CN101527278B - 通孔制程及形成晶片堆栈的方法 - Google Patents

通孔制程及形成晶片堆栈的方法 Download PDF

Info

Publication number
CN101527278B
CN101527278B CN200810100045.0A CN200810100045A CN101527278B CN 101527278 B CN101527278 B CN 101527278B CN 200810100045 A CN200810100045 A CN 200810100045A CN 101527278 B CN101527278 B CN 101527278B
Authority
CN
China
Prior art keywords
layer
hole
semiconductor
dielectric layer
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200810100045.0A
Other languages
English (en)
Other versions
CN101527278A (zh
Inventor
邱文智
余振华
吴文进
胡荣治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN101527278A publication Critical patent/CN101527278A/zh
Application granted granted Critical
Publication of CN101527278B publication Critical patent/CN101527278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明揭示一种通孔制程及形成晶片堆栈的方法,通孔制程包括以下步骤:提供一半导体基底,包括:一集成电路元件,设于该半导体基底上;一内层介电层,设于该半导体基底上且覆盖该集成电路元件,及一接触插塞,设于该内层介电层中且电性连接该集成电路元件;形成至少一个通孔,该通孔穿过该内层介电层及一部分的该半导体基底;沉积一导电材料层于该内层介电层上并填入该通孔;去除该通孔以外的导电材料层并露出该接触插塞的顶部,其中残留于该通孔的导电材料层形成一通孔插塞;及形成一内连线结构,包括多个金属层,多个金属层形成于多个金属间介电层中,其中该内连线结构的最下层金属层电性连接至该接触插塞露出的部分与该通孔插塞。

