CN101529569A - 用于提供纳米级、高度选择性和热弹性碳蚀刻终止的系统和方法 - Google Patents

用于提供纳米级、高度选择性和热弹性碳蚀刻终止的系统和方法 Download PDF

Info

Publication number
CN101529569A
CN101529569A CNA2007800396596A CN200780039659A CN101529569A CN 101529569 A CN101529569 A CN 101529569A CN A2007800396596 A CNA2007800396596 A CN A2007800396596A CN 200780039659 A CN200780039659 A CN 200780039659A CN 101529569 A CN101529569 A CN 101529569A
Authority
CN
China
Prior art keywords
carbon
layer
boron
silicon
etch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800396596A
Other languages
English (en)
Inventor
达尔文·G·恩尼克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atmel Corp
Original Assignee
Atmel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atmel Corp filed Critical Atmel Corp
Publication of CN101529569A publication Critical patent/CN101529569A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/933Germanium or silicon or Ge-Si on III-V

Abstract

本发明揭示用于形成蚀刻终止层的方法和由所述方法制造的所得结构。所述蚀刻终止层具有:硅锗层,其具有约50∶1或小于50∶1的硅锗比;硼层,其形成在所述硅锗层内,其中所述硼层具有小于50纳米的半高全宽(FWHM)厚度值;以及碳层,其形成在所述硅锗层内,其中所述碳层具有小于50纳米的FWHM厚度值。在所述蚀刻终止层中,硼碳比在约0.5到1.5的范围内。

