CN101508591B - Ti3SiC2改性C/SiC复合材料的制备方法 - Google Patents

Ti3SiC2改性C/SiC复合材料的制备方法 Download PDF

Info

Publication number
CN101508591B
CN101508591B CN2009101298074A CN200910129807A CN101508591B CN 101508591 B CN101508591 B CN 101508591B CN 2009101298074 A CN2009101298074 A CN 2009101298074A CN 200910129807 A CN200910129807 A CN 200910129807A CN 101508591 B CN101508591 B CN 101508591B
Authority
CN
China
Prior art keywords
sic
matrix material
precast body
slurry
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009101298074A
Other languages
English (en)
Other versions
CN101508591A (zh
Inventor
殷小玮
张立同
成来飞
何珊珊
范尚武
刘永胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN2009101298074A priority Critical patent/CN101508591B/zh
Publication of CN101508591A publication Critical patent/CN101508591A/zh
Application granted granted Critical
Publication of CN101508591B publication Critical patent/CN101508591B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种Ti3SiC2改性C/SiC复合材料的制备方法,首先对要改性的预制体进行超声清洗、烘干;然后用蒸馏水、羧甲基纤维素纳和TiC粉配制浆料;再对预制体进行真空浸渗结合压力浸渗,然后冷冻、真空干燥,再将工业用硅粉涂覆在预制体表面,在真空炉中煅烧,使硅熔融渗透到预制体中,在真空炉中充分反应后,缓慢冷却到室温。由于采用SI法使得C/C或C/SiC复合材料内部首先填充了TiC颗粒,再采用MI法渗透硅熔体,TiC与Si反应生成Ti3SiC2和SiC,减少了复合材料内部残余Si的含量,正是C/SiC复合材料内原位生成的Ti3SiC2相,使得改性后的C/SiC复合材料使用温度由现有技术的1420℃提高到了1500℃~2300℃,断裂韧性由现有技术的8MPa·m1/2提高到了9~16MPa·m1/2