Description

通孔制程及形成晶片堆栈的方法
技术领域
本发明涉及集成电路(IC)的堆栈,且特别涉及一种应用于晶片(晶圆)级堆栈技术的通孔制程(through via process)、半导体元件及形成晶片堆栈的方法。
背景技术
三度空间(3D)晶片-晶片垂直堆栈技术是通过垂直连通一芯片中堆栈的多层有源IC元件,例如处理器、可编程元件、存储元件等,以减少线路的平均长度,具有降低内连线的阻容延迟(RC delay)与增加系统效能的优点。在单一晶片或晶片-晶片垂直堆栈中形成3D内连线的主要挑战在于通孔的制作,此通孔为晶片提供从一侧至另一侧的高阻抗信号的信号路径。硅通孔(Through Silicon Via;TSV)通常是在通孔中填满导电材料以接触并连接其它的硅通孔或接合层的导体。美国专利第6642081号与第6897125号揭示了在第一金属内连线制程后形成硅通孔的方法。由于蚀刻与设计上的限制,硅通孔的密度通常较小,因而造成连接、接触、与可靠度上潜在的问题。目前的硅通孔技术所面临的另一问题在于散热,而如果设计硅通孔用于散热,这些硅通孔通常会占去一般设计中接点与金属层的区域。“Three-Dimensional Integrated Circuits and the Future of System-on-Chip Designs,by Robert S.Patti,Proceeding of the IEEE,pp.1214-1224,Vol.94,No.6,June 2006”揭示了一种在接触制程前形成填钨硅通孔(tungsten-filled TSVs)的超接触制程(super-contact process)。此超接触制程可能会因为填钨硅通孔的应力而影响到后续接触制程中微影与沉积的准确度。
发明内容
本发明的目的在于提供一种通孔制程,该通孔制程于接触制程之后、第一层内连线制程之前进行。该通孔制程可避免影响接触制程的微影、蚀刻、与沉积步骤的准确度,本发明还提供一种半导体元件,及形成晶片堆栈的方法。
本发明提供一种通孔制程,包括以下步骤:提供一半导体基底,其包括:一集成电路元件,其设于该半导体基底上,一内层介电层,其设于该半导体基底上且覆盖该集成电路元件,以及一接触插塞,其设于该内层介电层中且电性连接该集成电路元件;形成至少一个通孔穿过该内层介电层以及一部分的该半导体基底;沉积一导电材料层于该内层介电层上并填入该通孔;去除该通孔以外的导电材料层并露出该接触插塞的顶部,其中残留于该通孔的导电材料层形成一通孔插塞;以及,形成一内连线结构,其包括多个金属层,所述多个金属层形成于多个金属间介电层中,其中该内连线结构的最下层金属层电性连接至该接触插塞露出的部分与该通孔插塞。
本发明亦提供一种半导体元件,一半导体基底,包括一集成电路元件;一内层介电层,设于该半导体基底上;一接触插塞,设于该内层介电层中且电性连接该集成电路元件;一通孔插塞,穿过该内层介电层以及一部分的该半导体基底,其中该内层介电层、该通孔插塞、及该接触插塞的顶部表面齐平;以及,一内连线结构,包括多个金属层,所述多个金属层形成于多个金属间介电层中,其中该内连线结构的最下层金属层电性连接至该接触插塞与该通孔插塞。
本发明还提供一种形成晶片堆栈的方法,其包括以下步骤:提供一第一晶片,其包括:一第一半导体基底,一第一集成电路元件,该第一集成电路元件设于该第一半导体基底上,及一内层介电层,该内层介电层设于该第一半导体基底上且覆盖该第一集成电路元件;于该内层介电层中依序形成一接触插塞与一通孔插塞,其中该接触插塞电性连接该第一集成电路元件,且该通孔插塞穿过一部分的该第一半导体基底;形成一内连线结构于该内层介电层上,其中该内连线结构分别电性连接至该接触插塞与该通孔插塞;提供一第二晶片;以及,接合该第一晶片与该第二晶片以形成一晶片堆栈。
本发明的有益技术效果在于,相较于现有的通孔制程,本发明实施例的通孔制程可避免影响接触制程的微影、蚀刻、与沉积步骤的准确度,其优点包括:低电阻通孔、高通孔密度、对于排除区域(keep-out zone)的最小需求、内连线路安排的高自由度、以及高合格率等。
为让本发明的上述和其它目的、特征、和优点能更明显易懂,下文特举出较佳实施例,并配合附图,作详细说明如下。
附图说明
图1~图10为一系列剖面示意图,用以说明一实施例中半导体装置各阶段的集成电路制程。
其中,附图标记说明如下:
10~半导体基底        12~内层介电层
14~接触插塞          16~图案化光阻层
18~通孔              20~保护层
22~导电材料层        22a~通孔插塞
26~第一层内连线层    28~接合接点
30~绝缘层            40~基底
42~绝缘层            24、44~IMD层
46~接合垫            100、300~晶片
200~IC元件
具体实施方式
本发明的较佳实施例提供一种通孔制程,此通孔制程在一接触制程之后、第一层内连线制程之前进行。在本发明的叙述中,“通孔”一词代表一填充有金属的导孔,其至少穿过部分的半导体基底。当填充有金属的导孔是至少穿过部分含硅的半导体基底时,本发明的通孔制程又可称为“硅通孔制程”。“第一层内连线”一词代表一最下层金属层,其位于接触结构与晶体管上的最下层金属间介电层(Inter-Metal Dielectric;IMD)中。
