管1和波长转换材料3的波导层之间的逐渐变细区域11。这种逐渐变细的结构允许可见激光器的低阙值和高效率。在这个实施例中,波长转换材料3的基质是基于GaN的材料。对于绿色激光器行为(action),转换材料3可以是例如Tb:GaN或者Pr:GaN。Tb离子尤其适合于结合在高声子能量的材料中,因为上激光电平与位于较低的电平隔离得很好,因此非辐射损失对于该离子是不重要的。因此Tb是结合到GaN材料中允许本发明的固态激光器在晶片级别上集成的理想候选者。
在另一实施例中,具有与图2的构造相同的构造的激光器可以用非基于GaN的基质材料实现但仍然是高集成的。这种结构可以在晶片处理过程中在基于GaN的晶片上制备。在晶片处理之后的一个分离的步骤中,稀土掺杂材料被沉积在该结构的顶部。GaN结构的特征定义了包括例如DBR(分布式反馈反射器)的反射镜的波导。
在晶片级别上的集成使得RGB激光源的制造更经济。这可以通过在晶片衬底上并排制作三个固态激光器(例如每一个根据图2)来实现,其中三个波长转换层中的每一个被掺杂有不同的稀土离子,用于产生红、绿、蓝光。当加工这种晶片级别的固态激光器时,可同时在晶片上制作多种RGB源。这种红、绿、蓝完全集成为一个激光源的提供对于将来的应用(像投射或光纤照明)非常重要。
虽然本发明已经在附图和先前的描述中对本发明做了详尽的图示说明和阐述,但这种图示说明和阐述应被认为是图示说明性的或例示性的而不是限制性的;本发明不限于所公开的实施例。上面和权利要求书中所描述的不同实施例也可以组合。
对于所公开的实施例的其它变化可以由本领域技术人员在实施要求权利保护的本发明的过程中通过对附图、公开内容和权利要求书的研究而获知和实现。在权利要求书中,“包括”并不排除其他元件或步骤,不定冠词“一个”也不排除多个。某些措施被记载在相互不同的从属权利要求中仅仅这一事实并不表明这些措施的组合不能被用来获得优势。权利要求书中的任何附图标记都不应该解释为对这些权利要求的范围的限定。
附图标记列表
1.基于GaN的激光二极管
2.泵浦激光腔
3.变频材料
4.可见激光腔
5.泵浦激光腔的第一端反射镜
6.用于泵浦激光辐射的抗反射涂层
7.泵浦激光腔的第二端反射镜
8.可见激光腔的端反射镜
9.光学器件
10.可见输出
11.逐渐变细的区域

Claims (6)

1.腔内变频固态激光器,包括:
-具有加长激光腔(2)的半导体激光器(1),和
-设置在所述加长激光腔(2)内的第二激光腔(4),
所述第二激光腔(4)包含增益介质(3),该增益介质吸收半导体激光器(1)的辐射以及发射在可见波长区域中更高波长的辐射,
其中在第二激光腔中的所述增益介质(3)由掺杂有稀土离子的固态基质材料形成。
2.根据权利要求1的固态激光器,其中所述半导体激光器(1)是GaN激光器。
3.根据权利要求2的固态激光器,其中第二增益介质(3)的基质材料是基于GaN的材料。
4.根据权利要求1、2和3的固态激光器,其中半导体激光器(1)的增益介质和第二激光腔(4)的增益介质(3)形成波导。
5.根据权利要求4的固态激光器,其中第二激光腔(4)的增益介质(3)的波导与半导体激光器(1)的增益介质的波导相比具有较小的横截面,这两个波导通过逐渐变细的区域(11)连接。
6.RGB光源,其包括至少三个根据前述权利要求中的一个的固态激光器,所述三个固态激光器在红、绿、蓝波长区域以不同的波长发射,并且被制作在一块共同的衬底上。
CNA2007800397230A 2006-10-24 2007-10-15 用于可见波长区域的腔内变频固态激光器 Pending CN101529673A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06122827.6 2006-10-24
EP06122827 2006-10-24

Publications (1)

Publication Number Publication Date
CN101529673A true CN101529673A (zh) 2009-09-09

Family

ID=39199080

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800397230A Pending CN101529673A (zh) 2006-10-24 2007-10-15 用于可见波长区域的腔内变频固态激光器

Country Status (6)

Country Link
US (1) US20100329298A1 (zh)
EP (1) EP2084791A2 (zh)
JP (1) JP5324453B2 (zh)
CN (1) CN101529673A (zh)
TW (1) TW200845520A (zh)
WO (1) WO2008050257A2 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010006275A1 (en) * 2008-07-10 2010-01-14 Corporation For Laser Optics Research Blue laser pumped green light source for displays
JP2013507792A (ja) * 2009-10-13 2013-03-04 スコーピオズ テクノロジーズ インコーポレイテッド チューナブルレーザのハイブリッド集積のための方法及びシステム
US9431791B1 (en) 2014-02-05 2016-08-30 Aurrion, Inc. Multi-section heterogeneous semiconductor optical amplifier
US10003173B2 (en) 2014-04-23 2018-06-19 Skorpios Technologies, Inc. Widely tunable laser control
US10587090B1 (en) * 2015-12-31 2020-03-10 Soraa Laser Diode, Inc. Safe laser light
WO2023061911A1 (en) * 2021-10-12 2023-04-20 Signify Holding B.V. White light source
US11971577B2 (en) * 2022-06-13 2024-04-30 Nexus Photonics, Inc Heterogeneously integrated photonic platform with non-linear frequency conversion element