Description

用于提供纳米级、高度选择性和热弹性碳蚀刻终止的系统和方法
技术领域
本发明大体上涉及集成电路(IC)的制造方法。更特定来说,本发明是IC中的高度选择性碳蚀刻终止的制造方法,其中所述蚀刻终止即使在经受高温时也几乎不扩散到周围半导体层内。
背景技术
已出现若干种材料系统作为将摩尔定律(Moore′s law)广泛推进未来十年的关键推动因素。这些关键推动因素包括(1)绝缘体上硅(SOI);(2)硅锗(SiGe);以及(3)应变硅。就SOI和相关技术来说,存在很多与绝缘衬底相关联的优点。这些优点包括寄生电容减少、电隔离改进和短沟道效应减少。可将SOI的优点与由Si1-xGex和应变硅装置所提供的能带隙和载流子迁移率改进组合。
SOI衬底一般包括位于绝缘体上的硅薄层。集成电路组件形成在所述硅薄层中和上。绝缘体可包含例如二氧化硅(SiO2)、蓝宝石或其它各种绝缘材料的绝缘体。
目前,可采用若干技术来制造SOI衬底。一种用于制造SOI衬底的技术是植入氧分离(SIMOX)技术。在SIMOX工艺中,将氧植入在硅晶片表面下方。随后的退火步骤产生使用硅上覆层埋入的二氧化硅层。然而,由于SIMOX工艺中植入所需的时间很长,且因此成本极高。而且,通过SIMOX形成的SOI衬底可能易遭受表面损坏和污染。
另一种技术是结合和回蚀SOI(BESOI)技术,其中首先将经氧化的晶片扩散结合到未氧化晶片。参考图1A,硅装置晶片100和硅处置晶片150构成用于形成BESOI晶片的主要组件。硅装置晶片100包括:第一硅层101,其将充当装置层;蚀刻终止层103;以及第二硅层105。蚀刻终止层103通常包含碳。硅处置晶片150包括下部二氧化硅层107A、硅衬底层109和上部二氧化硅层107B。下部二氧化硅层107A和上部二氧化硅层107B通常由热生长氧化物同时形成。
在图1B中,使硅装置晶片100与硅处置晶片150实现物理接触且彼此结合。初始结合工艺之后是热退火,因此加强结合。结合对中的硅装置晶片100经薄化。起初,通过机械研磨和抛光将第二硅层105的大部分移除,直到仅剩余数十微米(即“microns”或μm)为止。高选择性湿式或干式化学蚀刻移除第二硅层105的剩余部分,从而终止于蚀刻终止层103。(下文中详细论述选择性)。第二硅层105蚀刻过程的最后结果描绘于图1C中。
在蚀刻过程期间,硅处置晶片150由所涂布的掩模层(未图示)保护。在图1D中,已使用另一种高选择性蚀刻剂移除蚀刻终止层103。作为这些过程的结果,将充当装置层的第一硅层101转移到硅处置晶片150。硅衬底层109的背面经研磨、抛光和蚀刻以实现所要总厚度。
为确保BESOI衬底对于后续制造步骤来说足够薄且满足当今对不断减小的物理尺寸和重量限制的要求,在层转移期间,BESOI需要蚀刻终止层103。目前,存在两种主要的层转移技术:1)选择性化学蚀刻和2)将植入氢的层从装置层剥离(氢植入和分离工艺)。两种技术均已证明能够满足高级半导体处理的要求。
在氢植入和分离工艺中,将氢(H2)植入具有热生长的二氧化硅层的硅中。所植入的H2使下伏于二氧化硅层的硅衬底脆化。植入H2的晶片可与具有二氧化硅上覆层的第二硅晶片结合。可通过适当退火在氢植入的峰值位置横跨所述晶片切除所结合的晶片。
相对来说,所述BESOI工艺没有SIMOX工艺中所固有的离子植入损害。然而,BESOI工艺需要研磨、抛光和化学蚀刻的耗时序列。
当今的蚀刻终止
如上所述,BESOI工艺是在绝缘体衬底上建置硅的面向制造的技术且部分依赖于化学蚀刻。
由平均蚀刻选择性S描述蚀刻终止性能,平均蚀刻选择性S定义硅与蚀刻终止层的蚀刻速
Figure A20078003965900051
其中Rsi为硅的蚀刻速率且Res为蚀刻终止的蚀刻速率。因此,S=1的选择性值涉及无蚀刻选择性的情形。
一种评价蚀刻终止效率的方法是测量横跨蚀刻终止与非蚀刻终止边界的最大蚀刻台阶高度。在图2A中,通过将离子植入硅衬底201A的一部分内而形成蚀刻终止203A。蚀刻终止203A在t=0时刻(即在施加任何蚀刻剂之前)具有厚度d1。在t=t1时刻(图2B),经部分蚀刻的硅衬底201B被蚀刻到深度为h1。蚀刻终止203A现为经部分蚀刻的蚀刻终止203B。经部分蚀刻的蚀刻终止203B被蚀刻到厚度d2。在t=t2时刻(图2C),经部分蚀刻的蚀刻终止203B已被完全蚀刻,且经完全蚀刻的硅衬底201C实现h2的最大蚀刻台阶高度。蚀刻终止203A的蚀刻速率(图2A)部分依赖于所植入的掺杂剂材料以及所使用的掺杂剂的植入曲线。从实践观点来看,最大蚀刻台阶是关键量,因为在BESOI工艺中,在回蚀之前进行研磨和抛光之后,最大蚀刻台阶决定装置晶片的可接受的厚度变化。
举例来说,如果最大蚀刻台阶为3个单位,则普通机械薄化程序之后,可容许的装置晶片的厚度非均一性应小于1.5个单位。可从有效蚀刻终止层厚度d1和最大蚀刻台阶h2导出平均蚀刻选择性S,如
S = d 1 + h 2 t d 1 t
⇓
S = 1 + h 2 d 1
其中t为实现最大蚀刻台阶高度h2所需的蚀刻时间。在先前实例中,t2为实现最大蚀刻台阶高度h2所需的蚀刻时间。
碱性水溶液是常用的各向异性硅蚀刻剂。所采用的两类碱性水溶液为:(1)纯无机碱性水溶液,例如氢氧化钾(KOH)、氢氧化钠(NaOH)、氢氧化铯(CsOH)和氢氧化铵(NH4OH);以及(2)有机碱性水溶液,例如乙二胺-邻苯二酚-水(含水EDP)、氢氧化四甲基铵(TMAH或(CH3)4NOH))和肼(H4N2)。