以下将配合附图详述本发明的实施例,其中同样或类似的元件将尽可能以相同的附图标记表示。在附图中可能夸大实施例的形状与厚度以便清楚表现出本发明的特征。在下文中将特别描述构成本发明装置的元件或与之直接相关的元件。应特别注意的是,未特别显示或描述的元件可以该技术人员所熟知的各种形式存在。此外,当某一层被描述为在另一层(或基底)“上”时,其可代表该层与另一层(或基底)为直接接触,或两者之间另有其它层存在。
图1~图10为一系列剖面示意图,用以说明一实施例中半导体装置各阶段的集成电路制程。请参照图1,其显示晶片100的剖面,包含半导体基底10、IC元件200、覆于基底10上的内层介电层(Inter-Layer Dielectric;ILD)12、以及一接触插塞14,该接触插塞14设于ILD层12中且电性连接至IC元件200。基底10通常为硅,例如:具有磊晶层或无磊晶层的硅基底,或是具有绝缘埋层的绝缘层上覆硅(Silicon-On-insulator;SOI)基底。此外,基底10也可为GaAs基底、GaAsP基底、InP基底、GaAlAs基底、InGaP基底。IC元件200可包含多个独立的电路元件,例如晶体管、二极管、电阻、电容、电感、或是其它以现有半导体制程所形成的有源与无源半导体装置。
ILD层12形成于基底10上,用以隔离IC元件200与后续所形成的内连线结构。ILD层12可为一单层或多层结构。ILD层12可为掺杂或未掺杂的氧化硅层,由热化学气相沉积法或高密度电浆制程所形成,例如:未掺杂硅玻璃、磷掺杂硅玻璃、或硼磷硅玻璃。此外,ILD层12亦可为掺杂或磷掺杂旋涂式玻璃(SOG)、磷掺杂四乙氧基硅酸盐(PTEOS)、或硼磷掺杂四乙氧基硅酸盐(BPTEOS)。以干蚀刻在ILD层12中形成一接触窗,并在接触窗中填入导电材料后即可形成接触插塞14。接触插塞14的材质可为钨、钨合金、铜、或铜合金。
请参照第图2~图4,以例如化学机械研磨法(CMP)将ILD层12平坦化后,形成一图案化光阻层16。以干蚀刻制程形成至少一个通孔18,该通孔18穿过ILD层12且至少延伸进入基底10一预定深度。之后,去除光阻层16。
请参照图5,在晶片100上形成一保护层20,该保护层20顺应性覆盖通孔18的底部与侧壁,以避免任何导电材料进入晶片100的电路的有源区域。保护层20的材质可为氧化硅、氮化硅、或前述的组合等。之后,如图6所示,在保护层20上沉积一导电材料层22并填入通孔18中。导电材料层22可包含一扩散阻障层与一金属层。例如,可将一扩散阻障层顺应性地沉积在通孔18的底部与侧壁,然后再进行金属填充制程,如此可得到良好的导电性并兼具扩散阻障效果。扩散阻障层可包含一耐火材料,包括(但不限于):TiN、TaN、Ta、Ti、TiSN、W、WN、Cr、Nb、Co、Ni、Pt、Ru、Pd、Au、CoP、CoWP、NiP、NiWP、前述的组合、或其它可抑制铜扩散入ILD层12的材质,其可由物理气相沉积法、化学气相沉积法、原子层沉积法、或电镀法所形成。金属层的材质可包含一低电阻导电材料,包括(但不限于):铜、铜合金。举例而言,填充铜的制程可包括一金属晶种层的沉积与一铜化学电镀制程。此外,金属层亦可包含其它各种金属,例如钨、铝、金、银等。
请参照图7,以化学机械研磨法或蚀刻方式去除通孔18以外多余的导电材料层22与保护层20,形成通孔插塞22a。通孔插塞22a穿过ILD层12并延伸进入部分基底10。
接着,在晶片100上进行后段(BEOL;back-end-of-line)内连线制程,以形成包含多个内连线层与金属间介电层(IMD)的内连线结构。请参照图8,在IMD层24中形成第一层内连线层26,以电性连接接触插塞14与通孔插塞22a。之后,在第一层内连线层26上制作其它的内连线层与IMD层,为简化附图,在图中并未绘出这些内连线层与IMD层。本发明的实施例使用含铜导电材料来形成内连线层。此处所称的“含铜材料”包含实质上纯的元素铜,含有不可避免的杂质的铜,以及包含少量其它元素的铜合金,例如:Ta、In、Sn、Zn、Mg、Cr、Ti、Ge、Sr、Pt、Mg、Al、Zr等。可使用标准的镶嵌制程来制作铜内连线。虽然此处的实施例是以铜内连线为例进行说明,但本发明亦不排除使用铜以外的金属材料来形成后段内连线。
请参照图9,在绝缘层30中形成接合接点(bonding contacts)28,其中绝缘层30位于一最上层内连线层与最上层IMD层(未显示)之上。绝缘层30可部分去除或蚀刻,使接合接点28稍微突出绝缘层30的上表面。接合接点28可由含铜导电材料所形成。绝缘层30可隔绝IC元件200与其它接合至晶片100的晶片上的任何电路或元件。
请参照图10,其示出了晶片100堆栈并接合至另一晶片300的剖面示意图。晶片300包含一基底40、一绝缘层42、一IMD层44、以及接合垫(bonding pads)46。晶片100与晶片300通过接合接点28与接合垫46互相接合而形成三度空间的堆栈晶片。应注意的是,在晶片100与晶片300中可整合任何数量的其它装置、元件、连接元件等。本发明实施例中所提到或未提到的特定装置并非用以限定本发明的范围。
相较于现有的通孔制程,本发明实施例的通孔制程可避免影响接触制程的微影、蚀刻、与沉积步骤的准确度,其优点包括:低电阻通孔、高通孔密度、对于排除区域(keep-out zone)的最小需求、内连线路安排的高自由度、以及高合格率等。
虽然本发明已以多个较佳实施例披露如上,然而其并非用以限定本发明,任何所属技术领域中具有通常知识的人员,在不脱离本发明的精神和范围内,可作任意的更动与润饰,因此本发明的保护范围当视所附的权利要求书所界定的范围为准。