Description

Ti3SiC2改性C/SiC复合材料的制备方法
技术领域
本发明涉及一种改性C/SiC复合材料的制备方法,特别是Ti3SiC2改性C/SiC复合材料的制备方法。
背景技术
文献1“S.W.Fan,Y.D.Xu,L.T.Zhang,L.F.Cheng,L.Yu and Y.D.Yuan et al.,Three-dimensional needled carbon/silicon carbide composites with high friction performance,Mater.Sci.Eng.A467(2007)53-58.”公开了一种制备C/SiC复合材料的方法,该方法采用硅熔体渗透工艺(以下简称MI法)在多孔三维针刺碳/碳复合材料中渗入Si熔体,Si熔体与C/C反应生成SiC基体,形成致密的C/SiC复合材料。但是,由于多孔C/C复合材料内部存在大的孔隙和裂纹,在液硅渗透后会富集大量残余硅,残余硅含量大于8vol.%。硅的熔点约为1420℃,不但影响C/SiC复合材料的使用温度,而且复合材料的断裂韧性较低,断裂韧性KIC<8MPa·m1/2
文献2“Xiaowei Yin,Laifei Cheng,Litong Zhang,Yongdong Xu and Chang You,Microstructure and oxidation resistance of carbon/silicon carbide composites infiltrated withchromium silicide,Mater.Sci.Eng.A290(2000)89-94.”公开了一种制备C/SiC复合材料的方法,该方法采用电化学渗透工艺在多孔C/SiC复合材料内部渗入金属Cr,然后采用MI法将熔体Si引入复合材料内部,Si熔体与Cr反应生成Cr3Si,由于采用电化学渗透工艺在C/SiC孔隙内部引入的Cr较少,C/SiC复合材料内部原有孔隙中仍然富集有一定量的残余Si,残余硅含量约为6vol.%。
发明内容
为了克服现有技术MI法制备的C/SiC复合材料由于富集大量残余硅,而导致使用温度低、韧性差的不足,本发明提供一种Ti3SiC2改性C/SiC复合材料的制备方法,采用浆料渗透(以下简称SI法)结合MI法制备Ti3SiC2改性C/SiC复合材料,通过SI法在多孔C/C或C/SiC复合材料内部引入TiC颗粒,再通过MI法将Si引入复合材料内部,Si与TiC反应生成Ti3SiC2和SiC,C/SiC复合材料中的残余硅大部分被Ti3SiC2取代,可以提高C/SiC复合材料的使用温度和韧性。
本发明解决其技术问题所采用的技术方案:一种Ti3SiC2改性C/SiC复合材料的制备方法,其特点是包括下述步骤:
(a)选择要改性的复合材料作为预制体,并对预制体进行超声清洗、烘干;
(b)在温度为50~90℃的蒸馏水中加入羧甲基纤维素钠和TiC粉,其中:蒸馏水占49.7~66.5wt.%,羧甲基纤维素钠占0.3~0.5wt.%,TiC粉占33.2~49.8wt.%;搅拌均匀后倒入球磨罐,加入粒径为5~12mm的刚玉球球磨5~48h,制成浆料,其中:蒸馏水、羧甲基纤维素钠和TiC粉的总重量与刚玉球总重量之比为1∶1~1∶3;
(c)将经步骤(b)制备的浆料倒入敞口容器中,将装有浆料的敞口容器和经步骤(a)处理的预制体分别放入密闭容器内,保持密闭容器内的绝对压力为5.0×102~5.0×103Pa,然后将预制体浸没在浆料中继续抽真空;当密闭容器内的绝对压力为5.0×102~5.0×103Pa时,给密闭容器通入气氛,容器内气氛压力达到0.8~3MPa后保持3~50min;从浆料中取出预制体,放入冷冻干燥机中冷冻4~10h,冷冻温度是-50~-80℃,真空干燥5~30h,冷冻干燥机中绝对压力是5~100Pa,干燥温度是40~70℃;重复前述步骤,直到预制体中的TiC粉的体积含量达到1.8~10vol.%;
(d)在经步骤(c)处理的预制体表面涂覆粒径为2~45μm的工业用硅粉,在绝对压力为5.0×102Pa~5.0×103Pa的高温真空炉中以5~30℃/min的升温速度升至1500℃~1600℃,保温0.2~1h,使硅熔融渗透到预制体中,再以1~30℃/min降温到1300℃~1400℃保温1~3h,使其充分反应,再以1~30℃/min降温到室温。