图3以图表指示非水EDP与45%KOH蚀刻剂对硅(100)衬底的蚀刻选择性(与植入碳的硅层相比)之间的差异作为碳浓度的函数。两种蚀刻剂均在85℃下使用。EDP蚀刻曲线指示掺碳硅的蚀刻速率显著降低。在1.5×1021cm-3的碳峰值浓度下,EDP的蚀刻选择性为约1000。在所示碳浓度下,未形成连续的SiC层。而是,掺碳硅层的蚀刻终止效应看似源自由主体硅原子的结晶结构内所含的随机分布的植入碳原子所形成的非化学计量SixC1-x合金的化学特性。通过化学气相沉积(CVD)或植入碳所沉积的SiC层在EDP、KOH或任何其它碱性溶液中展示几乎无蚀刻速率。
参考图4,在850℃退火之前,在500℃下通过分子束外延(MBE)所生长的Si0.7Ge0.3层相对于硅(100)产生17的蚀刻选择性。所述层中的锗浓度为1.5×1022cm-3。所植入(或生长)的初始碳曲线401显著扩展为退火后曲线403。退火后,选择性降到10到12的范围内。据信蚀刻终止效应与由相对较大的锗原子所引诱的应变相关联。
除选择性降低所产生的问题之外,使用碳或锗作为蚀刻终止也出现其它问题。所属领域的技术人员认识到,碳在纯硅中易扩散且因此蚀刻终止层易于增加厚度。随后的退火步骤之后,锗也生长。现有技术的碳和锗蚀刻终止层的宽度(半高全宽(FWHM))通常为数百纳米。因此,需要与硅相比具有高蚀刻剂选择性的极薄且稳固的蚀刻终止层。
发明内容
在一示范性实施例中,本发明是一种蚀刻终止层,其包含:硅锗层,其具有约50∶1或小于50∶1的硅锗比;和硼层和碳层,其形成在所述硅锗层内。硼层和碳层各具有小于50纳米的半高全宽(FWHM)厚度值。蚀刻终止层具有约0.5到1.5范围内的硼碳比。
在另一示范性实施例中,本发明是一种包含硅锗层的蚀刻终止层。硼层和碳层各形成在所述硅锗层内。所述硼层和所述碳层各具有小于50纳米的FWHM厚度值。
在另一示范性实施例中,本发明是一种制造蚀刻终止的方法。所述方法包括:在沉积腔室中使载气流过衬底;在所述沉积腔室中使硅前驱气体流过所述衬底;以及使锗前驱气体流过所述衬底。形成硅锗层以使得硅锗比在4∶1到50∶1的范围内。在沉积腔室中使碳前驱气体和硼前驱气体各流过衬底。碳前驱气体和硼前驱气体分别形成碳层和硼层,各层的FWHM厚度小于50纳米且各自充当蚀刻终止的一部分。
在另一示范性实施例中,本发明是一种蚀刻终止层,其包含具有在4∶1到50∶1范围内的硅锗比的硅锗层。硼层和碳层各形成在所述硅锗层内。所述硼层和所述碳层各具有小于20纳米的FWHM厚度值。所述蚀刻终止层具有在约0.5到1.5范围内的硼碳比。
附图说明
图1A-1D是现有技术的结合和回蚀绝缘体上硅(BESOI)制造技术的横截面图。
图2A-2C是形成在硅衬底上的蚀刻终止的横截面图,其指示确定蚀刻终止效率的方法。
图3为乙二胺-邻苯二酚(EDP)和45%氢氧化钾(KOH)湿式化学蚀刻剂对硅(100)衬底的蚀刻选择性(与植入碳的硅层相比)作为碳浓度的函数的曲线图。
图4为指示植入或生长时碳浓度的曲线与退火后碳曲线的曲线图。
图5为指示根据本发明产生且在热退火步骤之后测量的硼曲线的半高全宽(FWHM)深度的曲线图。
图6为指示在各种退火温度下应变SiGe:C:B中的碳扩散深度的曲线图。
图7为指示在各种退火温度下具有碳的SiGe中的硼扩散深度的曲线图。
具体实施方式
本文中揭示纳米级掺碳蚀刻终止的制造方法和根据所述方法制得的结构。将碳掺入应变掺硼SiGe半导体衬底或膜中,从而制成具有小于50nm的FWHM厚度的蚀刻终止。在本文中所呈现的各种实施例中,FWHM厚度小于约20nm。在以下曲线图中展示Si1-x-y-zGexCyBz应变层中B、C和Ge扩散的二次离子质谱(SIMS)数据以及制造本发明的蚀刻终止的元素比的特定实施例。本文中所描述的碳纳米级蚀刻终止可特定应用于BESOI处理中。然而,所揭示的碳蚀刻终止并不仅限于BESOI应用。
根据本发明的一示范性实施例制造的BESOI衬底特定应用于低功率和辐射硬化型CMOS装置中。将本发明并入各种电子装置简化了某些制造工艺,改进了装置的可缩放性,改进了亚阈值斜率且减少寄生电容。
参考图5,其为呈现来自掺有碳和Ge的硅(SiGe:C:B)中硼的扩散曲线的数据的SIMS曲线图500。Ge掺杂剂的位置由分别位于50nm和85nm深度处的下垂线501和上垂线503说明。硼在高达1000℃的温度下保持相对固定,接着在更高温度下快速扩散(各温度下的退火时间为10秒)。然而,如本发明的实施例中所引入,碳与Ge的存在减少了硼向外扩散。依据所涉及的浓度和温度,碳与Ge的存在使总体硼扩散减少10倍或10倍以上。在一特定示范性实施例中,SiGe:C:B的特定合金为Si0.975Ge0.02C0.002B0.003。因此,Si与Ge的比为约50∶1且B与C的比为约1.5∶1。
在另一实施例中,图6指示Si与Ge的比显著降低的SIMS曲线。其指示生长时和在随后900℃到1200℃的退火温度下的应变SiGe:C:B中的碳扩散水平。数据展示碳扩散主要来自未掺杂的间隔物区域(未图示),其中所述间隔物区域无B掺杂。然而,SIMS曲线的中心区域(即在约60nm到80nm的深度处)指示碳扩散因B存在于SiGe膜中而显著减轻。在此示范性实施例中,在热退火之前,SiGe:C:B膜为79.5%Si、20%Ge、0.2%C和0.3%硼(Si0.795Ge0.2C0.002B0.003)。因此,Si与Ge的比为约4∶1且B与C的比为约1.5∶1。