Claims (10)

1.一种通孔制程,包括以下步骤:
提供一半导体基底,其包括:一集成电路元件,其设于该半导体基底上;一内层介电层,其设于该半导体基底上且覆盖该集成电路元件,以及一接触插塞,其设于该内层介电层中且电性连接该集成电路元件;
形成至少一个通孔,该通孔穿过该内层介电层以及一部分的该半导体基底;
沉积一导电材料层于该内层介电层上并填入该通孔;
去除该通孔以外的导电材料层并露出该接触插塞的顶部,其中残留于该通孔的导电材料层形成一通孔插塞;以及
形成一内连线结构,其包括多个金属层,所述多个金属层形成于多个金属间介电层中,其中该内连线结构的最下层金属层电性连接至该接触插塞露出的部分与该通孔插塞。
2.如权利要求1所述的通孔制程,其中该导电材料层包含铜或铜合金,该接触插塞包含钨或钨合金。
3.如权利要求1所述的通孔制程,其中在沉积该导电材料层之前还包括:形成一保护层,该保护层顺应性地覆盖该通孔的底部与侧壁。
4.如权利要求3所述的通孔制程,其中该保护层包含氧化硅、氮化硅、或前述的组合。
5.如权利要求1所述的通孔制程,其中在形成该通孔之前,还包括:对该内层介电层进行平坦化。
6.如权利要求1所述的通孔制程,其中是以化学机械研磨法或蚀刻方式去除通孔以外多余的导电材料层。
7.一种形成晶片堆栈的方法,包括以下步骤:
提供一第一晶片,其包括:一第一半导体基底;一第一集成电路元件,该第一集成电路元件设于该第一半导体基底上;及一内层介电层,该内层介电层设在该第一半导体基底上且覆盖该第一集成电路元件;
依序形成一接触插塞与一通孔插塞于该内层介电层中,其中该接触插塞电性连接该第一集成电路元件,且该通孔插塞穿过一部分的该第一半导体基底;
形成一内连线结构于该内层介电层上,其中该内连线结构分别电性连接至该接触插塞与该通孔插塞;
提供一第二晶片;以及
接合该第一晶片与该第二晶片以形成一晶片堆栈。
8.如权利要求7所述的方法,其中该通孔插塞包含铜或铜合金。
9.如权利要求7所述的方法,其中该接触插塞包含钨或钨合金。
10.如权利要求7所述的方法,其中该方法还包括将一保护层顺应性贴覆于该通孔插塞的底部与侧壁。
CN200810100045.0A 2008-03-07 2008-06-03 通孔制程及形成晶片堆栈的方法 Active CN101527278B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/044,008 US8486823B2 (en) 2008-03-07 2008-03-07 Methods of forming through via
US12/044,008 2008-03-07