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390210A (en) * 1993-11-22 1995-02-14 Hewlett-Packard Company Semiconductor laser that generates second harmonic light with attached nonlinear crystal
US5450429A (en) * 1994-06-02 1995-09-12 Spectra-Physics Laserplane, Inc. Efficient linear frequency doubled solid-state laser
US5513196A (en) * 1995-02-14 1996-04-30 Deacon Research Optical source with mode reshaping
JP4018177B2 (ja) * 1996-09-06 2007-12-05 株式会社東芝 窒化ガリウム系化合物半導体発光素子
US6330388B1 (en) * 1999-01-27 2001-12-11 Northstar Photonics, Inc. Method and apparatus for waveguide optics and devices
US6140669A (en) * 1999-02-20 2000-10-31 Ohio University Gallium nitride doped with rare earth ions and method and structure for achieving visible light emission
US6255669B1 (en) * 1999-04-23 2001-07-03 The University Of Cincinnati Visible light emitting device formed from wide band gap semiconductor doped with a rare earth element
US6778582B1 (en) * 2000-03-06 2004-08-17 Novalux, Inc. Coupled cavity high power semiconductor laser
US6944192B2 (en) * 2001-03-14 2005-09-13 Corning Incorporated Planar laser
US6816532B2 (en) * 2001-05-15 2004-11-09 Fuji Photo Film Co., Ltd. Laser-diode-excited laser apparatus, fiber laser apparatus, and fiber laser amplifier in which laser medium doped with one of ho3+, sm3+, eu3+, dy3+, er3+, and tb3+is excited with gan-based compound laser diode
US7197059B2 (en) * 2002-05-08 2007-03-27 Melles Griot, Inc. Short wavelength diode-pumped solid-state laser
US7345812B2 (en) * 2003-02-21 2008-03-18 University Of Kansas Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications
US7039075B2 (en) * 2003-04-11 2006-05-02 Thornton Robert L Fiber extended, semiconductor laser
WO2006015193A2 (en) * 2004-07-30 2006-02-09 Novalux, Inc. Apparatus, system, and method for wavelength conversion of mode-locked extended cavity surface emitting semiconductor lasers
US7620091B2 (en) * 2005-05-31 2009-11-17 Koninklijke Philips Electronics N.V. Broadband laser lamp with reduced speckle

Also Published As

Publication number Publication date
WO2008050257A2 (en) 2008-05-02
JP5324453B2 (ja) 2013-10-23
US20100329298A1 (en) 2010-12-30
EP2084791A2 (en) 2009-08-05
TW200845520A (en) 2008-11-16
JP2010507919A (ja) 2010-03-11
WO2008050257A3 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
CN101529673A (zh) 用于可见波长区域的腔内变频固态激光器
TWI446012B (zh) 具降低斑點之寬頻雷射燈
JP4422720B2 (ja) アイセーフの固体レーザシステム
US6363088B1 (en) All solid-state power broadband visible light source
IL172235A (en) Gain boost with synchronized multiple wavelength pumping in a solid-state laser
Jeong et al. Ytterbium-doped large-core fibre laser with 272W of output power
US6778563B2 (en) Q-switched laser
JP2010519756A (ja) 低減された温度依存性を有する固体レーザー装置
CN1372163A (zh) 利用泵浦光提高s-带宽的转换效率的掺杂铥的光纤放大器
TWI423545B (zh) 腔內上轉換雷射
JP2010507920A (ja) 共添加された利得媒質を備えた光励起ソリッド・ステート・レーザ
US6014389A (en) Fiber-based continuous wave blue laser source
US20100316073A1 (en) Optically pumped solid-state laser with co-doped gain medium
JP2001203412A (ja) アップコンバージョンレーザ装置
JPH1065237A (ja) 固体レーザ装置
JP2989454B2 (ja) 希土類イオン添加短波長レーザ光源装置
JP3091342B2 (ja) ガラス発光素子
CN116632640A (zh) 双波长泵浦的掺铒中红外固体激光器
Laurand et al. Power-scaling of diamond microlensed microchip semiconductor disk lasers
CN115621824A (zh) 包含几何聚光元件及绝热元件的激光泵浦装置及其系统
Limpert et al. 150 W Nd/Yb codoped fiber laser at 1.1/spl mu/m
CN116031735A (zh) 一种基于可见光光纤激光器的白色混合激光光源
JPH1065259A (ja) 固体レーザ装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20090909