本发明的有益效果是:由于采用SI法使得C/C或C/SiC复合材料内部首先填充了TiC颗粒,再采用MI法渗透硅熔体,这样TiC与Si反应生成Ti3SiC2和SiC,减少了C/SiC复合材料内部残余Si的含量,且复合材料内部的大孔被TiC颗粒间的小孔取代,使残余硅在复合材料内部均匀弥散,避免了残余硅的团聚;由于在C/SiC复合材料内原位生成了Ti3SiC2相,Ti3SiC2的熔点为3000℃,其熔点、力学性能都远比Si的高,使得改性C/SiC复合材料的使用温度由现有技术的1420℃提高到了1500℃~2300℃,断裂韧性由现有技术的8MPa·m1/2提高到了9~16MPa·m1/2
下面结合附图和实施例对本发明作详细说明。
附图说明
图1是本发明Ti3SiC2改性C/SiC复合材料的制备方法流程图。
图2是本发明方法实例3中Ti3SiC2改性C/SiC复合材料的抛光断口背散射扫描电镜形貌照片。
图3是本发明方法实施例4中三维针刺C/C预制体的浆料浸渗次数与预制体密度和孔隙率的关系图。
图4是本发明方法实施例4中Ti3SiC2改性C/SiC复合材料的断口形貌高倍照片。
图5是本发明方法实施例2~4中,不同TiC含量的三维针刺C/C预制体所对应的Ti3SiC2改性C/SiC复合材料的X射线衍射分析结果曲线。
图6是本发明方法实施例5中Ti3SiC2改性C/SiC复合材料的断口形貌。
图7是本发明方法实施例5中Ti3SiC2改性C/SiC复合材料内部纤维束间大孔被填充的高倍扫描电镜照片。
具体实施方式
实施例1:选择三维针刺多孔C/C复合材料作为预制体,其密度为1.3g/cm3,开气孔率为35vol.%,超声清洗烘干待用。在300g温度为50℃的蒸馏水中加入1.5g羧甲基纤维素钠和150g粒度为1μm的TiC粉,搅拌均匀后倒入球磨罐,加入总重量为903g的粒径为5~12mm的刚玉球球磨10h制成浆料。浆料浸渗采用真空浸渗结合压力浸渗。将装有浆料的敞口容器和三维针刺C/C复合材料预制体分别放入密闭容器内,抽真空,保持密闭容器的绝对压力为5.0×102Pa,然后将预制体浸没在浆料中继续抽真空;当容器内的绝对压力为5.0×102Pa时,给密闭容器通入氩气,容器内氩气气氛压力达到0.8MPa,保持50min;从浆料中取出预制体,放入冷冻干燥机中冷冻10h,冷冻温度是-80℃,真空干燥5h,冷冻干燥机中绝对压力是5Pa,干燥温度是70℃。重复前述步骤,直到预制体中的TiC粉的体积含量达到10vol.%。在所得C/C复合材料预制体表面涂覆粒径为2μm的工业用硅粉,在绝对压力为5.0×102Pa的高温真空炉中进行硅熔体渗透,渗透工艺:以30℃/min的升温速度升温到1500℃并保温0.5h,再以1℃/min降温到1300℃并保温1h,再以1℃/min降温到室温。经检验,复合材料的密度为2.4g/cm3、开气孔率为5vol.%。XRD分析表明所得的复合材料由C、SiC、Ti3SiC2和少量残余Si组成。各相的相对含量为:Ti3SiC2含量为12vol.%、SiC含量为25vol.%、C含量为60vol.%、Si含量为3vol.%。复合材料的使用温度1700℃,断裂韧性13MPa·m1/2
实施例2:选择二维针刺多孔C/C复合材料作为预制体,其密度为1.5g/cm3,开气孔率为23vol.%,超声清洗烘干待用。在300g温度为60℃的蒸馏水中加入3g羧甲基纤维素钠和300g粒度为2μm的TiC粉,搅拌均匀后倒入球磨罐,加入总重量为603g的粒径为5~12mm的刚玉球球磨5h制成浆料。浆料浸渗采用真空浸渗结合压力浸渗。将装有浆料的敞口容器和二维针刺C/C复合材料预制体分别放入密闭容器内,抽真空,保持密闭容器内的绝对压力为1.0×103Pa,然后将预制体浸没在浆料中继续抽真空;当容器内的绝对压力为1.0×103Pa时,给密闭容器通入空气,容器内空气气氛压力达到1.0MPa,保持30min;从浆料中取出预制体,放入冷冻干燥机中冷冻6h,冷冻温度是-60℃,真空干燥15h,冷冻干燥机中绝对压力是10Pa,干燥温度是60℃。重复前述步骤,直到预制体中的TiC粉的体积含量达到1.8vol.%。在所得C/C复合材料预制体表面涂覆粒径为10μm的工业用硅粉,在绝对压力为1.0×103Pa的高温真空炉中进行硅熔体渗透,渗透工艺:以15℃/min的升温速度升温到1600℃并保温0.5h,再以30℃/min降温到1400℃并保温3h,再以30℃/min降温到室温。经检验,复合材料的密度为2.0g/cm3、开气孔率为12vol.%。XRD分析表明所得的复合材料由C、SiC和Ti3SiC2组成。各相的相对含量为:Ti3SiC2含量为2vol.%、SiC含量为22vol.%、C含量为76vol.%。复合材料的使用温度2300℃,断裂韧性9MPa·m1/2