Publications (2)

Publication Number Publication Date
CN101527278A CN101527278A (zh) 2009-09-09
CN101527278B true CN101527278B (zh) 2011-06-01

Family

ID=41052770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810100045.0A Active CN101527278B (zh) 2008-03-07 2008-06-03 通孔制程及形成晶片堆栈的方法

Country Status (2)

Country Link
US (2) US8486823B2 (zh)
CN (1) CN101527278B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051379A (zh) * 2013-03-13 2014-09-17 英特尔公司 具有超薄介电层的无焊内建层(bbul)半导体封装

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG120200A1 (en) 2004-08-27 2006-03-28 Micron Technology Inc Slanted vias for electrical circuits on circuit boards and other substrates
US7795134B2 (en) 2005-06-28 2010-09-14 Micron Technology, Inc. Conductive interconnect structures and formation methods using supercritical fluids
US7262134B2 (en) 2005-09-01 2007-08-28 Micron Technology, Inc. Microfeature workpieces and methods for forming interconnects in microfeature workpieces
US7863187B2 (en) 2005-09-01 2011-01-04 Micron Technology, Inc. Microfeature workpieces and methods for forming interconnects in microfeature workpieces
US7902643B2 (en) 2006-08-31 2011-03-08 Micron Technology, Inc. Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods
US7884015B2 (en) 2007-12-06 2011-02-08 Micron Technology, Inc. Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods
US7968460B2 (en) 2008-06-19 2011-06-28 Micron Technology, Inc. Semiconductor with through-substrate interconnect
US8531565B2 (en) 2009-02-24 2013-09-10 Taiwan Semiconductor Manufacturing Company, Ltd. Front side implanted guard ring structure for backside illuminated image sensor
US9142586B2 (en) * 2009-02-24 2015-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Pad design for backside illuminated image sensor
US9799562B2 (en) 2009-08-21 2017-10-24 Micron Technology, Inc. Vias and conductive routing layers in semiconductor substrates
JP5304536B2 (ja) 2009-08-24 2013-10-02 ソニー株式会社 半導体装置
KR101300587B1 (ko) * 2009-12-09 2013-08-28 한국전자통신연구원 반도체 소자의 제조 방법
US8907457B2 (en) * 2010-02-08 2014-12-09 Micron Technology, Inc. Microelectronic devices with through-substrate interconnects and associated methods of manufacturing
US8222139B2 (en) 2010-03-30 2012-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. Chemical mechanical polishing (CMP) processing of through-silicon via (TSV) and contact plug simultaneously
US8586472B2 (en) * 2010-07-14 2013-11-19 Infineon Technologies Ag Conductive lines and pads and method of manufacturing thereof
TWI456726B (zh) 2011-01-24 2014-10-11 Ind Tech Res Inst 內連線結構、具有該內連線結構的裝置與線路結構、及防護內連線結構電磁干擾(emi)的方法
WO2012115333A1 (ko) * 2011-02-24 2012-08-30 단국대학교 산학협력단 기판 관통 구조물 및 이의 제조방법, 기판 관통 구조물을 포함하는 소자의 패키지 및 이의 제조 방법
US8409960B2 (en) * 2011-04-08 2013-04-02 Micron Technology, Inc. Methods of patterning platinum-containing material
US8753981B2 (en) 2011-04-22 2014-06-17 Micron Technology, Inc. Microelectronic devices with through-silicon vias and associated methods of manufacturing
US8481425B2 (en) 2011-05-16 2013-07-09 United Microelectronics Corp. Method for fabricating through-silicon via structure
US8822336B2 (en) 2011-06-16 2014-09-02 United Microelectronics Corp. Through-silicon via forming method
US8828745B2 (en) 2011-07-06 2014-09-09 United Microelectronics Corp. Method for manufacturing through-silicon via
US8816505B2 (en) * 2011-07-29 2014-08-26 Tessera, Inc. Low stress vias
CN103094187B (zh) * 2011-10-31 2015-01-21 中芯国际集成电路制造(上海)有限公司 硅通孔的形成方法
US8518823B2 (en) 2011-12-23 2013-08-27 United Microelectronics Corp. Through silicon via and method of forming the same
US8609529B2 (en) 2012-02-01 2013-12-17 United Microelectronics Corp. Fabrication method and structure of through silicon via
US9105628B1 (en) * 2012-03-29 2015-08-11 Valery Dubin Through substrate via (TSuV) structures and method of making the same
US8691600B2 (en) 2012-05-02 2014-04-08 United Microelectronics Corp. Method for testing through-silicon-via (TSV) structures
US8691688B2 (en) 2012-06-18 2014-04-08 United Microelectronics Corp. Method of manufacturing semiconductor structure
US9275933B2 (en) 2012-06-19 2016-03-01 United Microelectronics Corp. Semiconductor device
US8900996B2 (en) 2012-06-21 2014-12-02 United Microelectronics Corp. Through silicon via structure and method of fabricating the same
US8525296B1 (en) 2012-06-26 2013-09-03 United Microelectronics Corp. Capacitor structure and method of forming the same
US8912844B2 (en) 2012-10-09 2014-12-16 United Microelectronics Corp. Semiconductor structure and method for reducing noise therein