图7为指示在各种退火温度下具有碳的SiGe中的硼扩散深度的SIMS曲线700。此实施例中所采用的SiGe膜也为Si0.795Ge0.2C0.002B0.003,类似于产生图6曲线图中所使用的膜。应注意,SIMS曲线700指示在1200℃退火10秒之后,锗已从20%的峰值(即约1.0×1022个原子/立方厘米)扩散到7.7%的峰值浓度(即约3.85×1021个原子/立方厘米)。硼已从1.5×1020个原子/立方厘米的峰值扩散到1.0×1019个原子/立方厘米的峰值。另外,碳虽已扩散,但所涉及的扩散机制主要归因于SiGe间隔物(在初始生长期间仅含有Ge和C的外部边缘)。碳峰值已从1.0×1020个原子/立方厘米扩散降到7.0×1019个原子/立方厘米(指示大致30%的峰值下降)。碳的最终扩散曲线比生长时的曲线窄。因此,碳的最终扩散曲线(即使在1200℃退火之后)的FWHM宽度小于20nm。
所属领域的技术人员将从图5-7认识到碳保留在中心的掺硼区域中。此外,碳在高达很高的温度(例如大于约1200℃)下是热稳定的。
碳蚀刻终止层的制造工艺
总体来说,工艺条件可广泛变化,其取决于所制造的特定装置、所采用的特定设备类型和起始材料的各种组合。然而,在一特定示范性实施例中,所述工艺条件通常需要使作为载气的氢气(H2)在化学气相沉积(CVD)系统中以10个标准公升/分钟(slpm)与50slpm之间的流动速率流动。或者,例如氮气(N2)、氩气(Ar)、氦气(He)、氙气(Xe)和氟(F2)的惰性气体也均为合适的载气。
可将在10个标准立方厘米/分钟(sccm)与100sccm之间流动的硅烷(SiH4)用作硅前驱气体。或者,可使用二硅烷(Si2H6)或另一种硅前驱气体来取代硅烷。与硅烷相比,二硅烷以更快的速率和更低的温度沉积硅。
可将在50sccm与500sccm之间流动的甲基硅烷(CH3SiH3)或另一碳前驱气体用作碳前驱物。可将在50sccm与300sccm之间流动的二硼烷(B2H6)用作硼前驱气体。另外,可使用三氯化硼(BCl3)或任何其它硼前驱气体来取代二硼烷。使硼前驱气体和碳前驱气体流动以使得硼与碳的比在约0.5到1.5的范围内,但在合适表征下可使用此范围之外的比。
可采用在5sccm与1000sccm之间流动的四氢化锗(GeH4)或另一锗前驱气体作为锗前驱气体。
所有气体流动速率可取决于工艺、设备和/或装置。因此,可完全接受给定示范性范围之外的气体流动速率。举例来说,如果采用低压CVD(LPCVD)反应器,则SiGe的生长温度可在约550℃到700℃的范围内且硅的生长温度可在约550℃到950℃的范围内。此外,通常在处理期间使用于形成SiGe层的气体流动同时进行。
也可以远程碳注入法并入碳。在远程注入法中,碳仅存在于间隔物(未图示)中,间隔物形成在将要形成碳的区域上。所属领域的技术人员已知间隔物的形成。在一特定示范性实施例中,间隔物包含SiGe。适于在本文中所述的各种实施例中添加碳的远程碳技术揭示于2005年6月23日申请的标题为“用于通过远程注入来生长和优化异质结双极膜堆叠的方法(Method for Growth and Optimization of Heterojunction Bipolar FilmStacks by Remote Injection)”的第11/166,287号美国专利申请案中,且所述申请案与本申请案一起共同转让给加利福尼亚州圣何塞市的阿特美尔公司(Atmel Corporation,SanJose,CA)。11/166,287申请案以全文引用的方式并入本文中。
简要来说,远程碳注入技术需要半导体制造工艺中的碳植入或扩散步骤,以将碳原子注入(例如)半导体装置层和周围区域中。碳得自碳前驱物,例如甲基硅烷。可通过以下技术来实现碳前驱物注入:(例如)LPCVD(低压化学气相沉积)、UHCVD(超高真空CVD)、MBE(分子束外延)或离子植入。如果使用远程碳注入技术,则甲基硅烷仅需在间隔物形成期间流动。
碳注入之后可为热退火步骤。热退火步骤允许碳扩散到(例如)晶体管的基极区域内。应注意,虽然可在基极区域外部注入碳前驱物,但退火后碳的位置因能量上有利的扩散机制而位于基极区域内。因此,远程注入是使用碳掺杂半导体的手段,且其提供上文所论述的优于常规制造方法的许多优点(例如防止硼向外扩散,因此允许更高的硼掺杂剂浓度)。因此,注入位置而未必为热循环之后碳的最终停留位置决定远程碳注入的定义。
如果(例如)在晶体管制造中采用并入介电间隔物的自对准技术,则远程注入可在基极-发射极间隔物(BE)或基极-集电极间隔物(BC)的生长期间或之后发生。(注意:虽然未展示BE间隔物和BC间隔物的形成,但此技术在此项技术中是众所周知的)。可在基极、BC、BE、集电极和/或发射极区域的制造期间的多个点执行碳注入。接着实施热退火循环以提供碳从介电间隔物扩散到一个或一个以上各种半导体区域内的活化能。通过扩散机制,退火后碳最终位于半导体内。因此远程碳注入的优点包括硼向外扩散减少和晶体管基极电阻显著下降。
在以上说明书中,已参考本发明的特定实施例描述了本发明。然而,所属领域的技术人员将明白,可在不脱离如所附权利要求书所陈述的本发明的更广精神和范围的情况下对其作出各种修改和改变。举例来说,尽管已展示并详细描述了工艺步骤和技术,但所属领域的技术人员将认识到,可利用依然包括在所附权利要求书的范围内的其它技术和方法。举例来说,通常存在若干种用于沉积膜层的技术(例如化学气相沉积、等离子体增强型气相沉积、外延、原子层沉积等)。尽管并非所有技术均适用于本文中所描述的所有膜类型,但所属领域的技术人员将认识到,可使用多种用于沉积给定层和/或膜类型的方法。
此外,很多与半导体产业相关的产业可利用本文中所揭示的碳蚀刻终止技术。举例来说,数据存储产业中的薄膜磁头(TFH)工艺或平板显示器产业中的主动式矩阵液晶显示器(AMLCD)可容易地利用本文中所描述的工艺和技术。应认为术语“半导体”包括上述和相关产业。因此应认为本说明书和图式具有说明性意义而非限制性意义。

Claims (11)

1.一种蚀刻终止层,其包含:
硅锗层,其具有约50∶1或小于50∶1的硅锗比;
硼层,其形成在所述硅锗层内,所述硼层具有小于50纳米的半高全宽(FWHM)厚度值;以及
碳层,其形成在所述硅锗层内,所述碳层具有小于50纳米的FWHM厚度值,所述蚀刻终止层具有在约0.5到1.5的范围内的硼碳比。
2.根据权利要求1所述的蚀刻终止层,其中所述硅锗层包含在硅锗衬底内。
3.根据权利要求1所述的蚀刻终止层,其中所述硅锗层包含在硅锗膜层内。
4.根据权利要求1所述的蚀刻终止层,其中所述硅锗比在50∶1到4∶1的范围内。
5.根据权利要求1所述的蚀刻终止层,其中当测量为FWHM值时,所述硼层的厚度小于约20纳米。
6.根据权利要求1所述的蚀刻终止层,其中当测量为FWHM值时,所述碳层的厚度小于约20纳米。
7.一种制造蚀刻终止的方法,所述方法包含:
在沉积腔室中使载气流过衬底;
在所述沉积腔室中使硅前驱气体流过所述衬底;
使锗前驱气体流过所述衬底;
形成硅锗层,使得硅锗比在4∶1到50∶1的范围内;
在所述沉积腔室中使碳前驱气体流过所述衬底,所述碳前驱气体形成碳层以充当所述蚀刻终止的一部分,当测量为半高全宽(FWHM)值时,所述碳层的厚度小于50纳米;以及
在所述沉积腔室中使硼前驱气体流过所述衬底,所述硼前驱气体形成硼层以充当所述蚀刻终止的一部分,当测量为FWHM值时,所述硼层的厚度小于50纳米。
8.根据权利要求7所述的方法,其中将所述硼层形成为当测量为FWHM值时厚度小于约20纳米。
9.根据权利要求7所述的方法,其中将所述碳层形成为当测量为FWHM值时厚度小于约20纳米。
10.根据权利要求7所述的方法,其中使所述硼前驱气体和碳前驱气体流动以使得硼碳比在约0.5到1.5的范围内。
11.一种蚀刻终止层,其包含:
硅锗层,其具有在4∶1到50∶1范围内的硅锗比;
硼层,其形成在所述硅锗层内,所述硼层具有小于20纳米的半高全宽(FWHM)厚度值;以及
碳层,其形成在所述硅锗层内,所述碳层具有小于20纳米的FWHM厚度值,所述蚀刻终止层具有在约0.5到1.5的范围内的硼碳比。
CNA2007800396596A 2006-10-26 2007-10-09 用于提供纳米级、高度选择性和热弹性碳蚀刻终止的系统和方法 Pending CN101529569A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/553,333 2006-10-26
US11/553,333 US7495250B2 (en) 2006-10-26 2006-10-26 Integrated circuit structures having a boron- and carbon-doped etch-stop and methods, devices and systems related thereto

Publications (1)

Publication Number Publication Date
CN101529569A true CN101529569A (zh) 2009-09-09

Family

ID=39329127

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800396596A Pending CN101529569A (zh) 2006-10-26 2007-10-09 用于提供纳米级、高度选择性和热弹性碳蚀刻终止的系统和方法

Country Status (4)

Country Link
US (1) US7495250B2 (zh)
CN (1) CN101529569A (zh)
TW (1) TW200830401A (zh)
WO (1) WO2008057695A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070054460A1 (en) * 2005-06-23 2007-03-08 Atmel Corporation System and method for providing a nanoscale, highly selective, and thermally resilient silicon, germanium, or silicon-germanium etch-stop
US20080050883A1 (en) * 2006-08-25 2008-02-28 Atmel Corporation Hetrojunction bipolar transistor (hbt) with periodic multilayer base
US8530934B2 (en) 2005-11-07 2013-09-10 Atmel Corporation Integrated circuit structures containing a strain-compensated compound semiconductor layer and methods and systems related thereto
US7569913B2 (en) * 2006-10-26 2009-08-04 Atmel Corporation Boron etch-stop layer and methods related thereto
US7495250B2 (en) 2006-10-26 2009-02-24 Atmel Corporation Integrated circuit structures having a boron- and carbon-doped etch-stop and methods, devices and systems related thereto
US7550758B2 (en) 2006-10-31 2009-06-23 Atmel Corporation Method for providing a nanoscale, high electron mobility transistor (HEMT) on insulator
US8148230B2 (en) * 2009-07-15 2012-04-03 Sandisk 3D Llc Method of making damascene diodes using selective etching methods
KR101797964B1 (ko) 2010-10-01 2017-11-15 삼성전자주식회사 반도체 장치의 제조 방법 및 그 방법으로 제조된 반도체 장치
WO2013106171A1 (en) * 2012-01-09 2013-07-18 Applied Materials, Inc. Method for seasoning uv chamber optical components to avoid degradation
US9466729B1 (en) 2015-05-08 2016-10-11 Qualcomm Incorporated Etch stop region based fabrication of bonded semiconductor structures
JP6852703B2 (ja) * 2018-03-16 2021-03-31 信越半導体株式会社 炭素濃度評価方法
US11830773B2 (en) * 2020-02-26 2023-11-28 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with isolation structures

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652183A (en) * 1979-02-16 1987-03-24 United Technologies Corporation Amorphous boron-carbon alloy tool bits and methods of making the same
US5155571A (en) * 1990-08-06 1992-10-13 The Regents Of The University Of California Complementary field effect transistors having strained superlattice structure
JPH05175216A (ja) * 1991-12-24 1993-07-13 Rohm Co Ltd ヘテロ接合バイポーラトランジスタおよびその製法
US5965931A (en) * 1993-04-19 1999-10-12 The Board Of Regents Of The University Of California Bipolar transistor having base region with coupled delta layers
US5453399A (en) * 1993-10-06 1995-09-26 Texas Instruments Incorporated Method of making semiconductor-on-insulator structure
US5466949A (en) * 1994-08-04 1995-11-14 Texas Instruments Incorporated Silicon oxide germanium resonant tunneling
WO1996015550A1 (en) * 1994-11-10 1996-05-23 Lawrence Semiconductor Research Laboratory, Inc. Silicon-germanium-carbon compositions and processes thereof
US6399970B2 (en) * 1996-09-17 2002-06-04 Matsushita Electric Industrial Co., Ltd. FET having a Si/SiGeC heterojunction channel
US6750484B2 (en) * 1996-12-09 2004-06-15 Nokia Corporation Silicon germanium hetero bipolar transistor
US6462371B1 (en) * 1998-11-24 2002-10-08 Micron Technology Inc. Films doped with carbon for use in integrated circuit technology
US6323108B1 (en) * 1999-07-27 2001-11-27 The United States Of America As Represented By The Secretary Of The Navy Fabrication ultra-thin bonded semiconductor layers
US6744079B2 (en) * 2002-03-08 2004-06-01 International Business Machines Corporation Optimized blocking impurity placement for SiGe HBTs
US6165891A (en) * 1999-11-22 2000-12-26 Chartered Semiconductor Manufacturing Ltd. Damascene structure with reduced capacitance using a carbon nitride, boron nitride, or boron carbon nitride passivation layer, etch stop layer, and/or cap layer
JP2001189478A (ja) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd 半導体素子及びその製造方法
US6531369B1 (en) * 2000-03-01 2003-03-11 Applied Micro Circuits Corporation Heterojunction bipolar transistor (HBT) fabrication using a selectively deposited silicon germanium (SiGe)
US7419903B2 (en) * 2000-03-07 2008-09-02 Asm International N.V. Thin films
TW483171B (en) * 2000-03-16 2002-04-11 Trw Inc Ultra high speed heterojunction bipolar transistor having a cantilevered base.
US6362065B1 (en) * 2001-02-26 2002-03-26 Texas Instruments Incorporated Blocking of boron diffusion through the emitter-emitter poly interface in PNP HBTs through use of a SiC layer at the top of the emitter epi layer
US20030040130A1 (en) * 2001-08-09 2003-02-27 Mayur Abhilash J. Method for selection of parameters for implant anneal of patterned semiconductor substrates and specification of a laser system
US20030082882A1 (en) * 2001-10-31 2003-05-01 Babcock Jeffrey A. Control of dopant diffusion from buried layers in bipolar integrated circuits
US20030080394A1 (en) * 2001-10-31 2003-05-01 Babcock Jeffrey A. Control of dopant diffusion from polysilicon emitters in bipolar integrated circuits
US6656809B2 (en) * 2002-01-15 2003-12-02 International Business Machines Corporation Method to fabricate SiGe HBTs with controlled current gain and improved breakdown voltage characteristics
JP3746246B2 (ja) * 2002-04-16 2006-02-15 株式会社東芝 半導体装置の製造方法
AU2003234273A1 (en) * 2002-04-26 2003-11-10 The University Of Connecticut Center Of Science And Technology Commercialization THz DETECTION EMPLOYING MODULATION DOPED QUANTUM WELL DEVICE STRUCTURES
US7074623B2 (en) * 2002-06-07 2006-07-11 Amberwave Systems Corporation Methods of forming strained-semiconductor-on-insulator finFET device structures
US6995430B2 (en) * 2002-06-07 2006-02-07 Amberwave Systems Corporation Strained-semiconductor-on-insulator device structures
US7535100B2 (en) * 2002-07-12 2009-05-19 The United States Of America As Represented By The Secretary Of The Navy Wafer bonding of thinned electronic materials and circuits to high performance substrates
EP1439570A1 (en) * 2003-01-14 2004-07-21 Interuniversitair Microelektronica Centrum ( Imec) SiGe strain relaxed buffer for high mobility devices and a method of fabricating it
US6936910B2 (en) * 2003-05-09 2005-08-30 International Business Machines Corporation BiCMOS technology on SOI substrates
JP4322255B2 (ja) * 2003-08-05 2009-08-26 富士通マイクロエレクトロニクス株式会社 半導体装置及びその製造方法
US6855963B1 (en) * 2003-08-29 2005-02-15 International Business Machines Corporation Ultra high-speed Si/SiGe modulation-doped field effect transistors on ultra thin SOI/SGOI substrate
TWI228320B (en) * 2003-09-09 2005-02-21 Ind Tech Res Inst An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product
TWI222219B (en) * 2003-09-10 2004-10-11 Ind Tech Res Inst Semiconductor optical transistor
US6989322B2 (en) * 2003-11-25 2006-01-24 International Business Machines Corporation Method of forming ultra-thin silicidation-stop extensions in mosfet devices
US7075126B2 (en) * 2004-02-27 2006-07-11 International Business Machines Corporation Transistor structure with minimized parasitics and method of fabricating the same
US20060030093A1 (en) * 2004-08-06 2006-02-09 Da Zhang Strained semiconductor devices and method for forming at least a portion thereof
US7361943B2 (en) * 2005-04-19 2008-04-22 The Ohio State University Silicon-based backward diodes for zero-biased square law detection and detector arrays of same
US20080050883A1 (en) 2006-08-25 2008-02-28 Atmel Corporation Hetrojunction bipolar transistor (hbt) with periodic multilayer base
US20060292809A1 (en) * 2005-06-23 2006-12-28 Enicks Darwin G Method for growth and optimization of heterojunction bipolar transistor film stacks by remote injection
US20070054460A1 (en) 2005-06-23 2007-03-08 Atmel Corporation System and method for providing a nanoscale, highly selective, and thermally resilient silicon, germanium, or silicon-germanium etch-stop
US20070290193A1 (en) * 2006-01-18 2007-12-20 The Board Of Trustees Of The University Of Illinois Field effect transistor devices and methods
US7495250B2 (en) 2006-10-26 2009-02-24 Atmel Corporation Integrated circuit structures having a boron- and carbon-doped etch-stop and methods, devices and systems related thereto
US7569913B2 (en) 2006-10-26 2009-08-04 Atmel Corporation Boron etch-stop layer and methods related thereto

Also Published As

Publication number Publication date
TW200830401A (en) 2008-07-16
US7495250B2 (en) 2009-02-24
WO2008057695A1 (en) 2008-05-15
US20080099882A1 (en) 2008-05-01

Similar Documents

Publication Publication Date Title
CN101529569A (zh) 用于提供纳米级、高度选择性和热弹性碳蚀刻终止的系统和方法
US7569913B2 (en) Boron etch-stop layer and methods related thereto
CN101536191A (zh) 在绝缘体上提供纳米级、高电子迁移率晶体管(hemt)的方法
CN101536156A (zh) 提供纳米级、高度选择性和热弹性硅、锗或硅-锗蚀刻终止层的系统和方法
CN103915341B (zh) 晶体管及其形成方法
US9184290B2 (en) Method of forming well-controlled extension profile in MOSFET by silicon germanium based sacrificial layer
CN100365766C (zh) 厚应变硅层及含有厚应变硅层的半导体结构的形成方法
US10204823B2 (en) Enhancing robustness of SOI substrate containing a buried N+ silicon layer for CMOS processing
US20140252500A1 (en) Sacrificial replacement extension layer to obtain abrupt doping profile
US9577065B2 (en) Back-end transistors with highly doped low-temperature contacts
US20140264612A1 (en) Growth of epitaxial semiconductor regions with curved top surfaces
US10177168B2 (en) Fin field-effect transistor having an oxide layer under one or more of the plurality of fins
CN101916770B (zh) 具有双缓变结的Si-Ge-Si半导体结构及其形成方法
US9331073B2 (en) Epitaxially grown quantum well finFETs for enhanced pFET performance
US9349864B1 (en) Methods for selectively forming a layer of increased dopant concentration
US10269900B2 (en) Semiconductor film with adhesion layer and method for forming the same
CN105336569B (zh) 半导体器件制造方法
JP2001156079A (ja) SiGeベースバイポーラトランジスタ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090909