实施例3:选择三维针刺多孔C/C复合材料作为预制体,其密度为1.49g/cm3,开气孔率为24vol.%,超声清洗烘干待用。在300g温度为70℃的蒸馏水中加入2.5g羧甲基纤维素钠和250g粒度为0.4μm的TiC粉,搅拌均匀后倒入球磨罐,加入总重量为1657g的粒径为5~12mm的刚玉球球磨30h制成浆料。浆料浸渗采用真空浸渗结合压力浸渗。将装有浆料的敞口容器和三维针刺C/C复合材料预制体分别放入密闭容器内,抽真空,保持密闭容器内的绝对压力为2.0×103Pa,然后将预制体浸没在浆料中继续抽真空;当容器内的绝对压力为2.0×103Pa时,给密闭容器通入氮气,容器内氮气气氛压力达到1.2MPa,保持20min;从浆料中取出预制体,放入冷冻干燥机中冷冻8h,冷冻温度是-70℃,真空干燥20h,冷冻干燥机中绝对压力是20Pa,干燥温度是50℃。重复前述步骤,直到预制体中的TiC粉的体积含量达到2.3vol.%。在所得C/C复合材料预制体表面涂覆粒径为20μm的工业用硅粉,在绝对压力为3.0×103Pa的高温真空炉中进行硅熔体渗透,渗透工艺:以20℃/min的升温速度升温到1550℃并保温0.5h,再以10℃/min降温到1400℃并保温2h,再以10℃/min降温到室温。制备的C/SiC复合材料的密度为2.1g/cm3,开气孔率为9vol.%。XRD分析表明所得的C/SiC复合材料由C、SiC、Ti3SiC2和少量残余Si组成。各相的相对含量分别为:Ti3SiC2含量为3vol.%、SiC含量为20vol.%、C含量为75vol.%、Si含量为2vol.%。复合材料的使用温度1800℃,断裂韧性10MPa·m1/2
图2显示了Ti3SiC2改性C/SiC复合材料的抛光断口形貌,C/C复合材料内部的大孔被Ti3SiC2和SiC填充。
实施例4:选择三维针刺多孔C/C复合材料作为预制体,其密度为1.43g/cm3,开气孔率为27vol.%,超声清洗烘干待用。在300g温度为80℃的蒸馏水中加入1.5g羧甲基纤维素钠和225g粒度为1μm的TiC粉,搅拌均匀后倒入球磨罐,加入总重量为1053g的粒径为5~12mm的刚玉球球磨24h制成浆料。浆料浸渗采用真空浸渗结合压力浸渗。将装有浆料的敞口容器和三维针刺C/C复合材料预制体分别放入密闭容器内,抽真空,保持密闭容器内的绝对压力为3.0×103Pa,然后将预制体浸没在浆料中继续抽真空;当容器内的绝对压力为3.0×103Pa时,给密闭容器通入氧气,容器内氧气气氛压力达到1.8MPa,保持15min;从浆料中取出预制体,放入冷冻干燥机中冷冻4h,冷冻温度是-80℃,真空干燥30h,冷冻干燥机中绝对压力是100Pa,干燥温度是50℃。重复前述步骤,直到预制体中的TiC粉的体积含量达到6vol.%。在所得C/C复合材料预制体表面涂覆粒径为30μm的工业用硅粉,在绝对压力为4.0×103Pa的高温真空炉中进行硅熔体渗透,渗透工艺:以10℃/min的升温速度升温到1500℃并保温0.5h,再以2℃/min降温到1350℃并保温2h,再以20℃/min降温到室温。制备的C/SiC复合材料的密度为2.3g/cm3,开气孔率为7vol.%。XRD分析表明C/SiC复合材料由C、SiC、Ti3SiC2和少量残余Si组成。各相的相对含量分别为:Ti3SiC2含量为7vol.%、SiC含量为27vol.%、C含量为65vol.%、Si含量为1vol.%。这与图5所示的XRD分析结果一致。复合材料的使用温度1900℃,断裂韧性12MPa·m1/2
从图4可以看出Ti3SiC2呈片层状结构,这种层状结构有助于提高复合材料的断裂韧性。
实施例5:选择二维多孔C/SiC复合材料作为预制体,其密度为1.8g/cm3,开气孔率为20vol.%,超声清洗烘干待用。在300g温度为85℃的蒸馏水中加入2g羧甲基纤维素钠和180g粒度为0.5μm的TiC粉,搅拌均匀后倒入球磨罐,加入总重量为964g的粒径为5~12mm的刚玉球球磨48h制成浆料。浆料浸渗采用真空浸渗结合压力浸渗。将装有浆料的敞口容器和二维C/SiC复合材料预制体分别放入密闭容器内,抽真空,保持密闭容器内的绝对压力为4.0×103Pa,然后将预制体浸没在浆料中继续抽真空;当容器内的绝对压力为4.0×103Pa时,给密闭容器通入氩气,容器内氩气气氛压力达到2.2MPa,保持10min;从浆料中取出预制体,放入冷冻干燥机中冷冻6h,冷冻温度是-55℃,真空干燥10h,冷冻干燥机中绝对压力是80Pa,干燥温度是60℃。重复前述步骤,直到预制体中的TiC粉的体积含量达到4vol.%。在所得C/SiC复合材料预制体表面涂覆粒径为35μm的工业用硅粉,在绝对压力为5.0×103Pa的高温真空炉中进行硅熔体渗透,渗透工艺:以5℃/min的升温速度升温到1600℃并保温0.2h,再以15℃/min降温到1300℃并保温1h,再以5℃/min降温到室温。所制备的C/SiC复合材料的密度为2.4g/cm3,开气孔率为6vol.%。XRD分析表明C/SiC复合材料由C、SiC、Ti3SiC2和少量残余Si组成。各相的相对含量分别约为:Ti3SiC2含量为5vol.%、SiC含量为40vol.%、C含量为50vol.%、Si含量为5vol.%。复合材料的使用温度1500℃,断裂韧性13MPa·m1/2
从图6可以看出二维C/SiC复合材料内部纤维束间的孔隙被Ti3SiC2和SiC填充。由图7的高倍扫描电镜照片可见,纤维束间大孔隙中的残余硅被Ti3SiC2和SiC均匀的弥散开来。
实施例6:选择二维半多孔C/SiC复合材料作为预制体,其密度为1.6g/cm3,开气孔率为30vol.%,超声清洗烘干待用。在300g温度为90℃的蒸馏水中加入2g羧甲基纤维素钠和270g粒度为0.8μm的TiC粉,搅拌均匀后倒入球磨罐,加入总重量为1144g的粒径为5~12mm的刚玉球球磨40h制成浆料。浆料浸渗采用真空浸渗结合压力浸渗。将装有浆料的敞口容器和二维半C/SiC复合材料预制体分别放入密闭容器内,抽真空,保持密闭容器内的绝对压力为1.5×103Pa,然后将预制体浸没在浆料中继续抽真空;当容器内的绝对压力为1.5×103Pa时,给密闭容器通入氩气,容器内氩气气氛压力达到3MPa,保持3min;从浆料中取出预制体,放入冷冻干燥机中冷冻5h,冷冻温度是-65℃,真空干燥24h,冷冻干燥机中绝对压力是8Pa,干燥温度是40℃。重复前述步骤,直到预制体中的TiC粉的体积含量达到8vol.%。在所得C/SiC复合材料预制体表面涂覆粒径为45μm的工业用硅粉,在绝对压力为1.0×103Pa的高温真空炉中进行硅熔体渗透,渗透工艺:以25℃/min的升温速度升温到1500℃并保温1h,再以1℃/min降温到1350℃并保温1h,再以20℃/min降温到室温。制备的C/SiC复合材料的密度为2.3g/cm3,开气孔率为9vol.%。XRD分析表明:C/SiC复合材料由C、SiC、Ti3SiC2和少量残余Si组成。各相的相对含量分别为:Ti3SiC2含量为9vol.%、SiC含量为42vol.%、C含量为45vol.%、Si含量为4vol.%。复合材料的使用温度1600℃,断裂韧性15MPa·m1/2
实施例7:选择三维多孔C/SiC复合材料作为预制体,其密度为1.7g/cm3,开气孔率为25vol.%,超声清洗烘干待用。在300g温度为55℃的蒸馏水中加入2g羧甲基纤维素钠和270g粒度为0.9μm的TiC粉,搅拌均匀后倒入球磨罐,加入总重量为1144g的粒径为5~12mm的刚玉球球磨24h制成浆料。浆料浸渗采用真空浸渗结合压力浸渗。将装有浆料的敞口容器和三维C/SiC复合材料预制体分别放入密闭容器内,抽真空,保持密闭容器内的绝对压力为1.0×103Pa,然后将预制体浸没在浆料中继续抽真空;当容器内的绝对压力为1.0×103Pa时,给密闭容器通入氩气,容器内氩气气氛压力达到2.5MPa,保持20min;从浆料中取出预制体,放入冷冻干燥机中冷冻9h,冷冻温度是-75℃,真空干燥28h,冷冻干燥机中绝对压力是15Pa,干燥温度是60℃。重复前述步骤,直到预制体中的TiC粉的体积含量达到7vol.%。在所得C/SiC复合材料预制体表面涂覆粒径为45μm的工业用硅粉,在绝对压力为1.5×103Pa的高温真空炉中进行硅熔体渗透,渗透工艺:以15℃/min的升温速度升温到1500℃并保温0.5h,再以3℃/min降温到1300℃并保温1h,再以15℃/min降温到室温。制备的C/SiC复合材料的密度为2.3g/cm3,开气孔率为6vol.%。XRD分析表明:C/SiC复合材料由C、SiC、Ti3SiC2和少量残余Si组成。各相的相对含量分别为:Ti3SiC2含量为8vol.%、SiC含量为46vol.%、C含量为45vol.%、Si含量为1vol.%。复合材料的使用温度1900℃,断裂韧性16MPa·m1/2

Claims (3)

1.一种Ti3SiC2改性C/SiC复合材料的制备方法,其特征在于包括以下步骤:
(a)选择要改性的复合材料作为预制体,并对预制体进行超声清洗、烘干;
(b)在温度为50~90℃的蒸馏水中加入羧甲基纤维素钠和TiC粉,其中:蒸馏水占49.7~66.5wt.%,羧甲基纤维素钠占0.3~0.5wt.%,TiC粉占33.2~49.8wt.%;搅拌均匀后倒入球磨罐,加入粒径为5~12mm的刚玉球球磨5~48h,制成浆料,其中:蒸馏水、羧甲基纤维素钠和TiC粉的总重量与刚玉球总重量之比为1∶1~1∶3;
(c)将经步骤(b)制备的浆料倒入敞口容器中,将装有浆料的敞口容器和经步骤(a)处理的预制体分别放入密闭容器内,保持密闭容器内的绝对压力为5.0×102~5.0×103Pa,然后将预制体浸没在浆料中继续抽真空;当密闭容器内的绝对压力为5.0×102~5.0×103Pa时,给密闭容器通入气氛,容器内气氛压力达到0.8~3MPa后保持3~50min;从浆料中取出预制体,放入冷冻干燥机中冷冻4~10h,冷冻温度是-50~-80℃,真空干燥5~30h,冷冻干燥机中绝对压力是5~100Pa,干燥温度是40~70℃;重复前述步骤,直到预制体中的TiC粉的体积含量达到1.8~10vol.%;
(d)在经步骤(c)处理的预制体表面涂覆粒径为2~45μm的工业用硅粉,在绝对压力为5.0×102Pa~5.0×103Pa的高温真空炉中以5~30℃/min的升温速度升至1500℃~1600℃,保温0.2~1h,使硅熔融渗透到预制体中,再以1~30℃/min降温到1300℃~1400℃保温1~3h,使其充分反应,再以1~30℃/min降温到室温;
所述的预制体,其材料是二维多孔C/C复合材料、三维针刺多孔C/C复合材料、二维多孔C/SiC复合材料、二维半多孔C/SiC复合材料或者三维多孔C/SiC复合材料。
2.根据权利要求1所述的Ti3SiC2改性C/SiC复合材料的制备方法,其特征在于:所述的TiC粉,其粒度为0.4~2μm。
3.根据权利要求1所述的Ti3SiC2改性C/SiC复合材料的制备方法,其特征在于:所述的气氛是氩气、空气、氮气或者氧气。
CN2009101298074A 2008-11-10 2009-03-19 Ti3SiC2改性C/SiC复合材料的制备方法 Expired - Fee Related CN101508591B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101298074A CN101508591B (zh) 2008-11-10 2009-03-19 Ti3SiC2改性C/SiC复合材料的制备方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200810232171 2008-11-10
CN200810232171.1 2008-11-10
CN2009101298074A CN101508591B (zh) 2008-11-10 2009-03-19 Ti3SiC2改性C/SiC复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN101508591A CN101508591A (zh) 2009-08-19
CN101508591B true CN101508591B (zh) 2011-09-14

Family

ID=41001145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101298074A Expired - Fee Related CN101508591B (zh) 2008-11-10 2009-03-19 Ti3SiC2改性C/SiC复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN101508591B (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962434B (zh) * 2012-10-31 2014-09-03 西安交通大学 一种碳化硅/铜硅合金双连续相复合材料及其制备方法
CN103058711A (zh) * 2012-12-14 2013-04-24 西北工业大学 一种通过超高温陶瓷粉基体改性制备超高温陶瓷基复合材料的方法
CN103408305A (zh) * 2013-07-24 2013-11-27 西北工业大学 Ti3Si(Al)C2改性SiC基复合材料的制备方法
CN104628407B (zh) * 2015-02-11 2017-01-04 西北工业大学 一种Al2O3纤维增韧MAX相陶瓷基复合材料的制备方法
CA2939288A1 (en) 2015-08-28 2017-02-28 Rolls-Royce High Temperature Composites, Inc. Ceramic matrix composite including silicon carbide fibers in a ceramic matrix comprising a max phase compound
CN105481438B (zh) * 2016-01-11 2018-05-25 山东理工大学 树脂分散硼化铪碳化硼-碳纤维摩擦材料的制备方法
CN105418108B (zh) * 2016-01-11 2018-01-12 山东理工大学 乙醇分散硼化钛碳化硼‑碳纤维摩擦材料的制备方法
CN105481439B (zh) * 2016-01-11 2018-05-25 山东理工大学 树脂分散硼化铌碳化硼-碳纤维摩擦材料的制备方法
CN105418121B (zh) * 2016-01-11 2018-05-25 山东理工大学 合脂分散硼化钛碳化硼-碳纤维摩擦材料的制备方法
CN105418118B (zh) * 2016-01-11 2018-01-30 山东理工大学 树脂分散碳化锆碳化硼‑碳纤维摩擦材料的制备方法
CN105481421B (zh) * 2016-01-11 2018-05-25 山东理工大学 合脂分散硼化锆碳化硅-碳纤维摩擦材料的制备方法
CN105418106B (zh) * 2016-01-11 2018-01-12 山东理工大学 合脂分散硼化铌碳化硅‑碳纤维摩擦材料的制备方法
CN105418102B (zh) * 2016-01-11 2018-01-12 山东理工大学 超声波分散硼化铪碳化硅‑碳纤维摩擦材料的制备方法
CN105418129B (zh) * 2016-01-11 2018-05-25 山东理工大学 超声波分散硼化钒碳化硼-碳纤维摩擦材料的制备方法
CN105418104B (zh) * 2016-01-11 2018-01-30 山东理工大学 合脂分散碳化铪碳化硅‑碳纤维摩擦材料的制备方法
CN105481437B (zh) * 2016-01-11 2018-05-25 山东理工大学 乙醇分散碳化钒碳化硅-碳纤维摩擦材料的制备方法
CN105418109B (zh) * 2016-01-11 2018-01-12 山东理工大学 乙醇分散碳化钽碳化硼‑碳纤维摩擦材料的制备方法
CN105481432B (zh) * 2016-01-11 2018-05-25 山东理工大学 乙醇分散碳化锆碳化硅-碳纤维摩擦材料的制备方法
CN105481441B (zh) * 2016-01-11 2018-05-25 山东理工大学 树脂分散硼化铪碳化硅-碳纤维摩擦材料的制备方法
CN105418123B (zh) * 2016-01-11 2018-01-30 山东理工大学 合脂分散碳化钨碳化硼‑碳纤维摩擦材料的制备方法
CN105622149B (zh) * 2016-01-11 2017-11-21 山东理工大学 树脂分散碳化钽碳化硅‑碳纤维摩擦材料的制备方法
CN105622148B (zh) * 2016-01-11 2017-11-21 山东理工大学 树脂分散碳化锆碳化硅‑碳纤维摩擦材料的制备方法
CN105481454B (zh) * 2016-01-11 2018-02-02 山东理工大学 超声波分散硼化钨碳化硼‑碳纤维摩擦材料的制备方法
CN105481417B (zh) * 2016-01-11 2018-05-22 山东理工大学 超声波分散硼化钛碳化硅-碳纤维摩擦材料的制备方法
CN106966749B (zh) * 2016-06-03 2018-05-29 北京航空航天大学 一种用Ti3Si(Al)C2改性热结构复合材料的方法
CN107935617A (zh) * 2016-10-12 2018-04-20 平顺县西沟龙鼎新材料科技有限公司 一种高速列车用碳陶刹车材料的制造方法
CN106631169A (zh) * 2016-12-29 2017-05-10 河北工业大学 一种Ti3SiC2/SiC/Al复合材料的制备方法
CN106957180B (zh) * 2017-03-10 2020-05-26 湘潭大学 一种Cf/C-SiC复合材料及其制备方法和应用
CN108409347A (zh) * 2018-03-09 2018-08-17 中国航发北京航空材料研究院 一种原位生成Ti3SiC2相增韧碳化硅陶瓷基复合材料的制备方法
CN108585907B (zh) * 2018-05-03 2021-09-14 中国航发北京航空材料研究院 一种Cr2AlC改性的自愈合碳化硅陶瓷基复合材料的制备方法
CN108585869B (zh) * 2018-05-10 2021-06-11 西北工业大学 一种原位自生max相改性复合材料的制备方法
CN109095925A (zh) * 2018-10-16 2018-12-28 西北工业大学 一种原位自生Zr3Al3C5改性C/SiC复合材料的制备方法
CN109207786B (zh) * 2018-11-01 2020-08-07 西北工业大学 Zr3Al3C5-ZrAlxSiy复合材料制备方法
CN110885254B (zh) * 2019-12-02 2021-05-04 中南大学 一种多孔Ti3SiC2/SiC复合材料及其制备方法
CN111217616B (zh) * 2020-02-17 2022-07-05 西北工业大学 一种近零膨胀特性的C/SiC结构材料的制备方法
CN113999012A (zh) * 2020-07-28 2022-02-01 中国科学院金属研究所 一种短切纤维增强陶瓷基复合材料的制备方法
CN112521157A (zh) * 2020-12-24 2021-03-19 西北工业大学 一种超高温陶瓷基复合材料及制备方法
CN113929485A (zh) * 2021-11-12 2022-01-14 中国人民解放军国防科技大学 一种TiC-Ti3SiC2双重改性的C/C-SiC复合材料的制备方法
CN115991604A (zh) * 2022-03-31 2023-04-21 南京航空航天大学 一种原位Ti3SiC2增韧光固化3D打印Cf/SiC复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477081A (zh) * 2003-07-11 2004-02-25 清华大学 高韧性Al2O3/Ti3SiC2层状陶瓷复合材料及其热压制备方法
CN1609055A (zh) * 2004-09-21 2005-04-27 北京交通大学 一种钛硅碳化物粉及其以铝为反应助剂的常压合成方法
CN1621125A (zh) * 2004-10-13 2005-06-01 中国科学院上海硅酸盐研究所 低温烧结高耐火度网眼碳化硅陶瓷过滤器及制备方法
CN101041089A (zh) * 2007-04-28 2007-09-26 中国科学院上海硅酸盐研究所 一种致密高强钛硅化碳/硅酸钙复合生物材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477081A (zh) * 2003-07-11 2004-02-25 清华大学 高韧性Al2O3/Ti3SiC2层状陶瓷复合材料及其热压制备方法
CN1609055A (zh) * 2004-09-21 2005-04-27 北京交通大学 一种钛硅碳化物粉及其以铝为反应助剂的常压合成方法
CN1621125A (zh) * 2004-10-13 2005-06-01 中国科学院上海硅酸盐研究所 低温烧结高耐火度网眼碳化硅陶瓷过滤器及制备方法
CN101041089A (zh) * 2007-04-28 2007-09-26 中国科学院上海硅酸盐研究所 一种致密高强钛硅化碳/硅酸钙复合生物材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2004-292176A 2004.10.21 *

Also Published As

Publication number Publication date
CN101508591A (zh) 2009-08-19

Similar Documents

Publication Publication Date Title
CN101508591B (zh) Ti3SiC2改性C/SiC复合材料的制备方法
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN105130438B (zh) 一种基于反应烧结制备碳化硼陶瓷复合材料的方法
CN104150940B (zh) 氮化硅与碳化硅复相多孔陶瓷及其制备方法
CN105503227B (zh) 一种立体织物增强碳化硅‑金刚石复合材料的制备方法
CN105499576A (zh) 一种粉末冶金制备多孔钛铝合金的方法
CN105200260A (zh) 一种二氧化钛原位还原制备多孔钛的方法
WO2015192815A1 (zh) 一种碳化钨-立方氮化硼复合材料及其制备方法
CN104628407A (zh) 一种Al2O3纤维增韧MAX相陶瓷基复合材料的制备方法
CN107555995A (zh) 一种石墨烯/碳化硼陶瓷复合材料及其制备方法
CN103387422A (zh) 在炭材料表面制备碳化硅/二硅化钼复合涂层的方法
CN102115330A (zh) 酚醛树脂为碳源的固相烧结碳化硅陶瓷的制备方法
Moradi et al. Fabrication of nano-composite Al-B4C foam via powder metallurgy-space holder technique
CN104073703B (zh) 一种Al2O3-TiN-Al陶瓷复合材料及其制备方法
CN101774806B (zh) 自愈合碳/碳、碳/碳化硅复合材料的制备方法
Sofianos et al. Novel synthesis of porous aluminium and its application in hydrogen storage
CN107500767A (zh) 碳化铀芯块及其制备方法、燃料棒
CN103408305A (zh) Ti3Si(Al)C2改性SiC基复合材料的制备方法
CN113770381B (zh) 一种3d打印金刚石/金属基复合材料及其制备方法和应用
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN105084364B (zh) 一种多孔碳化硅球形粉末的制备工艺
Sutygina et al. Manufacturing of open-cell metal foams by the sponge replication technique
CN104072139A (zh) 金属钛碳化物陶瓷的制备方法
CN106478112A (zh) 一种高硬度高韧性b4c‑w2b5复合陶瓷及其制备方法
CN102219540A (zh) 多孔Ti(C,N)-TiB2复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110914

Termination date: 20170319

CF01 Termination of patent right due to non-payment of annual fee