US9035457B2 (en) 2012-11-29 2015-05-19 United Microelectronics Corp. Substrate with integrated passive devices and method of manufacturing the same
US8716104B1 (en) 2012-12-20 2014-05-06 United Microelectronics Corp. Method of fabricating isolation structure
US9245790B2 (en) * 2013-01-23 2016-01-26 GlobalFoundries, Inc. Integrated circuits and methods of forming the same with multiple embedded interconnect connection to same through-semiconductor via
US9627250B2 (en) 2013-03-12 2017-04-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for back end of line semiconductor device processing
US8884398B2 (en) 2013-04-01 2014-11-11 United Microelectronics Corp. Anti-fuse structure and programming method thereof
US10147642B1 (en) * 2013-04-25 2018-12-04 Macom Technology Solutions Holdings, Inc. Barrier for preventing eutectic break-through in through-substrate vias
US20140332952A1 (en) * 2013-05-09 2014-11-13 United Microelectronics Corp. Semiconductor structure and method for testing the same
US9287173B2 (en) 2013-05-23 2016-03-15 United Microelectronics Corp. Through silicon via and process thereof
US9123730B2 (en) 2013-07-11 2015-09-01 United Microelectronics Corp. Semiconductor device having through silicon trench shielding structure surrounding RF circuit
US9024416B2 (en) 2013-08-12 2015-05-05 United Microelectronics Corp. Semiconductor structure
US8916471B1 (en) 2013-08-26 2014-12-23 United Microelectronics Corp. Method for forming semiconductor structure having through silicon via for signal and shielding structure
US9048223B2 (en) 2013-09-03 2015-06-02 United Microelectronics Corp. Package structure having silicon through vias connected to ground potential
US9117804B2 (en) 2013-09-13 2015-08-25 United Microelectronics Corporation Interposer structure and manufacturing method thereof
US9147642B2 (en) * 2013-10-31 2015-09-29 Nanya Technology Corporation Integrated circuit device
US9343359B2 (en) 2013-12-25 2016-05-17 United Microelectronics Corp. Integrated structure and method for fabricating the same
US10340203B2 (en) 2014-02-07 2019-07-02 United Microelectronics Corp. Semiconductor structure with through silicon via and method for fabricating and testing the same
WO2016161434A1 (en) 2015-04-02 2016-10-06 Nanopac Technologies, Inc. Method for creating through-connected vias and conductors on a substrate
US10593562B2 (en) 2015-04-02 2020-03-17 Samtec, Inc. Method for creating through-connected vias and conductors on a substrate
CN106611756A (zh) * 2015-10-26 2017-05-03 联华电子股份有限公司 晶片对晶片对接结构及其制作方法
WO2019213601A1 (en) * 2018-05-03 2019-11-07 Princeton Infrared Technologies, Inc. Dielectric molded indium bump formation and inp planarization
US10804184B2 (en) * 2018-11-30 2020-10-13 Nanya Technology Corporation Semiconductor device and method of manufacturing the same
US11114444B2 (en) 2019-05-24 2021-09-07 Nanya Technology Corporation Semiconductor device with conductive cap layer over conductive plug and method for forming the same
CN112086399A (zh) * 2019-06-13 2020-12-15 芯恩(青岛)集成电路有限公司 半导体结构及制备方法
EP3944290A1 (en) * 2020-07-21 2022-01-26 Infineon Technologies Austria AG Chip-substrate composite semiconductor device
CN116314016B (zh) * 2023-04-26 2023-10-03 北京大学 一种亚微米尺寸的硅通孔结构及其制备方法、电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352923B1 (en) * 1999-03-01 2002-03-05 United Microelectronics Corp. Method of fabricating direct contact through hole type
US6642081B1 (en) * 2002-04-11 2003-11-04 Robert Patti Interlocking conductor method for bonding wafers to produce stacked integrated circuits
CN1708840A (zh) * 2002-12-20 2005-12-14 国际商业机器公司 三维器件制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4408006B2 (ja) * 2001-06-28 2010-02-03 富士通マイクロエレクトロニクス株式会社 半導体装置およびその製造方法
US6972252B1 (en) * 2003-08-25 2005-12-06 Novellus Systems, Inc. Method of improving adhesion between two dielectric films
US6897125B2 (en) 2003-09-17 2005-05-24 Intel Corporation Methods of forming backside connections on a wafer stack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352923B1 (en) * 1999-03-01 2002-03-05 United Microelectronics Corp. Method of fabricating direct contact through hole type
US6642081B1 (en) * 2002-04-11 2003-11-04 Robert Patti Interlocking conductor method for bonding wafers to produce stacked integrated circuits
CN1708840A (zh) * 2002-12-20 2005-12-14 国际商业机器公司 三维器件制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Robert S. Patti.Three-dimensional integrated circuits and the future of system-on-chip designs.proceeding of the IEEE.2006,第94卷(第6期),1214-1224. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051379A (zh) * 2013-03-13 2014-09-17 英特尔公司 具有超薄介电层的无焊内建层(bbul)半导体封装

Also Published As

Publication number Publication date
CN101527278A (zh) 2009-09-09
US20130277844A1 (en) 2013-10-24
US20090224405A1 (en) 2009-09-10
US8486823B2 (en) 2013-07-16

Similar Documents

Publication Publication Date Title
CN101527278B (zh) 通孔制程及形成晶片堆栈的方法
US11830838B2 (en) Conductive barrier direct hybrid bonding
CN102208342B (zh) 硅穿孔的形成方法
CN101924096B (zh) 硅通孔结构及其形成工艺
CN102074545B (zh) 集成电路元件、半导体元件以及半导体工艺
US9646930B2 (en) Semiconductor device having through-substrate vias
CN102024781B (zh) 三维集成电路结构
US6143672A (en) Method of reducing metal voidings in 0.25 μm AL interconnect
CN109285825B (zh) 芯片堆叠结构及管芯堆叠结构的制造方法
US20060076689A1 (en) Damascene processes for forming conductive structures
CN102867777B (zh) 在半导体衬底中形成接地硅通孔
US20060205204A1 (en) Method of making a semiconductor interconnect with a metal cap
CN107039380A (zh) 接合结构及其形成方法
KR100505682B1 (ko) 금속-절연체-금속 커패시터를 포함하는 이중 다마신 배선구조 및 그 제조방법
CN104425451A (zh) 具有衬底通孔结构的器件及其形成方法
JP2009532874A (ja) 回路の三次元的な統合において用いられるバリヤ
CN114914225A (zh) 半导体装置及其制造方法
CN101635275A (zh) 半导体器件、半导体芯片及它们的制造方法和叠层封装
US10600732B1 (en) Semiconductor device and method for fabricating the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant