具体实施方式
定义
[130]如本文使用的,术语“大约”指与额定值有+/-10%的偏差。应该理解这种偏差总是包括在本文提供的任何给定值内,无论是否特意指出。
[131]术语“含碳原料”和“原料”在本文可以互换使用,定义为指可用于气化加工中的含碳材料。适合的原料实例包括但不限于:废物,其包括城市废物、工业活动产生的废物和生物医药废物;不适用于再循环的含碳材料,其包括不可回收的塑料;污泥;煤;重油、石油焦炭;重质精炼残渣;炼油厂废物;烃污染的固体;生物体;农业废物;城市固体废物;有害的废物和工业废物。可用于气化的生物体实例包括但不限于:废木材;新鲜木材;水果、蔬菜和谷物加工的残留物;造纸厂残渣;草杆;草和肥料。
[132]术语“废物”定义为指含碳的有害和无害废物。这些废物可包括城市废物、工业活动产生的废物和生物医药废物。废物也包括不适用于再循环的含碳材料,其包括不可回收的塑料和污泥。
[133]术语“可控的固体移动装置”定义为指以可控的方式从气化器移出固体的一种或多种设备。这类设备的实例包括但不限于:旋转臂、回转轮、旋转叶片、移动架子、推进臂、螺旋、输送机及其组合。
[134]术语“传感元件”定义为描述系统中配置用于对加工、加工设备、加工进料或加工输出的特征进行传感的任何元件,其中这些特征可以由特征值表示,特征值可用于对系统的一种或多种局部、区域性和/或综合加工进行监控、调节和/或控制。可用于气化系统的传感元件可包括但不限于:传感器、检测器、监控器、分析器或它们的任意组合,用于对加工、流体和/或材料的温度、压力、流量、组分和/或其它特征进行传感,以及对系统内给定位置的材料位置和/或布置进行传感,以及,对在本系统内使用的任何加工设备的任何操作特征进行传感。本领域普通技术人员应该理解,虽然上述传感元件实例适合用于气化系统,但是传感元件并不限于本文公开的内容,因此,本文称作传感元件的元件不应限制于这些实例和/或不恰当地解释。
[135]术语“响应元件”定义为设定用于传感的特征对进行响应的任何元件,以根据一个或多个预定的、计算的、固定的和/或可调节的操作参数,操作与该响应元件可操作连接的加工设备,其中一个或多个控制参数定义为提供期望的加工结果。从气化系统角度考虑的响应元件可以包括但不限于:静态的、预设的和/或动态的可变驱动器、电源,以及,可基于一个或多个控制参数向设备施加作用的任何其它元件,其可以是机械的、电的、磁的、风力的、水力的或它们的组合。从气化系统角度考虑,可与一种或多种响应元件可操作连接的加工设备可包括但不限于:材料和/或原料进料装置,热源(如等离子体加热源),添加剂进料装置,各种鼓风机和/或其它这类气体循环设备,各种流量和/或压力调整器,以及,其它可操作影响气化系统内的局部、区域性和/或综合加工的加工设备。本领域普通技术人员应该理解,虽然上述响应元件的实例适合用于气化系统,因此响应元件并不限于本文公开的内容,因此,本文称作响应元件的元件不应限制于这些实例和/或不恰当地解释。
[136]术语“实时”用于限定活动,实时活动基本上反映该活动涉及的系统或加工的目前或当前状态、或者特征。实时活动可包括但不限于加工、重复、测量、计算、响应、反应、数据获得、响应于获得数据的设备操作、以及在系统内实施的其他这类活动、或在系统中实施的给定加工中实施的其它这类活动。应该理解涉及相对缓慢变化加工或特征的实时活动可以在一定期限或时期(例如秒、分钟、小时等)内实行,与涉及相对较快变化加工或特征(例如1ms、10ms、100ms、1s)的另一同样称为实时活动的情况相比,前一期限或时期长得多。
[137]术语“连续的”用于限定动作,连续动作在规则的基础上实施,或在给定速率或频率下实施。连续活动包括但不限于加工、重复、测量、计算、响应、反应、经由传感元件获得数据、响应于获得数据的设备操作、以及在系统内实施的其他这类活动、或在系统内实施的给定加工中实施的其它这类活动。应该理解涉及相对缓慢变化的加工或特征的连续活动可以在一定速率或频率(例如1/秒、1/分钟、1/小时等)下实行,与涉及相对快变化加工或特征(例如1KHz、100Hz、10Hz、1Hz)的另一同样称为连续活动的情况相比,前一种速率或频率慢得多。
[138]如本文使用的,术语“转化器”指用于在冷却和调节之前将含碳原料转化为气体产物的系统。转化加工可以在一个室、具有多个区的一个室或多个室中进行。在一个实施方式中,转化器包括气化器和气体重整系统。
[139]如本文使用的,一般而言,术语“产物气体”指在通过除去污染物的加工进行冷却和清除之前,由气化装置产生的气体。根据气化装置的设计,产物气体可用来指例如原料废气、原料合成气、重整的废气或重整的合成气。
[140]如本文使用的,术语“气体重整”指进一步加工原料合成气或原料废气以产生不同化学组成的气体。空气、浓缩的气体、蒸汽等可与等离子体加热结合使用,以改变CO/CO2和H2/H2O的水平(期望的热值)。
[141]如本文使用的,术语“重整的合成气”指已通过重整步骤的废气,已经使用添加剂如热量、空气和/或蒸汽来将一个化学组成的气体转化为另一化学组成的气体(优化的热值)。例如,该气体已经通过气体重整系统(GRS)。
[142]如本文使用的,术语“重整的废气”指已通过重整步骤的废气,已经使用添加剂如热量、空气和/或蒸汽来将一个化学组成的气体转化为另一化学组成的气体(优化的热值)。例如,该气体已经通过气体重整系统(GRS)。
[143]除非另有规定,本文使用的技术和科学术语与本发明所属领域普通技术人员常规理解的具有相同意义。
[144]本发明提供气化设备,其用于将含碳原料转化为气体,可任选地用于下游应用(如能量的产生)。该气化设备包括许多系统,所述系统协同工作,行使用于将原料转化为电的整合系统功能。然而,本领域普通技术人员可以理解,每一个子系统自身可作为能与其它系统协同行使功能和/或整合入其它设备的系统。构成本发明设备的子系统是:城市固体废物处理系统;塑料处理系统;具有横向转移系统的水平定向气化器;气体重整系统;热再循环系统;气体调整系统;残渣调整系统;气体均化系统和控制系统。
[145]图3示意性描述本发明一个实施方式的气化装置所包括的各种元件的配置。
[146]根据本发明的一个实施方式,气化系统包括整合控制系统,整合控制系统用于控制在其中实施的气化加工,可以包括各种独立的和交互的局部、区域性和综合加工。
[147]在图43中描述高水平加工控制示意图,描述本发明一个实施方式中气化装置的元件所包括或连接的各种传感元件和响应元件。
[148]控制系统可配置为使用于期望前端结果和/或后端结果的各种处理增强和优化。
[149]例如,前至后控制方案可包括:例如在配置用于MSW气化的系统中,帮助使原料的生产量恒定,同时达到这种类型系统的调节标准。这类前至后控制方案可优化以达到给定的结果:该系统被特别设计和/或实施,或者设计为更大控制系统的子集的一部分或简化版本,例如加工的启动或关闭后,或者调解各种不常见或紧急的情况。
[150]后到前控制方案可包括对于选定的下游应用优化产物气体质量或特性,即在本实施例中经由下游气体发动机(一个或多个)发电。控制系统配置成优化这种后端结果,同时,可提供监控和调节前端特征,以便在标准应用时确保系统的恰当和连续功能符合于规定标准。
[151]对本领域普通技术人员来说明显的是,上述实例不是限定性的,可以考虑前端结果和/或后端结果的其它实施例,而不脱离本文的范围和实质。此外,本领域普通技术人员可以理解,控制系统可配置成提供更好的结果,这种结果限定为前端结果和/或后端结果的组合,或者限定为从系统内任何点循环的结果。
城市固体废物(MSW)处理系统
[152]最初的MSW处理系统设计成考虑:(a)供应四天的贮存能力;(b)避免长的保持期和过多的MSW分解;(c)防止碎片被吹到周围;(d)臭味的控制;(e)垃圾车卸货的进入和转弯空间;(f)装填机(将MSW从MSW贮料堆运至MSW粉碎系统)所需行驶距离和转弯量的最小化;(g)避免装填机和垃圾车之间的操作干扰;(h)考虑工厂扩张另外设置(增加)气化流的可能性;(i)卡车最少程度地进入设备,特别是进入有害区域;(j)用最少的人员进行安全操作;(k)将输送机进料斗中的进料水平显示给装填机操作人员;(1)将接收的废物粉碎至适合进一步处理的颗粒大小;以及(m)进入处理器的MSW流速的远程可控性和塑料进料速度的独立控制。
[153]MSW处理系统包括MSW贮存建筑物、装填机、MSW粉碎系统、磁力分离器和进料输送机。还设计有单独的系统用于储存、粉碎、堆放和供给塑料,其进料速度用作气化加工的添加剂进料速度。MSW和塑料的所有处理在建筑物内部进行以抑制碎片和臭味。使用先进先出(FIFO)时序安排来使MSW的过度分解最小化。使用机械化的铲斗装填机来将物质从贮料堆运送到粉碎系统。
[154]MSW粉碎系统由进料输送机、粉碎机和选择输送机组成。进料输送机将建筑物内的MSW输送进入粉碎机。加工控制器对输送机进行远程控制,以匹配加工需要。粉碎机确保接收的MSW适于加工。粉碎机装备成检测任何可能的堵塞并采取适当的行动。粉碎的废物落到带式输送机上,在磁捡拾系统中输送,这避免了无意将过量铁金属通过气化器进料。此步骤后,MSW落在螺旋输送机上,螺旋输送机将MSW送入气化器。螺旋输送机的进料速度由加工控制器控制以满足加工需要。MSW进料输送机具有另外的进口以接收粉碎的塑料。
塑料处理系统
[155]用于处理塑料的系统提供塑料贮存、将塑料粉碎、将塑料置入贮料堆并在独立控制下将塑料送入处理器。该塑料处理系统包括贮存设备、具有进料斗的粉碎机、取走输送机和贮料堆,所有这些装置位于共同的建筑物中以控制碎片。进料输送机将粉碎的塑料移入气化器。输送机槽被密封直到MSW输送机槽,以便将塑料经由MSW输送机引入气化器,以减小进入气化器的开口。输送机是螺旋输送机,其斗是密封的并在斗与输送机之间密封,以使斗含有材料时提供气密封。
具有横向转移系统的水平定向气化器
[156]该系统包括:水平定向的气化室,气化室具有一种或多种原料进口、一种或多种气体出口和固体残渣出口;室加热系统;一个或多个横向转移元件,用于在加工期间移动材料通过所述气化器;和用于控制所述一个或多个横向转移元件移动的控制系统。
[157]在待优化含碳原料被气化的不同阶段,此系统提取挥发物。原料在气化器的一端引入,并且,在加工期间通过一个或多个横向转移元件使原料移动通过气化器。通过干燥、挥发、烧焦成灰分的转化,同时产生CO和CO2,材料堆顶部的温度通常随气化加工而升高。控制系统从可测量的参数获得信息,并独立管理每一横向转移元件的移动,其中所述可测量的参数如温度和材料堆的高度或轮廓。
[158]为了促进反应物质的移动,可独立控制单个的横向转移元件,或者可以以协调的方式控制两个或多个横向转移元件组。依赖于反应物质必须通过的路径长度和反应物质可由每个横向转移元件移动的距离,确定具体气化器中优选的横向转移元件数量,并且此数量要兼顾使单次转移所引起的加工波动量最少以及机械复杂性、成本和可靠性。
[159]因此,在水平定向气化器中的每一区域具有一定的温度范围,并具有促进气化加工某一阶段的任选工艺添加剂(例如空气、氧气和/或蒸汽)。在反应物质堆中,所有的气化阶段同时发生,然而,各阶段优选处在某一温度范围内。
[160]通过物理方式将材料移动通过气化器,在升高到使材料挥发的温度之前,允许尽可能积极有效地进行烘干,促进气化加工。然后,在升高到促进烧焦成灰分的转化温度之前,该加工允许尽可能积极有效地进行挥发。
[161]在一个实施方式中,将灰分转移入灰分收集室。适当的灰分收集室是本领域已知的,因此,考虑系统需要,本领域技术人员容易知道适当的灰分收集室的大小、形状和制造方式。在一个实施方式中,将灰分转移入用于冷却的水箱中,气化器残渣从该水箱通过导管(可任选在阀的控制下)传输到排出位置。在一个实施方式中,将灰分转移入单独的炉渣转化室,以将灰分转化为炉渣。
[162]在加工期间,在一端(下文称为进料端)通过原料输入将原料引入,并且将原料从进料端通过气化室中的多个区域向灰分(固体残渣)出口或灰分端转移。随着进料物质行进通过该室,进料物质的质量和体积减少,这是由于其挥发部分进行挥发以形成废气,所得到的烧焦物进行反应以形成另外的废气和灰分。
[163]由于这种行进中的转化,材料高度(堆高度)从进料端朝向室的灰分端减少并且变平,同时仅固体残渣(灰分)残留。
[164]在一个实施方式中,废气通过气体出口逃逸进入例如气体精炼室(在那里气体经历进一步的加工),或者进入贮存室或箱。固体残渣(灰分)通过灰分出口转移到例如灰分收集室或固体残渣调整室,以进一步加工处理。
[165]在一个实施方式中,如在图47中所示,气化器具有阶梯形底板,阶梯形底板具有多个底板水平或阶梯。任选地,每个底板水平的倾斜度在大约5度至大约10度之间。
[166]在一个阶梯形底板气化器的实施方式中,各阶梯(底板水平)至少部分与上面讨论的各区域相关,各区域或阶梯具有优化用于不同程度的干燥、挥发和碳转化的条件。方便起见,最上面的阶梯称为阶梯A;下一阶梯称为阶梯B,以此类推。相应的横向转移元件用相同的字母标示,即横向转移元件A或滑枕A涉及阶梯A,横向转移元件B或滑枕B涉及阶梯B。
[167]在三阶梯实施方式中,具有上面的阶梯或阶梯A、中间阶梯或阶梯B和下面的阶梯或阶梯C。进料物质输入在第一阶梯(阶梯A)上。对于该阶梯A,正常的温度范围(如在材料堆底部测量的)介于300℃和900℃之间。阶梯B被设定具有400℃和950℃之间的底部温度范围,以促进挥发,残留物为干燥操作的残留物以及大量碳转化的残留物。阶梯C的温度范围介于500℃和1000℃之间。阶梯C中的主要加工是挥发量更少(残留物)的碳转化。在一个实施方式中,由横向转移系统进行这些阶梯上的移动,并且每一阶梯可任选地由独立控制的横向转移元件维持。
[168]在加工处理期间,空气作为氧气来源引入气化室。可任选地,可以选择注入加工气体的方法以促进空气均匀流入气化室、防止热点形成和/或提高温度控制。空气可通过室的侧面引入,例如在图47和图48中所示,可任选地从靠近室底部的侧面引入,或者可以通过室的底板引入,或者通过这两者引入。
[169]在气化器设计中还需要考虑工艺添加剂的进料位置、方向和数量。可任选地,在确保最有效反应以达到期望转化结果的位置,将工艺添加剂注入气化器。在一个实施方式中,气化室的底板具有不同程度的穿孔,以允许在材料堆的底部引入工艺添加剂,如空气。
[170]在一个实施方式中,室的侧壁向内朝底部倾斜以达到足够小的宽度,这样从侧面的空气渗透良好,同时仍可容纳期望体积的材料。可任选地,可使倾斜角度足够陡,以确保在加工期间材料朝着室的底部下落。
[171]气化室是部分或完全衬有耐火材料的加热室,其内部容积大小适合容纳适当量的材料,用于所需的固体居留时间。耐火材料保护气化室免受高温和腐蚀气体的影响,并且使加工中不必要的热量损失最小化。耐火材料可以是传统的本领域技术人员公知的耐火材料,其适合用于高温(例如高达大约1100℃)未加压的反应。选择耐火系统要考虑的因素包括:内部温度、磨损;腐蚀和侵蚀;期望的热转化/外部容器温度的限制;耐火材料的期望寿命。适当的耐火材料的实例包括高温烧结陶瓷,即氧化铝、氮化铝、硅酸铝、氮化硼、磷酸锆、玻璃陶瓷和主要含有二氧化硅、氧化铝、氧化铬和二氧化钛的高铝砖。为了进一步保护气化室免受腐蚀气体的影响,可任选地,气化室的部分或全部用保护膜作衬里。这样的膜是本领域已知的,因此,基于系统的需要,本领域工作人员能容易地选择适当的膜,例如,这种膜包括Sauereisen高温膜第49号。
[172]在一个实施方式中,耐火材料是多层设计,其内侧具有高密度层,以对抗高温、磨损、腐蚀和侵蚀。高密度材料的外侧是较低密度的材料,其具有较低的抗性但是具有较高的隔热系数。可任选地,此外侧层是非常低密度的泡沫板材料,其具有非常高的隔热系数,并且由于不暴露于磨损和腐蚀而可以使用。用于多层耐火材料的适当材料是本领域公知的。在一个实施方式中,多层耐火材料包括:朝向内侧的氧化铬层、中间氧化铝层、和外侧的insboard层。室壁可任选地设置有用于耐火材料衬里的支撑件或耐火材料锚定件。适当的耐火材料支撑件和锚定件是本领域已知的。
横向转移系统
[173]材料移动通过气化室,以进行气化加工的特定阶段(干燥、挥发、烧焦成灰分的转化)。为了对气化加工进行控制,根据加工需要,可改变材料在气化室中的移动(可变移动)。使用含有一个或多个横向转移元件的横向转移系统,使材料横向移动通过气化器。通过改变移动速度、横向转移元件每次移动的距离、和多个横向转移元件相对于彼此移动的顺序,优化横向转移系统对反应物质的移动。一个或多个横向转移元件可以以协调方式起作用,或者,各横向转移元件可独立起作用。为了对材料流速和堆高度进行控制,各横向转移元件可以以不同的速度、不同的移动距离、不同的移动频率独立移动。
[174]独立横向转移元件包括移动单元和导向元件或校准元件。本领域工作人员容易理解,移动单元可装有导向啮合元件。移动单元可包括但不限于架子/平台、滑枕、开沟器(plow)、螺旋元件、载体滑枕(carrier ram)、输送机或带。
[175]载体滑枕可包括单一滑枕或多触点滑枕。在一个实施方式中,气化器设计考虑使用单一滑枕或多触点滑枕。在滑枕的操作中需要使气流的干扰最小时,优选应用多触点滑枕。在多触点滑枕设计中,多触点滑枕可以是整体结构,或者是下述结构:滑枕触点连接到滑枕体,并且,各滑枕触点可任选地基于位置具有不同的宽度。对多触点滑枕设计中触点之间的间隙进行选择,以避免反应物质的颗粒架桥。
[176]系统在非常高的温度下操作的实施方式中,可任选对移动单元提供冷却。在一个使用滑枕或架子的实施方式中,可提供在滑枕或架子内部的冷却。可以通过流体(空气或水)从室的外部循环入滑枕或架子内部,进行上述冷却。
[177]在一个实施方式中,例如在图47、图51和图52所示的,横向转移系统可以是可移动的架子/平台,主要通过可移动的架子/平台使材料位于架子/平台的顶部,将材料移动通过气化器。也可通过可移动架子/平台的前缘来推动部分材料。
[178]横向转移系统的动力由发动机和驱动系统来提供,并且由致动器(actuator)控制。各横向转移元件可任选由专用发动机提供动力,并且具有独立的致动器,或者一个或多个横向转移元件可以由单一发动机和共用致动器提供动力。
[179]气化加工需要加热。可通过使原料部分氧化直接进行加热,或者通过使用一个或多个本领域已知的加热源间接进行加热。在一个实施方式中,加热源可以是循环热空气。热空气可以由例如气箱、空气加热器或热交换器供应,所有这些供应装置是本领域已知的。在一个实施方式中,通过各空气进料和分配系统,可将热空气提供至每一水平(阶梯)。适当的空气进料和分配系统是本领域已知的,并且包括用于每一水平(阶梯)的单独气箱,能通过每一水平(阶梯)的底部的孔,将热空气从气箱送至该水平(阶梯),或者经由用于每一底板水平的独立受控喷头将热空气送入。
[180]在一个实施方式中,每一底板水平具有一个或多个沿独立阶梯长度方向延伸的凹槽。该凹槽的大小适于容纳热空气和/或蒸汽管。该管任选地在下部1/3至一半的位置处打孔,以使热空气或蒸汽在阶梯的长度方向上均匀分布。可选地,喷头管可朝管的上部打孔。
[181]为了帮助气化器的最初启动,气化器可包括进入孔,进入孔的大小适合多种常规燃烧器,例如天然气、油/气或丙烷燃烧器,以预加热该室。同样,可使用木材/生物体来源、发动机排气、电加热器来预加热该室。
[182]任选地,可将工艺添加剂加入气化器,以促进原料有效转化为特定的气体。可引入蒸汽以确保充足的游离氧和氢,以最大程度使进料原料的离解元素转化为产物气体和/或无害化合物。可引入空气来帮助实现加工的化学平衡,以最大程度将碳转化为燃料气体(最小化游离碳),并保持最佳的加工温度,同时最小化输入热量的成本。任选地,可使用其它添加剂来优化加工,以改善排放的效果。
[183]因此,本发明可包括一种或多种工艺添加剂进料。这些工艺添加剂进料口包括用于蒸汽注入和/或空气注入的进料口。在产物气体物质从气化器排出之前,可将蒸汽进料口定位为仅仅将蒸汽引入高温区并进入产物气体物质。可将空气进料口定位于气化器室内及其周围,以确保工艺添加剂完全覆盖加工区。在一个实施方式中,工艺添加剂进料口靠近气化器底板。
[184]在一个实施方式中,靠近底板的工艺添加剂进料口是在耐火材料底面切开的半管空气喷头。可以对这些空气喷头进行设计,以便于进行更换、维修或改变,同时使反应物质横向转移的干扰最小化。在空气喷头中气孔的数量、直径和位置可以根据系统的需要或横向转移系统设计而改变。
[185]在一个实施方式中,气化室可进一步包括一个或多个孔。这些孔可包括维修孔,其允许进入仓室内进行维护和修理。这样的孔是本领域已知的,并且可包括不同尺寸的可密封的孔道。在一个实施方式中,通过检修孔在气化器的一端提供进入气化器的通道,在操作中可由可密封耐火材料加衬盖关闭该检修孔。在一个实施方式中,可通过除去一个或多个气箱获得进一步的通道。任选地,气化器可包括带凸缘的下端部分,此部分连接到气化室的带凸缘主体部分,以使气化室可开放,用于耐火材料的检查和修理。
[186]气化完成后,可选地,使残留固体(灰分)从气化器移出并通过处理系统。因此,气化器可任选地包括可控固体移出系统,以进行固体残渣或灰分移出。在一个实施方式中,可控固体移出系统包括滑枕机构以将灰分推出该室。在一个实施方式中,可控固体移出系统由传送滑枕的系统构成。任选地,滑枕行程的长度可控制,从而,可控制每一次行程中材料进入固体残渣加工室的量。在本发明进一步的实施方式中,可控固体移出系统可包括可控旋转臂机构。
[187]当材料在气化器中加工处理并且从一个区域到一个区域移动时,在材料堆中产生的热可引起熔化,这导致灰分的结块。结块的灰分在下落口型出口会引起堵塞。因此,气化器可任选地包括用于打碎灰分结块的装置。在一个实施方式中,为了确保结块不会在室的出口产生堵塞,使用螺旋输送机来从气化器提取灰分。滑枕运动将灰分推入提取器,并且提取器将灰分推离气化器,并且送入灰分输送机系统。在灰分送入输送机系统之前,提取器螺杆旋转打碎结块。通过在提取器螺杆螺纹上设置锯齿状凸起,可增强打碎作用。
气体重整系统
[188]本发明进一步包括气体重整系统,用于将气化器的气体重整成具有期望化学组成的重整气。特别地,重整系统使用等离子体喷管的喷管热量离解气体分子,并使气体分子能重新结合成可用于下游应用(例如能量产生)的更小分子。该系统还包括气体混合装置、工艺添加剂元件和反馈控制系统,反馈控制系统具有一个或多个传感器、一个或多个加工试验器和计算装置,以监控和/或调节重整反应。
[189]气体重整系统(GRS)包括气体重整室,气体重整室具有一个或多个进料气体进口、一个或多个重整气体出口、一个或多个等离子体喷管、氧气源和控制系统。
[190]GRS能转化含有挥发分子的原料进料气体,所述挥发分子可包括例如一氧化碳、氢气、轻链烃和二氧化碳以及污染颗粒物质(如在含碳原料气化期间产生的煤烟和炭黑)。GRS提供密封的环境,用于容纳和控制加工。GRS使用等离子体喷管的热量来将挥发分子离解成其组成元素,这些组成元素可重新结合成具有期望化学组成的气体。使用工艺添加剂(如空气和/或氧气和任选的蒸汽)来提供重新结合必须的分子种类。等离子体喷管热量还除去不想要的物质,如石蜡、焦油、氯化化合物等等,这是通过使这些不想要的物质离解和转化成更小的分子(如H2和CO)实现的。GRS进一步包括控制系统,控制系统对加工处理进行调节,因而能使加工处理优化。
[191]在GRS下游设置与气体重整室气体连通的引风机,以维持气体重整室的压力为大约0到5毫巴。
[192]GRS与气化器气体连通,因此从气化器直接接收进料气体。GRS可进一步包括安装用法兰或连接器,用来将气体重整室连接到气化器。为了帮助维护或修理,任选地,GRS以可逆方式连接到气化器,以便如果需要可以拆下GRS。
[193]气体重整室具有一个或多个进料气体进口、一个或多个重整气体出口、一个或多个用于加热设备的端口、以及一个或多个用于氧气源的进口。通过气体重整室的一个或多个进料气体进口或端口,进料气体进入等离子体-喷管加热的气体重整室,并且可任选地由气体混合元件进行掺合。设置端口或进口,通过端口或进口将氧气源注入气体重整室。一个或多个重整气体出口或端口能使重新形成的重整气体排出GRS,并且转移到进行进一步精炼的下游加工或转移到储存设备。
[194]气体重整室是具有足够内部容积以提供重整反应发生所需居留时间的室。气体居留时间是气体需要停留在气体重整室以使进料气体重整为重整气体所需的时间。
[195]因此,在设计气体重整室时,可以考虑所需的气体居留时间。气体居留时间是下述因素的函数:气体重整室容积和几何形状、气流速率、气体通过距离和/或气体通过气体重整室的路径(即直线路径或旋转或旋风式路径)。因此,必须将气体重整室的形状和尺寸设计成:气体通过气体重整室的流体动力学允许足够的气体居留时间。可通过应用气体喷射而修改气体居留时间,所述气体喷射可促进气体在气体重整室内旋转流动,使得气体路径是非线性的,因此具有更长的居留时间。
[196]在一个实施方式中,气体居留时间为大约0.5秒至大约2.0秒。在一个实施方式中,气体居留时间为大约0.75秒至大约1.5秒。在进一步的实施方式中,气体居留时间为大约1秒至大约1.25秒。在又进一步的实施方式中,气体居留时间为大约1.2秒。
[197]气体重整室可以是任何形状,只要能提供适当的居留时间使进料气体充分化学重整为重整气体即可。气体重整室可布置在各种位置,只要能维持进料气体适当混合并保证居留时间即可。气体重整室的方向可以是基本上竖直的、基本上水平的或成角度的,并且长径比具有宽范围,从大约2:1至大约6:1。在一个实施方式中,气体重整室的长径比是3:1。
[198]在一个实施方式中,气体重整室是直的且基本上竖直的管状或圆筒状结构,具有耐火材料加衬挡板或加帽,该结构具有与气化器气体连通的开口底端(上游端),以及具有位于室顶端(下游端)的一个重整气体出口。任选地,通过用耐火材料加衬盖在耐火材料加衬管或圆筒体的顶端(下游端)加帽,形成管状或圆筒状室。为了便于维护或修理,任选地,盖以可拆卸方式与管或圆筒体密封。
[199]气体重整室的壁可以用耐火材料作衬里,和/或,可用水套封装气体重整室,以冷却和/或产生蒸汽或回收可用的喷管热量。气体重整室可具有多个壁和用于热再循环的冷却机构,并且,此系统还可包括用于制造高压/高温蒸汽或者用于其它热再循环能力的热交换器。任选地,气体重整室可包括一个或多个室,可以是竖直或水平定向的,并且可具有内部零件如挡板,以促进气体的反向混合和湍流。
[200]任选地,气体重整室可包括在重整加工期间用于固体颗粒物质的收集器,可以收集所述固体颗粒物质并任选地将其送入气化器(用于进一步加工)或气化系统的固体残渣隔室,例如固体残渣调整室,以进一步加工。
[201]气体重整室包括:一个或多个进料气体进口或端口,以将进料气体送入加工室;和一个或多个重整气体出口或端口,以将在重整反应中产生的重整气体转移到下游加工或储存。用于进料气体的进口(一个或多个)位于第一端(或上游端)或其附近。进口可包括开口,或者可选地,可包括控制进料气体流入气体重整室的控制器和/或将进料气体注入气体重整室的喷射器。
[202]在一个实施方式中,用于将进料气体输送至气体重整室的一个或多个进料气体进口可以形成为,促进同向、逆流、径向、切向或其它进料流动方向。在一个实施方式中,提供具有渐增的圆锥形状的单个进料气体进口。在一个实施方式中,进口包括气体重整室的敞开第一端,从而与气化器直接连通。
[203]气化器上用于GRS的连接位置可设置为:在进料气体进入气体重整室前,优化气体流动和/或最大程度混合进料气体。在一个实施方式中,气体重整室位于气化器的中心,从而在进料气体进入气体重整室前优化进料气体的混合。在一个实施方式中,进口包括位于气体重整室的封闭第一端(上游端)的开口。该实施方式使用进料气体进口将含碳原料气化期间产生的挥发物送入气体重整室。在一个实施方式中,进口包括靠近第一端(上游端)的气体重整室壁上的一个或多个开口。
[204]在气体重整室连接到一个或多个气化器的实施方式中,气体重整室中一个或多个进口可通过共同开口直接与一个或多个气化器连通,或者可经由管线或适当导管连接到气化器。在图54中,示出一个具有这种结构的实施方式。
[205]通过一个或多个重整气体出口或端口,将重整反应中产生的重整气体从气体重整室排出。用于气体重整室中产生的重整气体的一个或多个出口或端口位于第二端(或下游端)或附近。出口可包括开口,或者可选地,可包括控制重整气体流出气体重整室的装置。在一个实施方式中,出口包括气体重整室的敞开第二端(下游端)。在一个实施方式中,出口包括一个或多个位于气体重整室的封闭第二端(下游端)的开口。在一个实施方式中,出口包括靠近第二端(下游端)的气体重整室壁上的开口。
[206]气体重整室包括多个端口,包括一个或多个用于加热器的端口、一个或多个工艺添加剂端口、以及可任选的一个或多个检修孔、视口和/或仪器口。加热器口包括用于主要加热源和可任选的次级加热源的端口。在一个实施方式中,气体重整室包括一个或多个用于安装等离子体喷管的端口。在一个实施方式中,气体重整室包括两个或多个用于安装等离子体喷管加热器的端口。在一个实施方式中,气体重整室包括三个或多个用于安装等离子体喷管的端口。在一个实施方式中,气体重整室包括四个或多个用于安装等离子体喷管的端口。
[207]在一个实施方式中,沿气体重整室外周在直径位置布置两个等离子体源端口。在一个实施方式中,设置两个端口用于切向安装等离子体喷管。在一个实施方式中,用于切向安装等离子体喷管的端口位于气体端口或进口的上方,以使气体最大程度暴露于等离子体喷管的热量。
[208]任选地,用于安装等离子体喷管的端口可安装有滑动安装机构,以便于将等离子体喷管(一个或多个)插入气体重整室或从气体重整室移出,并且该端口可包括自动门阀,以在等离子体喷管(一个或多个)缩回后密封该端口。
[209]任选地,包括一个或多个工艺添加剂端口或进口,以使待注入的工艺添加剂(例如二氧化碳、其它烃或附加的气体)进入气体重整室。任选地,设置端口或进口,以便不满足质量标准的重整气体可重新循环进入气体重整室,以进一步加工。端口或进口可位于各种角度和/或位置,以促进在气体重整室内材料的湍流混合。包括一个或多个端口以允许测量加工温度、压力、气体组成和其它目标条件。
[210]此外,气体重整室可进一步包括用于第二喷管热源的一个或多个端口,以便于对气体重整室进行预等离子体喷管加热或等离子体喷管加热。任选地,提供塞子、盖子、阀和/或门,以密封气体重整室的一个或多个端口或进口。适当的塞子、盖子、阀和/或门是本领域已知的,并且可包括手动操作或自动的类型。端口可进一步包括适当的密封如密封压盖。
[211]如上面提到的,GRS含有用于一个或多个氧气源的一个或多个进口,氧气源(一个或多个)包括但不限于氧气、富氧空气、空气、氧化介质和蒸汽,因此气体转化室包括用于氧气源输入的一个或多个端口。在一个实施方式中,气体转化室包括一个或多个用于空气和/或氧气输入的端口,任选地包括一个或多个用于蒸汽输入的端口。在一个实施方式中,气体重整室包括一个或多个氧气源端口。在一个实施方式中,气体重整室包括两个或多个氧气源端口。在一个实施方式中,气体重整室包括四个或多个氧气源端口。在一个实施方式中,气体重整室包括六个氧气源端口。在一个实施方式中,设置九个氧气源端口,围绕气体重整室周向排列为三层。氧气源端口可以为多种排列,只要该排列提供将氧气源与进料气体的充分混合即可。
[212]任选地,气体重整室在进料气体进口处或附近可进一步包括附加的或辅助的气体混合器,以混合进料气体(以使进料气体具有更均匀的组分和/或温度)和/或将进料气体与工艺添加剂混合。在一个实施方式中,混合器在进料气体进口处或附近包括两个或多个气体旋转喷嘴,将少量空气注入进料气体,并在进料气体流中产生旋转运动或湍流,从而利用注入空气的速率混合进料气体。在一个实施方式中,混合器在进口处或附近包括三个或多个气体旋转喷嘴,将少量空气注入进料气体,并在进料气体流中产生旋转运动或湍流,从而混合进料气体。在一个实施方式中,混合器在进口处或附近包括四个或多个气体旋转喷嘴,将少量空气注入进料气体,并在进料气体流中产生旋转运动或湍流,从而混合进料气体。设计气体旋转喷嘴的数量,以基于设定的气流量和排出速率提供最大程度的混合和旋转,以便能喷射进入到气体重整室的中心。
[213]也可使用挡板在进料气体中产生湍流,从而引起进料气体的混合。挡板是正常流型的机械障碍。挡板用于阻断燃烧室横截面的一部分,这导致流速的快速增加和挡板下游侧的流速相应快速减小。这产生高水平的湍流并加速局部混合。
[214]在气体重整室中,挡板可位于多个位置。挡板排列是本领域已知的,包括但不限于交叉挡板、桥墙挡板和扼流圈挡板排列。因此,在一个实施方式中,气体混合包括挡板。图55A和图55B示出包括挡板的实施方式。
[215]如上面提到的,GRS包括氧气源,该氧气源可包括但不限于氧气、富氧空气、空气、氧化介质和蒸汽,因此气体转化室包括一个或多个氧气源进口。在一个实施方式中,空气和/或氧气和蒸汽进料包括耐高温抗性喷雾喷嘴或喷口。适当的空气喷嘴是本领域已知的,并且可包括任何市售的类型。基于功能需要选择喷嘴类型,其中A型喷嘴用于改变气流的方向以产生期望的旋转,B型喷嘴用于产生高速气流以达到一定穿透,并最大程度混合。
[216]喷嘴可引导空气至任何能有效混合气体的角度。在一个实施方式中,空气喷嘴切向放置。在一个实施方式中,通过在进料喷嘴的末端处设置导向板,实现成一定角度的吹气,因此允许进口管和法兰(凸缘)与气体重整室成直角。
[217]空气和/或氧气进口的排列基于气体重整室的直径、设定的流动和喷射速率,以便可达到适当的穿透、最大的旋转和混合。本发明可采用氧气进口或端口、蒸汽进口或端口、以及用于等离子体喷管的端口的各种排列,提供进料气体与注入氧气和蒸汽的充分混合,并对提供足够的居留时间以进行重整反应。例如,氧气进口或端口、蒸汽进口或端口、以及用于等离子体喷管的端口可以围绕气体重整室外周分层排列。这种排列允许以切向和分层方式注入等离子体气体、氧气和蒸汽,这导致旋转运动和进料气体与氧气和蒸汽的充分混合,并且提供重整反应发生足够的居留时间。在空气和/或氧气进料口分层排列的实施方式中,空气和/或氧气喷嘴可任选地排列以最大化混合效果。
[218]蒸汽进口或端口的排列在数量、水平、方向和角度上是灵活的,只要它们位于提供最优温度控制能力的位置即可。在一个实施方式中,气体重整室包括一个或多个蒸汽进口或端口。在一个实施方式中,气体重整室包括两个或多个蒸汽进口或端口。蒸汽进口或端口可以是各种排列,只要该排列提供与进料气体的充分混合即可。在一个实施方式中,设置两个蒸汽进料口,围绕气体重整室外周排列成两层,并且位于直径位置。
[219]氧气和/或蒸汽进料口也可定位成:与气体重整室的内壁成一定角度,将氧气和蒸汽注入气体重整室,这促进气体湍流或旋转。基于室直径和设定的气体喷射流动和速率,选择该角度以达到足够的喷射穿透并且最大化混合。
[220]在一个实施方式中,氧气和/或蒸汽进口与气体重整室的内壁成大约50度-70度之间的角度,注入空气和蒸汽。在一个实施方式中,氧气和/或蒸汽进口与气体重整室的内壁成大约55度-65度之间的角度,注入空气和蒸汽。在一个实施方式中,氧气和/或蒸汽进口与气体重整室的内壁成大约60度的角度,注入空气和蒸汽。
[221]空气喷嘴可排列成使所有喷嘴位于同一平面中,或者使喷嘴在连续相继的平面中排布。设计空气喷嘴的排布以达到最大混合效果。在一个实施方式中,空气喷嘴在上下不同的水平面排列。在一个实施方式中,在下面的水平面设置有四个喷嘴,在上面的水平面设置有另外六个喷嘴,其中三个喷嘴稍微高于其它三个喷嘴,以产生交叉喷射混合效果,得到更好的混合。
[222]在一个实施方式中,气体重整室包括氧气进料端口、蒸汽进料端口和用于等离子体喷管的端口,这些端口排列成使整个气体重整室中的气体和蒸汽充分混合。任选地,可以以一定角度将加工气体吹入气体重整室,以使气体产生气体旋转或旋风移动通过气体重整室。等离子体喷管也可成一定角度,以提供气流的进一步旋转。
[223]为了进行重整反应,气体重整室必须由喷管加热至足够高的温度。本领域工作人员可容易地确定足够用于重整反应的温度。在一个实施方式中,温度为大约800℃至大约1200℃。在一个实施方式中,温度为大约950℃至大约1050℃。在一个实施方式中,温度为大约1000℃至大约1200℃。因此,GRS进一步包括一个或多个非转移弧等离子体喷管。非转移弧等离子体喷管是本领域已知的,并且包括非转移弧的交流和直流等离子体喷管。多种气体可与等离子体喷管一起使用,包括但不限于空气、O2、N2、Ar、CH4、C2H2和C3H6。本领域工作人员可容易地确定可以在GRS中使用的等离子体喷管的类型。
[224]在一个实施方式中,等离子体喷管是一个或多个非转移弧交流的等离子体喷管(一个或多个)。在一个实施方式中,等离子体喷管是一个或多个非转移弧的直流等离子体喷管(一个或多个)。在一个实施方式中,等离子体喷管是两个非转移的反接直流等离子体喷管。在一个实施方式中,设置两个等离子体喷管,切向布置以产生与空气和/或氧气进料旋转方向相同的旋转方向。在一个实施方式中,等离子体喷管是两个300kW等离子体喷管,每一个等离子体喷管以要求的(部分)能力操作。在一个实施方式中,气体重整设备包括一个或多个等离子体喷管(一个或多个)。在一个实施方式中,气体重整设备包括两个或多个等离子体喷管。在一个实施方式中,气体重整设备包括两个水冷却的、铜电极、NTAT直流等离子体喷管。
[225]在一个实施方式中,在碳或多碳分子主要重整为CO和H2期间,通过优化注入气体重整室的空气和/或氧气的量,最大程度释放喷管热量,从而最小程度使用等离子体喷管加热。
热再循环系统
[226]本发明进一步包括用于优化含碳原料气化效率的系统,通过从气化加工回收焓,将焓在系统内再循环进行应用,并可任选地将焓用于外部应用,实现上述优化。本发明热再循环系统的多个实施方式在图60到图67中示出。
[227]在一个实施方式中,气体将从热的产物气体回收的热量进行再循环,将热送回气化器。特别地,系统包括:将热的产物气体转移到气体-空气热交换器的装置,其中热的产物气体的热量被转移到环境空气,以产生加热的交换空气和冷却的产物气体;以及包括将加热的交换空气转移到气化器中交换空气进口装置的装置。加热的交换空气进入气化器,以提供驱动气化反应所需的热量。加热的交换空气也可任选地用于直接或间接地对待气化原料进行预热或预处理。
[228]任选地,系统另外包括一个或多个热回收蒸汽发生器,以产生用于驱动燃气轮机的蒸汽,作为气化反应中的工艺添加剂,或者用于其它的一些应用中。根据本发明的一个实施方式,系统还包括控制子系统,控制子系统包括用于监控系统操作参数的传感元件和用于在系统内调节操作条件以优化气化加工的响应元件,其中响应元件根据从传感元件获得的数据在系统内调节操作条件,从而通过最小化加工的能量消耗而优化气化加工的效率,同时还使能量产生最大化。
[229]在本发明的一个实施方式中,热交换系统用于将在气化加工期间产生的热输送回气化器,以驱动气化反应。在该实施方式中以如下方式实现上述加工:在产物气体-空气热交换器中,用来自热的气化器/重整系统的热,加热环境空气,以产生加热的空气产物(下文称为交换空气),并将在气体-空气热交换器中产生的加热的交换空气送回到气化器中。
[230]通过此系统可优化能量效率,这是因为通过将回收的焓热再循环到气化加工,能够减少原料的干燥、挥发和气化步骤所需的外部来源能量输入。回收的焓热也可用于使达到期望合成气质量所需的等离子体加热的量最小化。因此,热交换系统允许含碳原料的有效气化,其中气化所需的热由热的交换空气提供,其中交换空气已使用从产物气体回收的焓热加热。
[231]从产物气体转移到加热的交换空气的焓热也可用于外部加热应用,以及用于气化加工中的其它加热应用。例如,加热的交换空气可直接或间接对待气化原料进行预热或预处理。在直接加热/预处理步骤中,交换空气直接穿过原料以加热和/或除去水分。在间接加热/预处理步骤中,热量从加热的交换空气转移到油(或水以产生蒸汽),其中加热的油(或蒸汽产物)用于加热原料干燥器/预热器的壁。在所有的情况中,焓热的循环使这些加热应用所需的能量输入量最小化。因此,热再循环系统可将热从加热的交换空气转移到任何目标工作流体。这类目标工作流体包括但不限于:油、水或其它气体如氮气或二氧化碳。将热从转化器气体直接转移到目标工作流体也在本发明的范围内。当热被转移到空气以外的工作流体时,使用适当的热交换系统。
[232]在热量在产物气体-空气热交换器中回收后,虽然产物气体已经冷却,但是一般仍含有太多的热量来进行过滤和调节步骤(本领域已知的)。因此,这进行后续的过滤和调节步骤之前,本发明还可任选提供产物气体的进一步冷却。
[233]因此,任选地,该系统可包括一子系统,该子系统用于在产物气体通过气体-空气热交换器后,从部分冷却的产物气体回收额外的热量。在一个实施方式中,该系统进一步包括热回收蒸汽发生器,从而使用从产物气体回收的额外热量来将水转化为蒸汽(称为交换蒸汽)。
[234]热回收蒸汽发生器中产生的交换蒸汽可用来驱动下游的能量发生器例如燃气轮机,和/或用于直接驱动涡轮,和/或可加入到气化加工。交换蒸汽还可用于其它系统(例如用于从焦油砂提取油或者用于局部加热应用),或者,可供应给地区工业客户进行应用。在一个实施方式中,使用产物气体热量产生的蒸汽是饱和蒸汽。在另一个实施方式中,使用产物气体热量产生的蒸汽是过热蒸汽,可在水和产物气体之间进行热交换,或在饱和蒸汽和产物气体之间进行热交换,以直接产生过热蒸汽。
[235]当该系统不包括在产物气体通过气体-空气热交换器之后从部分冷却的产物气体回收额外热量的系统时,在调节产物气体前提供用于进一步冷却产物气体的另一个系统。在一个实施方式中,提供干式骤冷步骤,以在调节产物气体之前进一步冷却产物气体。提供干式骤冷步骤,以从产物气体移除过量的热从而提供冷却的产物气体,如后续过滤步骤和调节步骤所要求的。用于在调节产物气体前进一步冷却产物气体的适当系统的选择是本领域技术人员已知的。在一些实施方式中,进一步冷却系统被认为是下面更详细描述的气体调整系统(GCS)的一部分。
[236]还可使用控制子系统,以优化产生的产物气体的组分(即热值),并且可任选地用于确保系统保持在安全操作参数内。
[237]产物气体-空气热交换器的功能要求是:当热的产物气体和环境空气分别通过气体-空气热交换器时,焓热从热的产物气体转移到环境空气,以提供加热的交换空气和冷却的产物气体。本系统中可使用不同类的热交换器,包括:壳管式(shell and tube)热交换器,可为直的单通设计也可为U形管的多通设计;以及平板型热交换器。适当的热交换器选择是本领域普通技术人员已知的。
[238]一些颗粒物质会存在于产物气体中,因此气体-空气热交换器特别设计用于高水平的颗粒装填。颗粒大小典型在0.5微米到100微米之间。在一个实施方式中,热交换器是单通竖直流动型热交换器,其中产物气体在管内流动而不是在壳侧流动。在单通竖直流动型实施方式中,产物气体以“单次通过”设计竖向流动,这使得发生颗粒物质堆积或侵蚀的区域最小化。
[239]产物气体速度应该保持为足够高以进行自清洁,同时仍保持最小化侵蚀。在一个实施方式中,气体速度在3000m/min到5000m/min之间。在正常流动条件下,气体速度大约3800m/min至大约4700m/min。
[240]由于在环境空气输入温度和热的产物气体之间的明显差异,气体-空气热交换器中的各管优选具有各自的膨胀波纹管以避免管破裂。当单个管被堵塞因而不能与管束其余部分一起伸缩时,会发生管破裂。在加工气压大于产物气压的实施方式中,由于空气进入气体混合物产生的问题,管破裂发生的风险很高。
[241]在本发明的一个实施方式中,该系统间歇式运行,即,根据需要进行多次启动和关闭循环。因此,必须设计装置以耐受重复的热膨胀和收缩,这是重要的。
[242]为了最小化管泄漏的潜在危险,热交换系统进一步包括一个或多个独立的温度传感器,例如,在气体-空气热交换器的产物气体进口和产物气体出口处,以及在交换空气出口处。当温度传感器与气体-空气热交换器的产物气体出口相连接时,这些温度传感器布置用于检测在交换空气泄漏入产物气体导管的情况下燃烧所产生的温度升高。检测这种温度升高时,会使加工气体鼓风机自动关闭,以消除氧气源。此外,按照需要,热交换器设置有端口,用于仪器、检查和维护,以及用于导管的修理和/或清洁。
[243]根据本发明,按照需要,可通过各自的交换空气进料和分配系统,将加热的交换气体提供至气化器的不同区域。交换空气进料和分配系统包括交换气体进口,以允许将加热的交换气体引入气化区域。这些进口位于转化器内,以将加热的交换空气分配遍及转化器,从而开始和驱动原料的气化。在一个实施方式中,交换空气进口包括位于气化器底板中的孔。在一个实施方式中,交换空气进口包括位于气化器壁中的孔。
[244]在一个实施方式中,交换空气进口包括用于各区域的单独的气箱,热的交换空气可从该气箱通过转化器底板的孔进入该区域。在一个实施方式中,交换空气进口是各区域的独立受控喷头。
[245]除了气体-空气热交换器,本发明还可任选包括用于在调节步骤之前进一步冷却产物气体的系统。在一个实施方式中,还设置有在清洁和调节步骤之前进一步冷却产物气体的系统,用于从产物气体回收额外的热。为了从产物气体进一步回收焓热,将热量从产物气体转移到另一工作流体,例如水、油或空气。这类实施方式的产物可分别包括加热的水(或蒸汽)、加热的油或额外的热空气。
[246]在一个实施方式中,本发明的系统使用热交换器,以从产物气体进一步回收焓热,从而将热从部分冷却的产物气体转移到水,从而产生加热的水或蒸汽以及进一步冷却的产物气体。在一个实施方式中,在此步骤中使用的热交换器是热回收蒸汽发生器,用回收的热产生交换蒸汽。在一个实施方式中,将水以低温蒸汽的形式供入热交换器。在另一个实施方式中,产生的交换蒸汽是饱和或过热蒸汽。
[247]没有在转化加工中使用或没有用来驱动旋转加工设备的蒸汽可用于其它商业目的,如通过应用燃气轮机发电,或者用于局部加热应用中,或者可供给地区工业客户进行应用,或者可用于从焦油砂提取油。产生的交换蒸汽也可通过涡轮,从而驱动旋转加工设备,例如,交换空气鼓风机或合成气鼓风机。交换蒸汽还可用来间接加热原料,从而在转化器中气化之前干燥原料。
[248]在一个实施方式中,当需要对不同系统或加工进行冷却时,可通过水冷却步骤移除(和回收)过量的热。所形成的加热的水在其应用于HRSG之前,又可用来预热水。加热的水流来自不同的来源,包括但不限于GQCS系统中的合成气冷却加工、等离子体热源冷却系统。加热的水还可用来预热各种应用的油。
[249]设计用于HRSG的热交换器时要注意在产物气体中会存在一些颗粒物质。同样,这里的产物气体速度也保持在足够高的水平,以使管自清洁,同时最小化侵蚀。在一个实施方式中,用于在调节产物气体前进一步冷却产物气体的系统不包括回收额外热量,冷却步骤包括干式骤冷步骤。
[250]使用导管系统将气体从系统的一个组成部分转移到另一个组成部分。因此,该系统包括合成气导管系统,用于将热的产物气体转移至热交换器,以回收产物气体的焓热。该系统还包括将加热的交换空气转移至转化器的交换空气导管系统,其中加热的交换空气经由交换空气进口引入转化器。导管系统一般使用一个或多个管或线,通过它们输送气体。
[251]当系统包括热回收蒸汽发生器时,该系统还包括转移加热的交换蒸汽(用于前面列出的一个或多个应用)的交换蒸汽导管系统。交换蒸汽导管系统可包括平行延伸的多个管或分枝导管系统,其中给定的分枝设计用于特定应用。
[252]任选地,交换空气导管系统使用一个或多个流量调节装置、流量计和/或鼓风机,这些装置的位置遍及整个系统,以提供用于控制交换空气流速的手段。在一个实施方式中,有多个交换空气流量调节阀(每一阶梯一个调节阀),以控制交换空气到气化器的流量。在每一调节阀后,空气再次分到气化器的气箱,并且分到围绕重整装置的三个分配环,各分配环具有多个注入点。在一个实施方式中,有一个交换空气流量调节阀,控制交换空气到GRS的流量。在该实施方式中,提供交换空气作为工艺添加剂。
[253]任选地,交换空气导管还包括使交换空气转向的装置,例如转向到通风出口或转向到任选的附加热交换系统。可任选地,控制子系统对流量调节装置和/或鼓风机和/或转向装置进行控制,如在下面详细讨论的。
[254]任选地,导管系统还包括维修口,以为系统提供进行例行维护、以及修理和/或清洁的通道。
气体调整系统
[255]气体调整系统(GCS)以两阶段调整加工来调整冷却的产物气体,并提供具有适当组分用于期望下游应用的最终调整气体。第一阶段包括一个或多个初始干燥/固相分离步骤,然后进行第二阶段,其包括一个或多个进一步的加工步骤。通常,在干燥/固相分离步骤中,除去大部分的颗粒物质和大部分的重金属污染物。在第二阶段中,除去更多数量的颗粒物质和重金属污染物,以及可任选地除去气体中存在的其它污染物。因此,GCS包括多个组成部分,用于实施加工步骤、从进料气体分离颗粒物质、酸性气体和/或重金属,并且可任选地,随着气体通过GCS,调节气体的湿度和温度。GCS进一步包括控制和优化总体调整加工的控制系统。
[256]GCS包括两个整合的子系统:转化器GC和固体残渣GC,都执行第一阶段和第二阶段加工。GCS还整合有残渣调整器,并且在转化器GC进行的第一阶段加工中产生的固体残渣进入残渣调整器。转化器GC和固体残渣GC可平行操作,其中两个子系统能独立进行第一阶段和第二阶段两种加工,或者两个子系统可以以会聚的方式(convergent manner)操作,其中它们共享第二阶段加工的一些或所有组件。
[257]图68、图70和图72描述GCS的实施方式,其中两个子系统以会聚的方式操作。
[258]在一个实施方式中,对GCS的组件和各加工步骤的次序进行选择,以最小化有害废物(必须被处理和/或处置)的产生。例如,可基于进料气体组成和选定下游应用所需的调整气体组成,选择加工步骤和顺序。
[259]在本发明的一个实施方式中,GCS产生的有害废物量比所使用含碳原料重量的大约5%小。在一个实施方式中,产生的有害废物量比所使用含碳原料重量的大约2%小。在一个实施方式中,产生的有害废物量比所使用含碳原料重量的1%小。在一个实施方式中,每使用一吨含碳原料,产生的有害废物量在大约1kg至大约5kg之间。在一个实施方式中,每使用一吨含碳原料,产生的有害废物量在大约1kg至大约3kg之间。在一个实施方式中,每使用一吨含碳原料,产生的有害废物量在大约1kg至大约2kg之间。
[260]GCS的第一阶段包括用来实施一个或多个干燥或固相加工步骤的组件,此组件从进料气体除去至少部分重金属和多数颗粒物质。适当的固相加工步骤是本领域是已知的。
[261]例如,可使用本领域已知的一个或多个固相分离组件来实现重金属的去除。这类固相分离组件的非限定性实例包括:干式注入系统、颗粒除去元件、活性炭过滤组件、以及能够与特定吸附剂(如沸石和纳米结构)接触的组件。选定的代表性实例在下文详细描述。如本领域已知的,这些颗粒分离组件可用来除去或分离固相/干相中的颗粒物质/重金属,例如,在干式注入加工处理、活性炭过滤、干式净化、多种颗粒除去处理步骤、以及其它本领域已知的干燥或固相处理步骤中。
[262]在本发明的一个实施方式中,转化器GC的第一阶段包括干式注入系统以及一个或多个颗粒除去元件,以及,固体残渣GC的第一阶段包括一个或多个颗粒除去元件。
[263]基于例如进料气体的组成、进料气体的温度、最终调整气体的期望组成、组成气体的最终应用,以及,考虑成本和设备可获得性,本领域的普通技术人员可容易地选择适当的第一阶段加工步骤。如果需要,GCS的第一阶段任选地包括一个或多个气体冷却器。
[264]如上面提到的,GCS的第一阶段设置用于除去进料气体中的多数颗粒物质和至少部分重金属污染物。在一个实施方式中,在第一阶段中,除去进料气体中至少大约70%的颗粒物质。在一个实施方式中,在第一阶段中,除去进料气体中至少大约80%的颗粒物质。在一个实施方式中,在第一阶段中,除去进料气体中至少大约90%的颗粒物质。在一个实施方式中,在第一阶段中,除去进料气体中至少大约95%的颗粒物质。在一个实施方式中,在第一阶段中,除去进料气体中至少大约98%的颗粒物质。在一个实施方式中,在第一阶段中,除去进料气体中至少大约99%的颗粒物质。在一个实施方式中,在第一阶段中,除去进料气体中至少大约99.5%的颗粒物质。
[265]在一个实施方式中,在第一阶段中,除去进料气体中至少大约50%的重金属污染物。在一个实施方式中,在第一阶段中,除去进料气体中至少大约60%的重金属污染物。在一个实施方式中,在第一阶段中,除去进料气体中至少大约70%的重金属污染物。在一个实施方式中,在第一阶段中,除去进料气体中至少大约80%的重金属污染物。在一个实施方式中,在第一阶段中,除去进料气体中至少大约90%的重金属污染物。
[266]干式注入加工是本领域已知的,并且通常使用计算量的适当吸附剂,将吸附剂注入具有足够居留时间的气流,以便细的重金属颗粒和烟霾可吸附在吸附剂表面上。吸附在吸附剂上的重金属可通过例如下文描述的颗粒除去装置所捕获,这种颗粒除去装置除去干燥/固相的重金属/颗粒物质,并且防止其与进料气体一起移动通过GCS。
[267]适当的吸附剂实例包括但不限于:活性炭;灌注有碘、硫或其它种类的促进的-活性炭(promoted-activated carbon);长石;石灰;锌基吸附剂;钠基吸附剂;金属氧化物基吸附剂;以及其它本领域已知能有效除去重金属的物理和化学吸附剂,所述重金属例如汞、砷、硒等。吸附剂的粒度可以在大约60目的最大尺寸和大约325目的最小尺寸之间变化。
[268]通常通过吸附剂进口实现注入,例如端口、喷嘴或管,并且可通过重力、锁定料斗(locked hopper)或螺旋输送机。本发明还可将吸附剂设置在组成GCS的管内,例如在通向颗粒除去装置的管中,以随着进料气体通过管而使吸附剂与进料气体混合。还包括在本领域已知的其它方法。GCS可包括多个吸附剂进口或单个吸附剂进口。
[269]吸附剂可储存在一个或多个保持容器中,吸附剂(一种或多种)从该保持容器输送到进口(一个或多个)。吸附剂保持容器可以是GCS的一部分或者可在GCS外。
[270]如上面提到的,可通过干式注入,将吸附剂的多种组合注入进料气体,本领域技术人员基于例如进料气体的组成可容易地确定适当的吸附剂组合。在一个实施方式中,长石被注入进料气体。在一个实施方式中,活性炭被注入进料气体。在一个实施方式中,长石用作颗粒除去装置的预涂层。在一个实施方式中,活性炭被注入进料气体,并且颗粒除去装置用长石预涂覆。在一个实施方式中,长石连续注入该系统。
[271]在一个实施方式中,本发明的GCS包括一个或多个颗粒除去元件,这些元件起到从进料气体除去颗粒物质的功能。颗粒除去装置也可从进料气体除去重金属,例如元素汞。在GCS采用干式注入的实施方式中,一个或多个颗粒除去元件还用于从进料气体移出吸满污染物的吸附剂。适当的颗粒除去元件实例包括但不限于:旋风分离器或过滤器、高温陶瓷过滤器、移动床式颗粒过滤器(moving bedgranular filter)、袋式过滤器和静电除尘器(ESP)。
[272]如本领域已知的,颗粒除去元件的选择基于:例如,进料气体的温度、待去除颗粒物质的大小、以及应用吸附剂时注入气流的吸附剂的类型。适当的颗粒除去元件可容易地由本领域技术人员进行选择。在本发明的一个实施方式中,GCS的第一阶段包括一个或多个选自旋风过滤器、高温陶瓷过滤器和袋式过滤器的颗粒除去元件。在一个实施方式中,转化器GC和固体残渣GC各自的第一阶段都包括袋式过滤器。
[273]基于所使用过滤器的类型,布收集器(如袋式过滤器)可收集尺寸小至大约0.01微米的颗粒。袋式过滤器是典型的织物过滤器、纤维素过滤器或有机聚合物基过滤器。可用于袋式过滤器的实例包括但不限于:加衬或未加衬的玻璃纤维袋、Teflon加衬袋和P84玄武岩袋。本领域技术人员可基于下述考虑容易地选择适当的过滤器:例如,进料气体的一种或多种温度,袋中的湿度水平和进料气体中的湿度水平,进料气体中颗粒的静电性质,过滤器的耐酸性和/或耐碱性,过滤器释放滤饼的能力,过滤器渗透性以及颗粒大小。
[274]在本发明的一个实施方式中,GCS包括袋式过滤器,并且配置成,使得进入袋的气体的温度介于大约180℃至大约280℃之间。如本领域已知的,在更高的温度下操作袋式过滤器,可减少进料气体中的焦油堵塞过滤器并降低效率的风险。更高的温度可降低从袋式过滤器除去颗粒的效率,例如,将操作温度从200℃增加到260℃,颗粒除去效率从99.9%减少到99.5%。因此,当为GCS所包括的袋式过滤器选择更高的操作温度时,GCS在第一阶段或第二阶段可包括额外的下游组件,以捕获剩余的颗粒。例如,可包括湿洗器和活性炭珠用于除去其它污染物以外的颗粒。在GCS包括袋式过滤器的本发明一个实施方式中,GCS配置成,使进入袋的气体的温度介于大约250℃至大约260℃之间。在GCS包括袋式过滤器的本发明另一个实施方式中,GCS配置成,使进入袋的气体的温度介于大约190℃至大约210℃之间。
[275]在一个实施方式中,在进料气体进入颗粒除去元件之前,可使用气体冷却系统冷却进料气体。例如,如本领域已知的,当使用袋式过滤器进行颗粒除去时,进料气体的冷却是特别重要的,因为袋式过滤器通常不能承受极高的温度。
[276]根据本发明的一个实施方式,GCS配置成对进料气体进行加工,进料气体在进入GCS之前,通过使其通过气体冷却器,已降低了进料气体的温度。在本发明的另一个实施方式中,GCS包括一个或多个用于在进料气体进入第一阶段加工之前将其温度降低的气体冷却器。GCS中使用的适当气体冷却器是本领域已知的,包括但不限于:干式骤冷器、蒸发冷却塔、气体冷却器、冷凝器、同流换热器、热交换器、间接空气-气体热交换器和热回收蒸汽发生器(HRSGs)。在一个实施方式中,GCS包括热交换器和/或干式骤冷器。
[277]在一个实施方式中,GCS在第一阶段具有蒸发冷却塔,以通过例如绝热饱和将合成气的温度从大约740℃冷却至大约150-200℃,包括以受控方式将水直接注入气流。蒸发冷却加工是干式骤冷加工,并且可以监控以确保冷却的气体不潮湿,即,冷却气体的相对湿度在冷却温度下仍旧低于100%。
[278]下面描述GCS所包括的适当残渣调整室。GCS的残渣调整室可被设备的转化器共享,或者GCS可包括专用的残渣调整室。
[279]图78A描述本发明一个实施方式中GCS的固体残渣调整器、转化器和第一阶段袋式过滤器的结构。
[280]GCS的第二阶段包括一个或多个用于实施进一步处理步骤的组件,所述加工步骤可除去进料气体中更多量的颗粒物质和重金属污染物及其它污染物。第二阶段加工可包括如第一阶段描述的干相分离步骤和/或其它分离步骤,包括湿式处理步骤。可在第二阶段中实施的其它加工处理步骤的非限定实例包括除去下述物质的加工处理:酸性气体、重金属和颗粒物质、以及其它污染物,如二噁英、呋喃、CO2和氨。如本领域已知的,可使用多种组件来执行这些加工,包括各种湿洗器(如文丘里净化器和和impinjet净化器)、氯化物保护床(chloride guard beds)、湿ESP等。第二阶段还可包括冷却元件和/或湿度调节器,以及确保进料气体移动通过该系统的气体移动单元。下面说明第二阶段加工步骤中除已在第一阶段描述的步骤之外的步骤实例。
[281]要在GCS中加工的进料气体包括例如HCl和H2S的污染物酸性气体。基于气化加工中使用的含碳原料,合成气中这些酸性气体的浓度范围为:HCl大约0.05%至大约0.5%,H2S大约100ppm至大约1000ppm。在一个实施方式中,配置GCS以加工处理下述进料气体:该进料气体含有大约0.178%的HCl和大约666ppm(0.07%)的H2S。在一个实施方式中,配置GCS以使从GCS排出的调整气体含有大约20ppm至大约5ppm的HCl和大约30ppm至大约20ppm的H2S。
[282]可通过干式净化或湿洗加工进行酸性气体的除去或分离。在一个实施方式中,GCS的第二阶段包括除去酸性气体的湿洗加工。
[283]除了上面所述的干式净化加工和湿洗加工,本领域已知多种从气体除去HCl蒸汽的加工步骤。这类加工步骤的非限定性实例包括:将HCl吸附在活性炭或氧化铝上、与碱金属或碱土金属的碳酸盐或氧化物反应、应用氯化物保护、以及应用高温吸附剂,高温吸附剂例如碱金属或碱土金属化合物、碳酸钠钙石(Na2CO3·2CaCO3)和二碳酸氢三钠(Na2CO3·NaHCO3·2H2O)、Li2CO3以及Na2CO3的低共熔物、和烟气吸附剂如碱化矾土(alkalized alumina)。在一个实施方式中,GCS的第二阶段包括使用碱溶液从进料气体除去HCl的HCl净化器。
[284]可以使用本领域已知的多种加工处理从进料气体除去H
2S,所述加工处理包括上面列出的湿式和干式净化处理。适当的处理方法包括例如:用NaOH或三嗪湿吸收、用Sufatreat干吸收、生物加工如应用
净化器、或者选择性氧化,其包括液体氧化还原(低催化剂)。还可以使用物理溶剂加工来从进料气体分离H
2S。可使用的这类物理溶剂的非限定性实例包括:聚乙二醇衍生物,如
;含氟溶剂例,如无水碳酸丙烯酯;低温甲醇洗脱酸性加工(Rectisol process)中使用的甲醇。在一个实施方式中,GCS的第二阶段包括从进料气体除去H
2S的
净化器。
[285]适合用于第一阶段加工的加工和颗粒除去元件也可用于第二阶段加工中,并且已在上面描述。也可使用活性炭过滤床或流化床的活性炭过滤器,从进料气体除去重金属和/或颗粒物质。在一个实施方式中,在第二阶段中,GCS包括碳床过滤器或汞过滤器作为颗粒除去元件。
[286]如在本领域已知的,相对湿度(R.H.)大于50%时,水会开始吸附在碳床过滤器的碳上,并阻碍扩散,这会影响除去性能。然而,通过增加床深度可修正上述问题。当更低的性能是可接受的时,例如,性能效果仅体现在调整气体中期望的汞最终含量0.001ug/Nm3到0.01ug/Nm3的汞范围内时,碳床过滤器也可在更高的相对湿度下使用,例如在约70%R.H和100%R.H.之间。例如,当可接受大约19ug/Nm3的汞浓度时,可使用更高的R.H.范围。
[287]在一个实施方式中,GCS包括具有7-8英寸水柱压力降的活性炭过滤器,以实现大约99.8%的汞除去。
[288]在进料气体包含二噁英和呋喃的实施方式中,GCS可任选地包括活性炭注入步骤,这样使气体中的二噁英和呋喃吸附到碳表面上。然后,可通过适合的颗粒除去元件除去碳。在一个实施方式中,GCS包括喷雾干燥器吸附剂,其可在相关温度范围下减少居留时间,以最小化二噁英/呋喃形成的可能性。
[289]如果需要除去二氧化碳和/或氨,GCS可任选地包括用于除去二氧化碳和/或氨的组件。适当的组件是本领域已知的。如在本领域已知的,在HCl净化步骤期间,氨可从进料气体除去。
[290]图69、图71、图73、图74和图75描述本发明一个实施方式中GCS的第一阶段和第二阶段加工处理步骤的非限制性选择。
[291]可任选地,GCS中包括冷却元件和/或湿度调节器作为第一阶段(如上面描述的)或第二阶段的一部分。适当的组件是本领域已知的,包括但不限于蒸发冷却塔、气体冷却器、冷凝器、同流换热器、热交换器、间接气体-空气热交换器和热回收蒸汽发生器(HRSGs)。同流换热器和HRSGs可在冷却气体的同时利用热,而不会使热散失,而蒸发冷却塔、气体冷却器和冷凝器会使热散失。
[292]GCS可包括除雾器/再热器,以除去湿气和/或防止冷凝,如本领域已知的。可包括热交换器,以将最终调整气体再加热至期望下游应用所需的温度或相对湿度。还可任选地包括压缩机,以将最终调整气体压缩至期望下游应用所需的压力。
[293]在一个实施方式中,GCS的第二阶段中可包括气体冷却器。气体冷却器(水冷却)行使冷却进料气体的功能,该进料气体经加压通过气体移动单元(参见下文)并随之被加热。在一个实施方式中,气体冷却器将气体冷却至大约35℃。
[294]在一个实施方式中,GCS包括湿度调节器。湿度调节器作用为,确保输出气体的湿度适合于下游应用的要求。例如,湿度调节器可包括冷凝器以冷却气流,并因此从气流冷凝出一些水。该水可以通过气液分离器除去。在一个实施方式中,GCS包括用于处理调整气体的湿度调节器,以提供26℃下大约80%的湿度。在一个实施方式中,GCS配置成:首先将调整气体冷却至大约26℃,然后再将气体加热至40℃。然后可储存调整气体。
[295]在一个实施方式中,GCS包括一个或多个气体移动单元,气体移动单元提供驱动力使气体穿过整个GCS,并将进料气体从气化系统的出口向上移动至GCS的出口。
[296]适当的气体移动单元是本领域已知的,包括例如加工鼓风机、压力鼓风机、真空泵、正排量鼓风机(positive displacement rotaryblower)、往复式压缩机和旋转螺旋压缩机等。在一个实施方式中,GCS包括加工鼓风机作为气体移动单元。在一个实施方式中,GCS包括对气体额外加压以通过鼓风机的气体移动单元。
[297]气体移动单元在GCS中的优选位置可由本领域普通技术人员确定。在一个实施方式中,气体移动单元定位成以增加GCS的一个或多个加工步骤的效率。例如,在一个实施方式中,气体移动单元位于重金属过滤器(如汞过滤器)的上游,以优化汞除去,这是因为此加工在压力下效率更高,并且也允许使用减小尺寸的汞过滤器容器。
残渣调整系统
[298]本发明进一步包括用于将转化器的残留物质转化为惰性炉渣产物和具有热值的气体的系统。特别地,该系统包括耐火材料加衬的残渣调整室,残渣调整室包括残渣进口、气体出口、炉渣出口、等离子体加热源和控制子系统,控制子系统用于在系统内监测操作参数并调节操作条件以优化转化反应。等离子体加热引起残渣熔化,并且将残渣中未反应的碳转化为残余气,残余气通过气体出口排出残渣调整室,并可任选地进入气体调整子系统,用于根据下游应用的要求进行冷却和调整。
[299]图76到图85示出本发明残渣调整系统的多种实施方式。
[300]该残渣调整室还可任选地包括一个或多个进口,用于将空气(或其它含氧添加剂)引入残渣调整室,以控制调整加工。该残渣调整室还可任选地包括一个或多个添加剂进口,用于将添加剂引入,以控制所形成炉渣产物的组成。
[301]本发明的残渣调整系统包括残渣调整室,残渣调整室适于i)输入待调整的残渣;ii)输入热量并调整残渣,以形成熔融炉渣物质和具有热值的气体产物;和iii)输出熔融炉渣和气体产物。因此,残渣调整室是衬有耐火材料的室,其包括残渣进口、气体出口、炉渣出口和等离子体加热源端口。残渣调整室进一步可任选地包括一个或多个空气和/或蒸汽进口。
[302]设计残渣调整室,以确保有效率地完全进行残渣调整加工,从而使用最少量的能量来有效率地完成残渣的调节。因此,设计残渣调整室时要考虑的因素例如:有效传热、足够的加热温度、居留时间、熔融炉渣流量、进料残渣体积和组成、以及室的大小和隔热性。该残渣调整室还设计成,确保残渣调整加工以安全的模式实行。因此,该系统设计成将残渣调整环境与外部环境隔离开。
[303]残渣调整室设置有等离子体加热源,等离子体加热源满足加热残渣至所需水平的所需温度,所需水平是将任何剩余挥发物和碳转化为具有热值的气体产物的水平、以及熔融并均化该残渣以使熔融炉渣具有足以流出该室的温度的水平。残渣调整室还设计成确保在等离子体气体和残渣之间的高效传热,以最小化经由产物气体损失的焓的量。因此,在设计残渣调整室时,需要额外考虑所使用等离子体加热源的类型、及等离子体加热装置的位置和方向。
[304]残渣调整室还设计成确保足够的残渣居留时间,以使残渣达到熔化和均化的适当温度,并且充分将碳转化为气体产物。因此,该残渣调整室设置有残渣聚集池,在等离子体加热源加热残渣的同时,残渣聚集于池中。该池还在调整加工期间允许固体和熔融材料的混合。足够的居留时间和充分的混合确保完整执行调整加工,并且确保所形成的炉渣和气体产物具有期望的组成。
[305]设计该残渣调整室以连续或间歇输出熔融炉渣材料。连续除去炉渣允许在连续基础上执行调整加工,其中待调整的残渣可连续进料并由等离子体加热加工,不存在周期性除去炉渣的干扰。
[306]在一个实施方式中,使用一侧由堰限制的池实现连续炉渣排出,该堰使炉渣集合聚集直到超过某一水平,在该水平位置处熔融炉渣从堰溢出并溢出该室。在该实施方式,通过位于调整室顶部的残渣进口,残渣下落进池,在池中由等离子体喷管卷流(plume)对残渣进行调整。熔融的材料通过堰保存在池中,直到集合达到该堰的顶部。此后,随着更多残渣进入该系统并调整,相应量的熔融材料溢出该堰,并且通过炉渣出口溢出残渣调整室。
[307]如果被调节的残渣含有大量金属,并且残渣调整室包括堰限定的池,金属由于其熔融温度和密度更高而一般聚集在池中,直到将其清除。因此,在本发明的一个实施方式中,池可任选地设置有金属放液口,该放液口被软质耐火材料糊堵住,该软质耐火材料糊可使用氧矛的热量定期除去。在放液口打开并且残渣调整室的温度升高到足以熔融积聚的金属后,熔融金属从池底部流出。
[308]在一个实施方式中,池本身还可设置有适于连续排出熔融炉渣的炉渣出口。在一个实施方式中,池还可设置为间歇式除去炉渣,其中池设计为允许熔融材料的聚集,直到调整加工完成后,再将熔融炉渣排出。
[309]由于使残渣熔融特别是使可能存在的金属熔融需要非常高的温度,残渣调整室的壁衬有耐火材料,该耐火材料需要满足非常严格的操作要求。根据大量标准来选择适合于残渣调整室设计的材料,所述标准例如:在一般残渣调整加工中达到的操作温度,耐热冲击,以及,对因调整加工中产生熔融炉渣和/或热气而造成磨损和腐蚀/侵蚀的抗性。
[310]除了对高操作温度的抗性,所选择内部耐火材料提供的内衬还需要具有非常高的耐腐蚀和侵蚀(特别是在炉渣水线处)性能。必须考虑内部耐火材料的孔隙率和炉渣湿润能力,以确保所选择耐火材料将对熔融炉渣渗入耐火材料热面具有抗性。该材料还选择为,使得耐火材料与氢的二级反应最小化,从而避免耐火材料损失完整性并污染产物气体。
[311]残渣调整室一般用多层适当的材料制成。例如,室的外层或壳一般是钢的。此外,有益的是,在内部耐火材料层和外部钢壳之间,设置一个或多个隔热层,以降低钢壳的温度。设置有第二层(例如,隔热耐火砖层)时,也可能需要选择不与氢反应的材料。绕炉渣池外表面还可设置隔热板,以降低钢壳的温度。当需要空间以使耐火材料膨胀而不破裂时,可使用可压缩的材料(如陶瓷外壳)来紧靠钢壳。根据需要,可以选择隔热材料,以使壳温度足够高以避免酸性气体冷凝,但是没有高到损害外壳完整性的程度。
[312]因此,耐火材料可以是本领域已知传统耐火材料的一种或组合,适于应用在极端高温(例如,大约1100℃到1800℃)非加压反应的室中。这类耐火材料的实例包括但不限于:高温烧结陶瓷(例如,氧化铝、氮化铝、硅酸铝、氮化硼、氧化铬、磷酸锆)、玻璃陶瓷和主要含有二氧化硅、氧化铝和氧化钛的高铝砖。
[313]由于严格的操作条件,该池的耐火材料需要周期维护。因此,在一个实施方式中,残渣调整室设置为可分离的上下两部分,其中室的下侧部分(池所在位置)可以从室的上侧部分移除。在一个实施方式中,该室悬挂于支撑结构,以便下侧部分可从上侧部分分离,以方便维护。该实施方式设置为,除去下侧部分时不会干扰室的上侧部分与系统的上游组件或下游组件之间的连接。
[314]残渣调整室还可包括一个或多个端口,以容纳可任选需要的额外结构元件或仪器。该残渣调整室还可包括维修口,以允许进入或接近室以进行净化/清洁、维护和修理。这类端口是本领域已知的,并且可包括各种大小的可密封端口孔。在一个实施方式中,端口可以是视口,可任选包括闭路电视,以保持操作者对残渣加工方面的完全可视,包括监控炉渣出口的堵塞形成。
[315]在一个实施方式中,残渣调整室的形状可以是管状。该实施方式包括喷管安装端口、残渣进口、一侧围有堰的池、炉渣出口和金属放液口。
[316]该系统包括与调整室的残渣进口相连的残渣进料装置。残渣进口适于接收进入残渣调整室的残渣。残渣进料装置将残渣从残渣物质源运至调整室的进口。
[317]进入调整室的残渣物质可以来自一个或多个来源。残渣的来源可包括但不限于:低温或高温气化器、储存残渣的料斗、或者上游气体调整系统(例如袋式过滤器)。
[318]当待调整残渣以超过一个进口流提供或者来自超过一个的来源时,不同流分别通过专门的残渣进口进入调整室,或者可在引入残渣调整室之前结合。在后一种实施方式中设置一个残渣进口,通过该进口提供所有残渣。因此,该残渣调整室可包括共用进口或者多个进口,以满足进料残渣物质的任意物理特性。
[319]残渣源可设置为与调整室直接连通,即,每一残渣进料从来源直接送入残渣调整室。或者,残渣源可设置为与残渣调整室间接连通,其中残渣进料从来源经由输送装置系统输送入残渣调整室。
[320]当残渣调整室与残渣源间接连接时,残渣进料装置包括一个或多个用于将残渣从来源输送入残渣调整室的装置。例如,残渣进料装置可以包括单个螺旋输送机或一连串的螺旋输送机。
[321]在残渣调整室与残渣源直接连接的实施方式中,除了残渣源与调整室直接连接而不需要中间输送装置之外,使用的残渣源和残渣调整室可以与间接连接的实施方式中的残渣源和残渣调整室相同。在这种安排中,残渣从残渣源直接进入相邻的(和整合的)残渣调整室。在这种“邻近的”实施方式中,可通过主动或被动(即通过重力)的方式将残渣从残渣源输送入该残渣调整室。
[322]在直接连接的(或邻近的)实施方式中,残渣主动输送入残渣调整室,残渣进料装置一般位于残渣来源内。这样的输送装置可包括螺旋输送机、旋转臂、旋转链、移动炉篦和推进臂。
[323]残渣进料装置可任选地包括控制机构,以控制残渣的进料速度,从而确保残渣物质的最佳熔化和均化。
[324]在本发明的一个实施方式中,将固体工艺添加剂加入待调整残渣中,以调节炉渣产物的成份。这些固体工艺添加剂可在引入残渣调整室之前加入到残渣中,或者,可通过专门的添加剂进口直接加入到残渣调整室中。在一个实施方式中,固体工艺添加剂经由添加剂进料口直接加入到调整室。在一个实施方式中,添加剂可以在引入调整室之前引入到残渣中。
[325]当残渣调整系统与含碳原料气化加工相连时,也可在气化之前将固体工艺添加剂加入到原料。
[326]残渣调整系统使用一个或多个等离子体加热源来转化上游加工产生的残渣物质。等离子体加热源可以是可移动的、固定的或其组合。
[327]等离子体加热源可包括多种市售等离子体喷管,在应用时,其形成持续一段时期的高火焰温度。一般而言,这类等离子体喷管输出功率的大小可为大约100kW至6MW以上。等离子体喷管可使用适合工作气体的一种或组合。适合的工作气体实例包括但不限于:氩气、氦气、氖气、氢气、甲烷、氨、一氧化碳、氧气、氮气和二氧化碳。在本发明的一个实施方式中,等离子体加热装置是可连续操作的,以产生大约900℃以上至大约1800℃的温度,如将残渣物质转化为惰性炉渣产物所需的。
[328]在这方面,本系统可使用大量的可选等离子体技术。例如,可以理解使用适当选择的电极材料,可以使用转移弧和非转移弧喷管(AC和DC)。同样可以理解的是,可使用电感耦合等离子体喷管(ICP)。适当等离子体加热源的选择是本领域技术人员已知的。
[329]使用转移弧喷管代替非转移弧喷管,可提高残渣调整加工的效率,这是由于转移弧喷管将电转化为热的效率更高,以及转移弧喷管在热等离子体气体与待熔融材料之间的传热效率更高,因为弧直接通过熔化物。当使用转移弧喷管时,需要确保调整室是电绝缘的,因为室外壳将连接到电源的负极。在一个实施方式中,等离子体加热源是直流非转移弧喷管。
[330]在本发明的一个实施方式中,残渣调整系统包括一个或多个等离子体加热源,等离子体加热源定位成能够优化残渣物质到惰性炉渣的转化。根据残渣调整室的设计选择等离子体加热源(一个或多个)的位置。例如,当使用等离子体加热源时,可将等离子体加热源安装在室的顶部,并且布置于相对于室底部收集炉渣池的位置,以确保足够的热暴露于熔融残渣物质,并推动炉渣流动。在一个实施方式中,等离子体加热源是竖直安装在室顶部的等离子体喷管。
[331]所有等离子体加热源的能量和所选位置(使用可移动热源时)是可控的。在一个实施方式中,等离子体加热速率变化以提供不同的残渣进料速度。等离子体加热速率还可变化以提供不同的残渣熔融温度特性。
[332]等离子体加热源可以操作者的判断执行连续或不连续基础的操作,以提供不同的残渣输入速率和熔融温度特性。
[333]被调整的残渣一般含有一部分未反应的或未转化的碳。因此,可任选地将空气和/或蒸汽加入到残渣调整室,以确保碳完全转化,如不同碳含量的被调整残渣物质所需要的。由于在放热反应中碳与氧反应,还可使用空气进料进行调节,以保持最佳的加工温度,同时最小化调整加工所需等离子体加热的成本。同样,维持空气注入的量,以确保最大程度将碳转化为一氧化碳,并且最小化实施此加工所需的等离子体加热。
[334]如果调整室中的温度太高和/或调整加工的气体产物具有高的碳颗粒(煤烟)浓度,可将蒸汽注入,以控制温度和/或将固体碳转化为一氧化碳和氢气。
[335]因此,该调整室可包括一个或多个用于空气注入的空气进料口和任选地一个或多个用于蒸汽注入的蒸汽进料口。该空气和蒸汽进料口可位于残渣调整室内部和周围,以确保进入该残渣调整室的空气和蒸汽进料充分覆盖。
[336]本发明的系统包括与调整室连接的炉渣输出。炉渣输出包括残渣调整室上的出口,通过该出口将熔融炉渣排出。该出口一般位于室的底部或附近,以便于熔融炉渣聚集物通过重力流出残渣调整室。炉渣输出还包括炉渣冷却子系统,以使熔融炉渣冷却为其固体形式。
[337]熔融炉渣可从该室间歇性输出,例如通过分批灌注或在加工期间的最后周期性排出。熔融炉渣也可以以连续方式在整个加工时期输出。可通过本领域技术人员已知的任何方法,将任一方法得到的熔融炉渣以多种方式冷却和收集,以形成致密、不可浸出的固体炉渣。炉渣输出装置可进一步适合于:通过保持残渣调整室密封,最小化加热需求,并避免产物气体与外部空气接触。根据本发明,随着残渣通过等离子体加热进行调整,所形成的熔融炉渣在池中聚集。如前面讨论的,在本发明的一个实施方式中,熔融炉渣以连续方式提取,即,随着池中熔融炉渣体积增大,熔融炉渣溢出堰并通过出口从调整室排出。
[338]在残渣调整室的一个实施方式中,熔融炉渣通过S-嘴型出口排出。在该实施方式中,在位于出口或附近的位置处,炉渣输出装置可任选含有炉或其他加热装置,以使出口处的熔融炉渣温度保持在足够高,以确保在整个炉渣提取时期内出口都保持开放。该实施方式还确保炉渣聚集的水平不低于预定水平,从而保持密封的熔融环境,以避免与外部环境的气体接触。
[339]连续灌注实施方式特别适于设计为在连续基础上操作的系统,例如,残渣调整系统设置为与连续原料气化装置相连接。
[340]在一个实施方式中,熔融炉渣聚集在池中,直到该池被周期性排空。在这样的实施方式中,可通过倾斜机构或者通过该池的出口排空该池,该池可设置为可控地排出熔融炉渣。
[341]在一个实施方式中,提供一机构,以可控地通过倾斜机构从池排出熔融炉渣。在该实施方式中,残渣调整室具有可倾斜的熔锅,熔锅包括池、喷管、平衡物和杆臂,杆臂设置为使熔锅倾斜的机构。
[342]在不同的实施方式中,存在不同设计选择,其可设置为用于通过池或室适当的出口将熔融炉渣受控地排出。可以控制熔融炉渣的排出,以确保熔融炉渣的水平不会低于出口顶部,以便外部大气的气体不会进入内部熔融区。
[343]在一个实施方式中,在靠近该池/室底部的侧壁上,池或室具有出口。该出口被封入耐火材料的感应加热器包围,所述感应加热器可控制出口周围区域中耐火材料的温度。增加温度以足够保持炉渣处于熔融状态,使炉渣流过出口。当炉渣聚集的水平达到期望的水平时,感应加热器关闭,并且允许炉渣在出口固化。
[344]在一个实施方式中,出口被“堵有”软质耐火材料糊。在适合于在软质耐火材料糊中“烧”孔使熔融炉渣流出的位置处,设置氧矛。通过将耐火材料或其他适合的材料放置回出口中,停止该流动。在一个实施方式中,出口由可移动的水冷却塞盖住。塞可从关闭位置移到开放位置,从而露出出口以允许熔融炉渣通过出口排出。熔融物质不粘附在塞的光滑表面上,这是因为水冷却的效果。在一个实施方式中,出口被楔形装置塞住。当需要控制熔融炉渣排出时,将该“楔形装置”推入出口以及将其从出口推出。
[345]在一个实施方式中,炉渣输出装置还包括用于冷却熔融炉渣的炉渣冷却子系统,以提供固体炉渣产物。在一个实施方式中,熔融炉渣倒入骤冷水浴。该水浴提供使炉渣冷却并粉碎为适于商业使用的颗粒的有效系统,所述商业使用例如用于混凝土制造或筑路填料。水浴还可以以水密封管的形式提供对环境的密封,该水密封管从炉渣室的底部向下延伸入水浴,从而提供防止外部气体进入残渣调整室的屏障。
[346]在炉渣冷却子系统的一个实施方式中,熔融炉渣落入用于冷却的厚壁钢捕获容器。在一个实施方式中,熔融炉渣容纳在硅砂的环境密封床中,或者容纳在模具中,以提供适合于小规模加工的固体炉渣,或在需要检测某些参数时,提供适合于检测这些参数的固体炉渣。小的模具可以在预热炉中受控冷却。在炉渣冷却子系统的一个实施方式中,熔融炉渣转化为商业产品如玻璃棉。
[347]当设置残渣调整系统以对可能含有大量金属的物质(如城市固体废物)气化后的残渣剩余物进行调整时,可能部分金属会通过气化系统并进入残渣调整室。这些金属在正常炉渣玻璃化温度下不一定会熔化,因此炉渣池可随时间被堵塞,因为金属的密度高于熔融炉渣密度。为了除去聚集的金属,该残渣调整室的温度可周期性升高以熔化金属,并且如果需要可将熔融金属从该池的底部通过金属放液口放出。
[348]当被调整残渣含有部分未反应的碳时,残渣调整加工的产物将是具有潜在可用热值的气体,并且可适合用于下游应用。在本文该气体被称为“残余气”。残渣物质转化为惰性炉渣期间在残渣调整室中产生的气体经由气体出口排出该室。然后,可在本领域已知的气体冷却和/或污染消除系统中进一步处理残余气。
[349]因此,在本发明的一个实施方式中,将残余气直接引入用于冷却和清洁气体的系统,该系统被称为“固体残余气调整系统”。该固体残余气调整系统在上面的“气体调整系统”部分中有更详细地描述。在残余气经处理后,可备用于下游应用。
气体均化系统
[350]本发明进一步包括气体均化系统,用于均化进料气体的化学组成,以及调节其他特性例如气体的流速、压力和温度,从而得到满足下游需要的调整气体。该系统能使连续、稳定的气流具有限定的特性,以输送到下游应用例如燃气轮机、发动机和其他适合的应用。
[351]具体而言,气体均化系统提供气体均化室,气体均化室的尺寸设计成足以提供具有一致输出组分的均化气体的气体居留时间。气体均化系统的其他元件设计和构造成,使调整气体满足下游应用的性能需要。该系统还可包括反馈控制系统,以优化加工的能学(动力学)和输出。
[352]通过上述的气化加工和GCS,确定从GCS进入均化系统的气体组成。离开GCS的气体,可以在目标组分限定范围内,然而,气体的特性随时间波动,这是由于气化加工的变化,如原料组成和进料速度、气体流量和温度波动。尽管如上所述提供多种控制来队最终调整气体的组成进行控制,但是气体压力和温度一般会随时间发生波动。在压力情况下,波动可在每一秒的基础上发生;对于温度,波动在每一分钟的基础上发生。在本发明的一个实施方式中,压力变化限制选择为小于大约0.145psi/秒。
[353]如上面提到的,从气体均化系统排出的调整气体具有基本上稳定的特性,满足下游应用的规定。一般地,机器制造商对具体机械提供要求并允许公差;例如气体发动机或燃气轮机的气体参数对本领域技术人员是已知的。在本发明的一个实施方式中,气体发动机可要求调整气体组成LHV的变化最大为大约30秒内大约1%的变化。在本发明的一个实施方式中,气体发动机可接受HHV低至大约50BTU/scf的的气体,只要其含有最小约12%的氢即可。在本发明的一个实施方式中,调整气体需要沃贝指数(定义为T(度R)/sq.rt(比重))为涡轮发动机所使用设计值的+/-4%。此外,涡轮发动机还需要大约300Btu/scf的最小LHV和大约475psig的最小压力。在本发明的一个实施方式中,发动机要求调整气体的温度大于或等于露点温度加大约20°F,该温度下的相对湿度最大值为大约80%。
[354]根据本发明一个实施方式配置用于生产调整气体的气体均化系统包括:冷凝器;气液分离器;均化室,连接有安全阀和压力调节阀;气体调整滑板(skid),包括气液分离器和加热器;过滤器;和压力调节阀。接下来可通过适当的导管将该调整气体引到发动机。
[355]图86和图87示出配置用于调整气体的气体均化系统的多种实施方式。在图86中,例如,气体均化系统1包括:冷凝器10;气液分离器12;均化室14,连接有安全阀16和压力调节阀18;气体调整滑板20,包括气液分离器22和加热器24;过滤器26;和压力调节阀28。接下来可通过适当的导管将该调整气体引到发动机30。
[356]在冷凝器处,充分清洁的气体从GCS进入均化系统,在冷凝器处对气体温度进行适当调节。然后,通过适当的导管装置,将气体输送到分离器,在这里调节空气的湿度。之后,气体经由气体进口导管装置进入均化室。一旦处在均化室内,气体被混合或掺合,这导致气体具有稳定组成。在从均化室排出混合或掺合的气体之后,进一步调整混合或掺合气体的气体流速和压力。然后,适当的导管装置将混合或掺合的气体运输到气体调整滑板,在这里进行混合或掺合气体的温度调整和湿度调整。然后,由适当的导管装置运输的混合或掺合气体进行过滤并调整压力。此时所形成的调整气体满足下游应用的期望需要,可通过适当的导管将其引到发动机。
[357]均化系统可配置成将调整气体引至一个下游应用或平行的多个下游应用。图88、图89和图90示出本发明不同实施方式中的均化配置,其中均化系统将调整气体送至多个下游应用。
[358]一般而言,随着气体的产生,将气体从GCS运送到均化室。为了确保均匀进料气体流速,还可使用引风装置。相似地,为了确保因素(例如进料气体流的气体组成、流速、温度和压力)适应于期望范围的目标特性,在均化之前,可通过本领域技术人员已知的监控系统监控进料气体。考虑这些因素的分析结果后,将气体引导到均化室。
[359]气体均化室接收来自GCS的调整气体并促进气体混合或掺合,以减弱均化室内气体化学组成的波动。气体混合时还可以减弱其它气体特性(例如压力、温度和流速)的波动。
[360]在本发明的一个实施方式中,根据上游气化系统的性能特性和下游应用的要求,设计所述均化室的尺寸,目的是尽可能实质上减小室的尺寸。设计所述气化均化室,以接收来自气化加工的气体,并使气体停留特定居留时间,允许气体进行充分混合或掺合,以减弱干扰和/或波动,并得到具有基本上一致化学组成的气体体积。
[361]在本发明的一个实施方式中,均化室的尺寸能够根据总系统响应时间来计算,该总系统响应时间包括:在转化器与分析器样品探针之间的加工居留时间,加上样品系统的总系统响应时间、设备控制系统(PCS)的分析和传输时间。
[362]居留时间是气体在引至下游应用前在均化室中停留的平均时间量。居留时间基本上与相关气化系统的响应时间成比例,以缓冲气化反应中波动变化速率的影响,从而得到的气体特性落在可接受的公差范围内。例如,气体组成在均化室中停留足够长的时间,以确定气体组成是否落在特定下游应用允许的气体组成公差内,以及,对气化加工作出调节以调节偏离。这样,该系统能够影响气体特性变化率,以便具有快加工滞后的上游控制将能够符合下游应用的要求。在一个实施方式中,通过低热值(LHV)每30秒约1%的最大变化和压力约0.145psi/秒的最大变化,确定居留时间。
[363]通过气体特性的变化量,确定气体在均化室中的居留时间。即,气体特性的变化越小,需要在均化室中用于校正该变量的居留时间越短。
[364]取决于本发明的不同实施方式,居留时间可在从小于约一分钟至约20分钟的范围内变化。在一个实施方式中,居留时间可在从约15分钟至约20分钟的范围内变化。在一个实施方式中,居留时间可在从约10分钟至约15分钟的范围内变化。在一个实施方式中,居留时间可在从约5分钟至约10分钟的范围内变化。在一个实施方式中,居留时间可在从约3分钟至约5分钟的范围内变化。在一个实施方式中,居留时间可在从约1分钟至约3分钟的范围内变化。在一个实施方式中,居留时间能够在小于约1分钟内的范围内变化。
[365]在一个实施方式中,居留时间约20分钟。在一个实施方式中,居留时间约18分钟。在一个实施方式中,居留时间约15分钟。在一个实施方式中,居留时间约13分钟。在一个实施方式中,居留时间约10分钟。在一个实施方式中,居留时间约8分钟。在一个实施方式中,居留时间约6分钟。在一个实施方式中,居留时间约4分钟。在一个实施方式中,居留时间约3分钟。在一个实施方式中,居留时间约2分钟。在一个实施方式中,居留时间约1分钟。在一个实施方式中,居留时间小于约1分钟。
[366]由于原料的不均一性,均化室的容积与特定下游应用所要求的居留时间和所期望的波动相关。在本发明的一个实施方式中,可变的气体容积范围是约0-290m3。在一个实施方式中,可变的气体容积范围是约0-1760m3。在一个实施方式中,可变的气体容积范围是约0-2050m3。在一个实施方式中,可变的气体容积范围是约0-30,000m3。在本发明的一个实施方式中,均化室具有约290m3的最大容量。在一个实施方式中,均化室具有约1800m3的最大容量。在一个实施方式中,均化室具有约2300m3的最大容量。在一个实施方式中,均化室具有约30,000m3的最大容量。
[367]所选的下游应用能够直接影响均化室的操作压力。例如,气体发动机需要约1.2-3.0psig的气体压力,燃气轮机需要约250-600psig的气体压力。相应计算均化室的机械设计压力,以适合于所选应用的要求操作压力。在一个实施方式中,均化室的机械设计压力适合于维持气体发动机中使用的气体压力。在一个实施方式中,均化室的机械设计压力适合于维持燃气轮机中使用的气体压力。在一个实施方式中,均化室具有约5.0psig的机械设计压力。在本发明的一个实施方式中,均化室具有约10.0psig的机械设计压力。在本发明的一个实施方式中,均化室具有约25.0psig的机械设计压力。在本发明的一个实施方式中,均化室具有约100至约600psig的机械设计压力。
[368]本领域的技术人员还应理解,为了符合下游应用如气体发动机的要求,较低压力的系统更合适,而为了符合其它下游应用如燃气轮机的要求,较高压力的气体流更合适。
[369]均化室具有机械设计温度容许限度,以符合所包含的气体和下游应用的要求。典型地,这些温度的范围将从约-40℃至约300℃。在本发明的一个实施方式中,所述均化室的机械设计温度范围从约-37℃至约93℃。
[370]本领域的技术人员应理解的是,均化室可形成为各种形状,只要能够满足上述均化系统功能要求即可。本领域的技术人员还应理解,所述均化室的形状和大小取决于具体设计所要求的气体处理量和居留时间。成本和维护是选择均化室类型的附加考虑因素。
[371]均化室的不同类型包括但不限于:流量计,储气罐,可变容积和固定容积箱,例如标准燃料箱和缓冲罐。因此,根据本发明的一个实施方式,均化室是标准燃料箱。根据本发明的一个实施方式,均化室是固定容积箱,例如缓冲罐。根据本发明的一个实施方式,均化室是可变容积箱。根据本发明的一个实施方式,均化室是流量计或储气罐。
[372]图6给出了本发明一个实施方式中的均化室,其为固定容积箱,并具有气体进口、气体出口、泄压气体出口、排出管、一个或多个压力/温度喷管、以及一个或多个水平开关喷管。所述箱的排出管是锥形底部排出系统的形状。
[373]图92至图94示出均化室的多种实施方式。在图92中所给出的实施方式中,所述气体进口连接于压缩机,压缩机作能为在贮存于压力容器前将气体压缩。在图93所给出的实施方式中,气体贮存室通过内膜和外膜限定。当气体排出贮存室时,与外膜相连的鼓风机向膜之间的区域提供充气。当气体加入到贮存室中时,调整器对充气区域的压力进行调整。在图94所给出的实施方式中,均化室是包括固定容积箱的吸收型储气罐。还示出了用于吸收气体分子的箱的横断面视图。
[374]典型地,均化室位于地上。然而,由于美观因素,或者在不允许燃料容器在地上的管辖区内,均化室可位于地下。因此,在一个实施方式中,均化室是在地下的。在一个实施方式中,均化室是在地上的。在本发明的一个实施方式中,均化室布置成其一部分位于地下。
[375]进一步的考虑,均化室可配置为具有多于一个室的均化系统,或可配置为一个或多个单个均化室平行流动地互连。图95给出在本发明一个实施方式中的均化室配置,其中所述室平行地互连。
[376]本领域的技术人员容易理解,各个固定容积均化室可独立地选作上述实施方式中的一种,例如,压力容器、双膜储气罐、重复吸收型储气罐等,只要整个系统具有单一气体进口和单一气体出口即可。本领域技术人员能够针对给定目的确定这种设计的适应性。
[377]已知来自气化系统的气体会具有较高的毒性和易燃性,且在多数情况下,均化室位于室外,暴露于各种环境条件例如极端温度变化、雨、阳光、雪、风等等。因此,均化室以适当的安全材料制成。非限定的实例包括塑料(PVC)、钢、复合材料例如玻璃纤维增强的塑料或钢、以及钢合金。本发明还考虑包括这些材料组合的气体均化室,如包括适合内部涂层的金属。由于这种涂层所提供的附加环境保护,涂覆的金属(例如)能够用于这些位于地下的室。涂覆的金属也要求满足政府规定。
[378]本领域技术人员理解,在气体均化加工中监控输入调整气体的气体特性,以便确定气体是否符合下游要求,以及,为了满足这些要求需要进行何种调整。气体特性的监控可以在均化室中进行,或在气体转移至均化室之前进行。该气体监控设备的形式可以是传感元件、响应元件和控制器,其能够监控和/或调整气体的组成、流速、温度和压力。
[379]在本发明的一个实施方式中,实施反馈回路,其中实时分析所产生的气体,并相应调节气化系统的操作,以进行必要的调节。在一个实施方式中,均化室包括一个或多个传感元件,用于分析气体特性,例如气体组成、温度、流速和压力,本领域的技术人员易于理解各传感元件的配置。例如,可使用热电偶或其它温度传感形式来测量温度,可使用绝对压力传感器、表压传感器(gauge pressure sensor)、真空压力传感器、差压传感器或其它压力传感器来测量压力,可使用流量计或其它流速传感器来测量流速,可使用基于声特征的气体组成传感器或其它易于理解的气体组成传感器来测量气体组成。
[380]在一个实施方式中,特定的传感元件可配置成测量气体的多种特性,其中这些类型的传感器是本领域技术人员容易理解的。在一个实施方式中,均化室进一步包括一个或多个控制器,控制器配置成为产生指令并传至一个或多个响应元件,以调整气体特性例如气体组成、温度、流速和压力。
[381]在本发明的一个实施方式中,多个传感元件位于均化室中,以在均化室中的不同位置进行气体特性取样,从而提供该位置处气体均一性的评价装置。此外,可将一个或多个多余的传感元件布置于均化室中,以确保前述一个或多个传感元件的精确操作,例如故障检测(fault detection)。另外,在一个实施方式中,使用两个或多个传感元件来评价相同的参数,并且,通过两个或多个传感元件测量的读取值之间的相关性,确定参数的测量值。
[382]包括一个或多个管道的进口用于将气体从气化系统运到均化室。如上所述,该系统的上游组成部件可任选地包括一个或多个冷凝器、气液分离器、引风装置、气体监控系统(可包括温度和压力控制器)、以及调节阀。
[383]气体通过管道从GCS传送到本发明的均化室,该管道设计为在预定的温度和压力下运载气体。本领域技术人员可以理解,这些管道可以为管、导管、软管等形式。
[384]随着气体产生,将气体典型地从GCS中抽引出,气体流典型地是非均一的。当GCS低于大气压操作时,引风装置可以将气体运送通过均化室。所述引风装置可以位于均化室之前的任何位置。在本领域中可以理解的是,适合的引风装置包括但不限于鼓风机和真空泵或其它适合的流动引导设备。
[385]如上所述,可以在均化室内或在输入前,监控输入气体的气体特性。在一个实施方式中,监控系统可以是输入装置的一部分并可以包括自动化的装置,例如一个或多个传感元件,能够提供气体特性的详细评估。例如这些特性可包括连续气体压力和温度监控加上连续产物气体的流速和组成监控。本领域技术人员易于理解所需的取样装置以收集上述有关气体的信息。例如,可使用热电偶或其它温度传感器形式测量温度,可使用绝对压力传感器、表压传感器、真空压力传感器、差压传感器或其它压力传感器来测量压力,可使用流量计或其它流速传感器来测量流速,可使用基于声特征的气体组成传感器或者其他易于理解的气体组成传感器来测量气体组成。
[386]在一个实施方式中,特定的传感元件可配置成测量气体的多种特性,其中这些类型的传感元件是本领域技术人员容易理解的。
[387]另外,在一个实施方式中,监控系统可以包括用于分析气体的装置,其可操作地与反馈系统连接,作为加工控制系统(PCS)的整合联机(on-line)部分。由这种整合联机进行气体分析所提供的优点是,加工控制的调节能力更精细,以及,对气体各种应用的控制和均化能力更高。
[388]在本发明的一些实施方式中,气体输入可以进一步包括控制气体进入均化室的流速的装置,从而控制该均化室中气体的压力。该压力控制子系统可以包括本领域中已知的常规阀或关闭系统。以举例方式给出压力调整装置的数个非限定性实例。所述压力控制系统响应于监控系统的信号,可以控制气体流速并适当引导气体。在一个实施方式中,压力控制系统包括阀,可将顺应性气体(compliant gas)和非顺应性气体(non-compliant gas)分别引导至均化室和燃烧室或煅烧室。
[389]通过调整气体管道(设计为在预定的温度和压力下运载气体),将调整气体从均化室转移至下游应用。本领域的技术人员理解这些管道的形式可为管、导管、软管等等。
[390]如上文已经叙述,监控系统用于在气体进入均化室之前或停留在均化室内时监控/控制气体。相似地,监控系统能够用于在气体移至下游应用前监控调整气体。这样监控系统能够起到确定和控制所述特性的作用。
[391]调整气体出口可以进一步包括对调整气体从均化室至下游应用的流速进行控制的装置。与进口处操作的控制系统交替地运行或联合运行,可以控制均化室的压力。出口处的压力控制可以包括常规的阀或本领域已知的关闭系统。如上所述,流动和压力控制系统响应于监控系统的信号,该监控系统用来在调整气体离开均化室时监控其特性。例如,控制系统可以包括压力调节阀,压力调节阀可适合于通过一个或多个响应元件控制气体流速和压力。
[392]调整气体可以进一步包括用于在调整气体离开均化室时对其进行加热的装置。本领域技术人员可以理解,将气液分离器合并入本发明的系统是有利的。
[393]典型地,下游应用例如气体发动机和燃气轮机对极少量成分敏感,该极少量成分会在气体产生加工的任何时间进入气体。就这一点而言,所述系统可以包括一个或多个适合孔径的过滤器,将潜在的干扰污染物筛去,同时基本上限制过滤器对气体流速的冲击。在一个实施方式中,过滤器与发动机的共用集气管连接。在一个实施方式中,各发动机气体序列具有各自的过滤器。在一个实施方式中,使用上述两种过滤手段,并将其配置作为两级过滤处理。
[394]调整气体排出装置可以进一步包括压力调整阀装置,用于在调整气体转移至下游应用前对其压力进行控制。
[395]本领域技术人员可以理解,下游应用决定了调整气体所需的特定气体特性。例如,用于使气体发动机有效操作的所需气体压力不同于燃气轮机情况下的气体压力。如上所述,燃气轮机需要相对高的气体压力。因此,可以预期的是,在需要高气体压力的实施方式中,均化系统中可包括用于气体加压的装置。气体加压装置是本领域中已知的,并且可以包括各种设计的气体压缩机,例如轴流式压缩机、往复式压缩机、旋转螺旋压缩机、离心压缩机。其它的实例包括斜流式(diagonal)压缩机或混流式压缩机、涡旋式压缩机或其它气体加压装置,如本领域的技术人员所已知的。
[396]所述压力控制系统还可以包括一个或多个具有控制阀的紧急出口。当气体流不能足够快地减少时(例如由于上游操作故障或气体发动机的下游故障),可以开启紧急控制阀,以通过紧急出口释放气体。
[397]可以快速开启紧急阀,以便不产生气体压力的显著变化(约<1%)。本领域的技术人员可以理解,紧急出口及相应的阀可以位于本发明均化系统的任何位置。在一个实施方式中,所述紧急出口位于均化室中。在一个实施方式中,紧急出口位于输入装置中。在一个实施方式中,紧急出口位于出口装置中。
控制系统
[398]本发明提供将含碳原料转化为气体的控制系统。特别地,为了将这种原料转化为气体(该气体可用于一种或多种下游应用),设计所述控制系统使其可配置成用于控制气化系统中执行的一种或多种加工,和/或,用于控制通过气化系统(或其一种或多种组件)执行的一种或多种加工。可由本文所公开控制系统的不同实施方式控制的气化加工可以包括下述组件的多种组合:转化器、残渣调整器、同流换热和/或热交换系统、一个或多个气体调整器、气体均化系统、以及一种或多种下游应用。这些组件和子系统的实例将在下文详细描述,下面说明可由本发明控制系统控制的气化系统的示例实施方式。
[399]一般来讲,由本发明所控制的气化加工通常在转化器中进行,该转化器包括一个或多个处理区间和一个或多个热源,在一些实施方式中热源包括一个或多个等离子体热源。所述转化器通常还包括:一个或多个原料进料机构和/或用于将原料输入转化器的装置,原料可以包括单一原料(例如城市固体废物(MSW)、高碳原料(HCF)、煤炭、塑料、废液、有害废物等等)、不同原料和/或混合原料;以及用于添加一种或多种添加剂的装置,例如蒸汽、氧化剂和/或富碳材料添加剂(后者可任选地提供作为次级原料)。该气体产物通过一个或多个输出气体出口离开转化器。如下文将进一步叙述的,转化器主要包括单一区间和/或室的转化器,或多区间和/或室的转化器,例如包括气化器和重整器,其中分别进行气化和重整加工。
[400]在一个实施方式中,采用等离子体加热(例如通过等离子体热源例如等离子体喷管等等)连同输入添加剂(例如蒸汽和/或氧气和/或富碳材料),有助于控制气体特性,例如流量、温度、压力和组成。所述气化系统还可以使用等离子体加热来提供以下所需的高温热量:气化所述原料、重整由此所产生的废气、和/或熔化副产物灰末以将其转化为具有商业价值的玻璃状产物。
[401]本发明控制的气化加工进一步包括管理和控制气化加工固体副产物的手段。特别地,气化系统可以包括固体残渣调整器,用于将来自原料-能量转化加工的固体副产物或残渣转化为具有低滤过性的玻璃化均质物。气化加工的固体副产物也可以为木炭、灰末、熔渣或其一些组合的形式。
[402]本发明所控制的气化加工还可以包括用于从热产物气体回收热量的装置。这种同流换热可以通过多种热交换器来实现,例如气体-气体热交换器,从而,使用热产物气体加热气体或其它氧化剂(例如氧气或富氧空气),然后可任选地向气化加工提供热量。例如,回收的热量也可以用于工业加热应用。可任选地,可以控制一个或多个蒸汽发生器热交换器作为气化加工的一部分来产生蒸汽,蒸汽可用于例如气化和/或重整反应中的添加剂,或用于驱动蒸汽轮机发电。
[403]本发明控制的气化加工可以进一步包括转化器气体调整器,或者其它气体调整装置,用来调节气化加工所产生的产物气体,使其能够用于下游应用。例如,因为在上述残渣转化器中的残渣处理可以产生气体,产物气体可引导至转化器气体调整器,在此处气体经受特定顺序的加工步骤,以产生适合于下游使用的输出气体。
[404]本发明控制的气化加工可以进一步包括气体均化系统,用于提供产物气体的至少以第一水平均化。例如,通过使产物气体在均化系统中经过给定的居留时间,气体的多种特性可以至少部分地均化,以减少这种特性的波动现象。例如,通过均化系统,产物气体的化学组成以及其它特性例如流量、压力和/或温度可以至少部分地稳定,以满足下游要求。在一个实施方式中,气化系统的均化系统提供气体均化室等,气体均化室等的尺寸设计为提供足够的气体居留时间,以使获得的气体具有充分一致的输出组成、压力、温度和/或流量。一般来讲,根据下游应用的要求且考虑控制系统的能力,设计均化系统的特性,以使控制系统按照需要减弱产物气体的特性波动。
[405]控制系统可操作地控制与总体气化加工相关的各种局部、区域和/或整体加工,从而调节其适于影响这些加工以获得所选结果的各种控制参数。因此,将多种传感元件和响应元件分布在整个控制系统中,或与控制系统的一个或多个组成部件相关,并用于获得各种加工、反应和/或产物的特性,将这些特性与这种特性的适合范围(能获得所需结果)相比较,以及,经由一个或多个可控加工装置执行一个或多个当前加工的变化,从而进行响应。
[406]在一个实施方式中,控制系统用于控制气化加工,气化加工将含碳原料转化为适用于所选下游应用的气体。在一个实施方式中,控制气化加工,以使其产物气体可以以连续方式使用和/或实时的方式立即使用。因此,控制系统可以包括例如一个或多个传感器,用于传感在下游应用中使用的气体的一种或多种特性。一个或多个计算平台通信连接于这些传感元件,用于获取表示所传感特性的特征值,以及,该计算平台配置成将特征值与此值的预定范围(表示气体适合用于所选下游应用)比较,以及计算一个或多个加工控制参数,以将特征值维持在预定范围内。因此,将多个响应元件可操作地连接于一个或多个加工装置,可操作该加工装置以影响加工,从而调节气体被传感的性,以及,响应元件可操作地连接于计算平台,以获取计算出的加工控制参数,并根据该参数操作上述加工装置。
[407]例如,所述控制系统可以配置成,控制含碳原料到一个或多个特性适用于下游应用的气体的转化,其中可将产物气体用于通过在燃气轮机中燃烧来发电,或者用在燃料电池应用中。在这种应用中,需要获得能够最有效用作各能量发生器中燃料的产品。可选择的,如果产物气体用作进一步化学加工中的原料,其组成要特别适合用于特定合成应用。
[408]在一个实施方式中,控制系统提供加工能学的反馈、前馈和/或预测性控制,以基本上维持反应设定点,从而允许气化加工在最佳反应条件下进行,以产生具有特定组成的气体。例如,能够使用适当配置的气化系统,来确定和获得原料向气体转化的总体能学,其中可以评价和可控地调节各种加工特性,来影响净总体能学(netoverall energetics)的确定。这种特性可以包括但不限于:原料的热值和/或组成、产物气体的特性(例如热值、温度、压力、流量、组成、碳含量等)、这些特性允许的变化程度、以及输入成本与输出值的比值。可以对各种控制参数、气体和/或系统的压力/流量调整器等进行连续和/或实时调整,从而评估净总体能学并根据设计具体内容来最优化,其中,控制参数可以包括但不限于热源功率、添加剂(例如氧气、蒸汽等)进料速度、原料进料速度(例如,一种或多种不同的进料和/或混合进料),压力/流量调整器例如鼓风机、泄压和/或调节阀、火焰等。
[409]另外,或者附加地,可以将所述控制系统配置成监控气化系统中各组成部件的操作,用于确保适当的操作,以及,可任选地,用于确保所执行加工符合规定的标准(当采用这种标准时)。
[410]根据一个实施方式,所述控制系统可进一步用于监控和控制气化系统的总能量冲击(total energetic impact)。例如,可以操作用于原料转化的气化系统,以减少或最小化其能量冲击,例如通过最优化一个或多个所执行的加工,或者通过增加这些加工所产生余热的同流换热。可选择的,或附加地,可以将所述控制系统配置成,对可控加工所产生产物气体的组成和/或其它特性(例如,温度、压力、流量等)进行调节,以使这些特性不仅适应于下游使用,还基本上最优化用于有效的和/或最佳使用。例如,在一个实施方式中,产物气体用于驱动给定类型的气体发动机来发电,可以调节产物气体的特性,使得这些特性最符合于这种发动机的最佳输入特性。
[411]在一个实施方式中,所述控制系统可以配置成调节气化加工,以符合或最优于限制或性能指南,这些限制或性能指南涉及各组成部件中的反应和/或产物居留时间,或涉及总体气化加工的各个加工加工。例如,在使用城市废物作为原料的实施方式中,重要的是,调节这种废物的气化加工,使废物在预处理和/或贮存相中具有最长的居留时间。例如,废物和/或其它原料可以周期性地或连续地运输到受控系统装置中,在连续操作时必须控制这种原料的加工,以避免其过剩(例如预处理居留时间增多时),同时允许连续操作(例如减少或避免停机时间)。在这种实施例中,可以控制给定原料的加工速率以使其基本上配合原料的运输速率,从而,允许所运输原料在贮存或预处理阶段中具有基本一致的居留时间(例如,若干小时、天、周等)。
[412]类似地,可以对原料在气化系统转化器中的居留时间进行控制,以允许充分的处理,而不会因消耗资源导致不当地减少和/或限制下游加工和/或应用。例如,给定的转化器配置可以允许相对稳定的居留时间,由此得到原料的适当处理(例如,分钟、小时等)。可以同样地控制转化器的下游组成部件,也获得基本上所需的居留时间。例如,通过这些用于给定气体流量和/或居留时间的组成部件,可以对穿过热交换系统、调整系统和/或均化系统的流动气体进行最佳处理。类似地,可以通过控制这种系统组成部件的多种元件,修正以及补偿气体流量和/或居留时间的变化。
[413]本领域技术人员可以理解,所述气化系统和控制系统可以以多种实施方式用于多个加工系统,所述加工系统具有多个独立的和/或组合的下游应用。进一步,该控制系统能够实施为多种实施方式,并以连续和/或实时的方式同时控制加工的多个方面。
[414]参考图98和图99,所述控制系统可以包括适用于现有应用的任何类型的控制系统结构。例如,所述控制系统可以包括基本上集中控制系统(例如见图98)、分布式控制系统(例如,见图99)或其组合。集中控制系统将通常包括:中央控制器,配置成与多种局部和/或远程传感装置通信;以及响应元件,配置成分别感知多种与受控加工相关的特性,并且,通过一个或多个可控的加工设备(适用于直接或间接地影响受控加工),对感知的特性进行响应。使用集中结构,通过一个或多个集中处理器,集中执行大部分计算,以便用于对加工进行控制所需的大部分硬件和/或软件位于相同地位。
[415]分布式控制系统通常包括两个或多个分布式的控制器,各控制器可以与各自的传感和响应元件通信,传感和响应元件用于监控局部和/或区域的特征,且通过局部和/或区域的加工装置(配置用于影响局部加工或子加工)对监测的特征进行响应。还可以通过各种网络配置在分布的控制器之间进行通信,其中通过第一控制器感应的特性可以被传送至第二控制器,在第二控制器处进行响应,其中这种远程响应可以对第一位置感应的特性产生的冲击。例如,下游产物气体的特性可以通过下游监控装置进行感应,并且通过调节控制参数来调整,该控制参数与通过上游控制器控制的转化器相关联。在一个分布式结构中,控制硬件和/或软件也在控制器之间分布,其中可以在各控制器上执行相同但模件化配置的控制流程,或者在各控制器上执行各种共同作用的模块化控制流程。
[416]另外,所述控制系统可以再分为独立但彼此通信连接的局部、区域和/或总体控制子系统。这种结构可以允许进行给定的加工或相关加工序列,并可局部地控制这种结构而使其与其它局部控制子系统的相互影响最小。然后,可以将总体主控制系统与各个局部控制子系统连同,从而,为了总体结果对局部加工进行必要的调节。
[417]本发明的控制系统可以使用任何上述结构,或本领域已知的任何其它结构,这些都在本文公开的范围内。
[418]所述控制系统包括响应元件,用于控制控制反应条件,并管理含碳原料向输出气体转化的化学和/或能学。另外,所述控制系统能够确定和维持操作条件,以维持理想的、最佳的和非最佳的气化反应条件。理想操作条件的确定取决于加工的总体能学,其包括因素例如含碳原料的组成和产物气体的具体特性。原料组成的范围可在基本上同质至完全不同质之间。当原料的组成变化时,某些控制参数需要通过响应元件进行连续调节,以维持理想条件。
[419]所述控制系统可包括多个响应元件,各响应元件可设计为执行专门的任务,例如,一种添加剂的流速控制、气化系统的一个或多个热源之一功率输出或位置控制、或副产物提取的控制。该控制系统可进一步包括处理系统,如处理器中。在一个实施方式中,所述处理系统可包括多个子处理系统。
[420]通过交互式执行多种系统和/或处理计算(限定用于反映给定气化系统的当前实施),可以进一步加强控制系统。这种计算可以通过多种系统和/或处理模型得到,其中,以预测和/或校正的方式使用处理和/或系统特性和控制参数的模拟,以控制如此建模的系统或子系统。美国专利6,817,388提供这种系统模型的实例,其可以用于与控制系统结合,以确定各种操作参数和基于此的预测结果,用作系统10的各加工实施时的原点。在一个实施方式中,这些和其它这种模式偶尔或常规性使用,以持续地评价和/或更新系统10的各种系统操作的范围和/或参数。在一个实施方式中,使用NRC HYSYS模拟平台,并且此模拟平台可涉及输入、废物,输入化学组成的任何组合、热化学特性、湿度、供给速率、工艺添加剂等。所述模型还可以提供多种可任选的交互式加工最佳化,以考虑例如:位置和原料类型的细节、能量回收的最大化、散失最小化、资金和成本的最小化等等。最后,基于所选模型的选项,所选模型可以提供例如多种操作特性、可得的处理量、系统设计特性、产物气体特性、散失水平、可回收能量、可回收副产物和最佳低成本设计。在美国专利6,817,388中提供了多种代表性示例,其可容易地应用于本发明,这对于本领域的技术人员来说是容易理解的。
[421]本处理系统和任一子处理系统可包括专有硬件或硬件和软件的组合。任何子处理系统可以包括一个或多个比例控制器(P)、积分控制器(I)或微分控制器(D)的任意组合,例如P控制器、I控制器、PI控制器、PD控制器、PID控制器等。对于本领域技术人员容易理解的是,P控制器、I控制器和D控制器组合的理想选择取决于气化系统反应加工部分的动力学和延迟时间,以及所述组合要控制的操作条件的范围,以及所述组合控制器的延迟时间和动力学。
[422]组合控制器设计中的重要方面是,在将各控制变量或控制参数从开始调节至特定值时,需要短的过渡期并要求过渡期内的波动小。对于本领域的技术人员容易理解的是,这些组合可以实施为模拟电路的形式,其通过传感元件对特征值进行连续监控,将测出值与特定值进行比较,从而影响各控制元件,以通过响应元件进行足够的调节,减小测出值与特定值之差。
[423]对于本领域中技术人员更为容易理解的是,所述组合可以实施为混合数字式硬件软件环境。附加的任意采样、数据获取和数据处理的相对作用对于本领域技术人员是已知的。P、I、D组合控制可以实施为前馈控制流程和反馈控制流程。
[424]在校正控制或反馈控制中,将控制参数或控制变量的值(通过适当的传感元件监控)与特定值或范围进行比较。基于两个值之间的偏差来确定控制信号,并将其供给控制元件以减少偏差。例如,当输出气体超过预设的H2:CO比例时,反馈控制装置可对输入变量之一进行适当的调节,例如,通过增加添加剂氧气的量来将H2:CO比例恢复至特定值。通过适当的响应元件对控制参数或控制变量进行影响改变的延迟时间有时被称为循环时间(loop time)。例如,循环时间(例如用于调节等离子体热源的功率、系统中的压力、富碳添加剂的输入速率、或氧气或蒸汽的流速)的量可以为约30至约60秒。
[425]在一个实施方式中,产物气体组成是用于在上述反馈控制流程中进行比较的特定值,由此在产物气体中CO量和H2量的固定值(或范围值)是特定的。在另一个实施方式中,所述特定值是产物气体热值(例如低热值(LHV))的固定值(或范围值)。
[426]反馈控制能够用于任何数量的控制变量和控制参数,该控制变量和控制参数要求直接监控,或可获得令人满意的模型预测。气化系统10的许多控制变量和控制参数可用于反馈控制流程中。反馈流程能够有效地用于针对系统和/或加工特性的控制系统中,该特性能够直接或间接地感应和/或从检测值得到,并使用经调节的控制参数操作一个或多个加工装置(适于影响这些特性)进行响应动作,控制该特征。
[427]可以理解的是,常规反馈或响应控制系统可以进一步适于包括适当的和/或预测性的组成部件,其中可以根据建模和/或先前监控的反应,调整对于给定状态的响应,从而提供对所感知特性的响应,同时限制可能发生的过度补偿作用。例如,提供到给定系统配置的获得数据和/或历史数据可以共同作用,以调整对于所感知系统和/或加工特性的响应,将其从先前响应所监控调节以提供所需结果的最优值调整到给定范围内。这种适当的和/或预测的控制流程在本领域中是已知的,因此都涵盖在本发明范围内。
[428]前馈控制对输入参数进行处理,以在不进行监控的情况下影响控制变量和控制参数。气化系统能够将前馈控制用于很多控制参数,例如,供给一个或多个等离子体热源之一的功率的量。等离子体热源弧的功率输出能够以不同方法进行控制,例如,对供给喷管以维持弧的电流进行脉冲调制,改变电极间的距离,限制喷管电流,或影响等离子体的组成、定向或位置。
[429]例如,可以用某些前馈式控制元件来控制添加剂的供给速率,将添加剂以气体或液态变体(liquid modification)或雾化形式供给转化器,或者通过喷嘴喷入或注入转化器。然而,对添加剂温度或压力的有效控制需要监控以及循环反馈控制。
[430]模糊逻辑控制以及其它类型的控制同样能够用于前馈和反馈控制流程。这种类型的控制基本上能够从典型的P、I、D组合控制以下述方式得到:对等离子体重整反应动力学进行建模和模拟,以预测如何改变输入变量或输出参数来影响具体输出。模糊逻辑控制通常仅需要反应动力学(一般是系统动力学)或者系统操作条件的模糊或经验性描述。模糊逻辑控制和其它类型的控制的具体内容和实施方式是本领域技术人员已知的。
系统的模件性
[431]本设计的一个实施方式是模件化设备设计。模块化设备是一种各功能块为预制组件的设备。这样,允许在工厂装置中建造组件,然后将其送至现场设施。这些组件(或模件)包括的全部设备和控制为功能性的且在离开工厂前进行检测。模块通常用钢架制造,并通常结合有多种可能的部分,例如气化器组块、气体质量控制系统、功率组块等。到现场后,仅需将这些模块连接至其它模块和控制系统,以准备设备的投产。由于现场构建成本降低,上述设计的构建时间更短并使经济方面更节约。
[432]有不同类型的模件化设备结构。更大的模件化设备包括有“主干”配管设计,其中大部分配管绑定在一起,以允许更小的覆盖区域。从操作方面考虑,模件也可以串联或平行地布置。这里,相似任务的设备能够分摊负载,或者为产物气流连续地提供处理。
[433]在该技术中模件化设计可应用为,允许在多种废物的气化时有更多的选择。该技术还允许多种气化器用在单个高容量设备中。这允许选择各气化器是共同处理废物还是单独处理废物;该配置能够根据废物来最优化。
[434]如果由于增加的负载需要扩展,模件化设计允许该技术替代设备中的模件或向设备添加模件,从而增加设备的容量,而不是建造另一设备。可将模件和模件化设备重新定位于其它位置,它们能够迅速地结合到新位置。
功能组合
[435]可将不同气化序列(设备的系列)的功能相组合,以便相同的功能能够在容器中进行,该容器从不止一个流中接收气体或固体材料。接下来的图表明此概念,如用于MSW/煤炭/生物体的气化。
[436]在这些实施方式中示出两个序列,尽管可以针对任意数量的序列和每个序列中的任何原料(即使一台序列具有组合的原料)进行序列间的组合功能。将流结合后,技术人员仍可以选择平行的下游处理设备;即使处理相同的气体,平行的流也不需要相同的尺寸。
[437]各个功能组代表下列系统
1.初级气化室
2.熔渣室
3.精制室
[438]没有组合,图107
在该实施方式中有两个分离的系统,可以使气流混合以用于下游系统;如均化池或发动机。
[439]组合的GCS,图
在该实施方式中,将来自各序列功能容器2和3的气体一起供到单个GCS中,该GCS的尺寸适合于该气流。
[440]组合功能2,图108
在该实施方式中,该序列仅在功能容器1上不同,所有其它功能由设备的相同组合序列处理。
[441]组合功能3,图109
在该实施方式中,来自功能容器1的气体进入组合功能容器3;容器3具有适当尺寸。
[442]组合功能2和3,图110
在该实施方式中,来自功能容器1的气体进入组合功能容器2,以及来自功能容器1的材料进入组合功能容器3;组合功能容器2和3具有适当尺寸。来自组合功能容器2和3的气体随后进入组合GQCS。
[443]本领域技术人员容易理解,尽管在上述部分中描述了由功能块1、2和3以及GCS组成的气化系统,气化系统还可以进一步细分为其它更小的功能块。在这种情况下,本领域技术人员容易理解,序列能够组合在更大的流程系列中,这取决于组合序列的影响。
组合控制
[444]当存在组合流时,可以通过具有使一个气化序列以反馈控制运行(校正操作以维持下游应用的合成气质量)来进行气体质量的控制。其余的序列基于前馈控制运行(在气体质量的特定边界范围内运行)。如果在最佳条件下运行时第一反馈控制序列不能够校正合成气质量,将此序列切换至前馈控制中的最佳条件,并将另一序列切换至反馈控制,以提高气体质量。
[445]为获得对本发明更好的理解,给出以下实施例。可以理解的是,这些实施例仅用于说明例示本发明的实施方式,并不用于限制本发明的范围。
实施例
实施例I:用于转化城市固体废物的系统
[446]在本实施例中,参照图1至图46,提供本发明一种实施方式的详解,包括各种选择方式。本实施例给出本发明各个子系统的详解,并说明这些子系统如何在协同工作,以作为整合的系统发挥作用来将城市固体废物(MSW)转化为电力。然而,本发明的技术人员能够理解各个子系统本身可视为一个系统。构成本实施方式的子系统为:城市固体废物处理系统、塑料处理系统、具有横向转移单元系统的水平定向的气化器、气体重整系统、热再循环系统、气体调整系统、残渣调整系统、气体均化系统和控制系统。
[447]图1和图2示出流程图和示意图,分别给出气化器不同区域中的气化加工。图3示出主要设计用于使MSW转化为合成气的整个系统120的概略功能块框图,重整、调节和均化的合成气应用于发电的气体发动机9260中。
城市固体废物(MSW)处理系统
[448]初始MSW处理系统9200设计要考虑:(a)贮存四天的贮存能力;(b)避免MSW的保持期过长和过多分解;(c)防止碎片被吹到周围;(d)臭味的控制;(e)垃圾车卸载的进入和转弯空间;(f)装填机9218(将MSW从MSW贮料堆9202向MSW粉碎系统9220运输)所需行驶距离和转弯量的最小化;(g)避免装填机9218与垃圾车之间的操作干扰;(h)考虑工厂扩张另外设置(增加)气化流的可能性;(i)卡车最少程度地进入设备,特别是进入有害区域;(j)用最少的人员安全操作;(k)将输送机进料斗9221中的进料水平显示给装填机操作人员;(1)将接收的废物粉碎成适合处理的颗粒大小;以及(m)进入处理器的MSW流速的远程可控性和塑料进料速度(上文所述)的独立控制。
[449]MSW处理系统9200包括MSW贮存建筑物9210、装填机9218、MSW粉碎系统9220、磁力分离器9230和进料输送机9240。还设计有单独的系统9250,用于储存、粉碎、堆放和供给高碳原料(在本实施例中为不可循环的塑料),其进料速度(进料速率)作为气化处理中的添加剂加入速率。图4示出整个系统位置的总体布置。在供入气化系统120前,MSW的所有贮存和处理都在MSW贮存建筑物9210中进行,以容纳碎片和臭味。
[450]通过先入先出(FIFO)时序安排使MSW的过度分解最小化。通过在MSW贮存建筑物9210的两端设置卡车和装填机9218的出入口,能够实现FIFO。在贮存建筑物的一端从卡车卸载MSW,同时,在MSW贮存建筑物9210的另一端通过装填机9218将材料移出,因此,使得装填机9218能够安全地操作而不会受到卡车的干扰。当装填机9218已经将材料移出而回到MSW贮料堆9202的大致中点9203处时,即,“旧”材料已经全部使用时,该操作改变至MSW贮存建筑物9210的相对端。
[451]为使MSW贮存建筑物9210的尺寸最小化,垃圾车的操作空间在MSW贮存建筑物9210的外部。这也使门9212所需的尺寸最小化,以仅允许一辆卡车倒车直接进入,因此,能对碎片和气味的逃逸提供最好的控制。只有一个门9212能随时开启,并且,仅在卡车实际卸载时开启。一般情况下,在每天的一个时间段进行MSW的接收,以便门9212每天仅开启约一小时。
[452]图5示出MSW贮存建筑物9210的设计图。MSW贮存建筑物9210具有贮存器壁9214,以将通道9216与MSW贮料堆9202隔开,装填机9218在通道9216中行驶,以靠近MSW粉碎系统9220的输送机9222。贮存器壁9214在未达到MSW贮存建筑物9210的端部时停止,以允许装填机9218从MSW贮料堆9202行驶至输入输送机9222,而不离开MSW贮存建筑物9210。因此,在MSW贮存建筑物9210一端的门9212能够总是保持关闭,同时,另一端仅在卡车卸载时或装填机(下文)(将原料从贮料堆转移至粉碎系统)需要离开时开启,以移动塑料。
[453]通过使MSW贮存建筑物9210布置为靠近且平行于通路9204并允许在MSW贮存建筑物9210的两端进行卡车操纵(如图2所示),使装置中的空间需要量和卡车移动都减少。空间布局设计允许卡车驶入室内,倒车进入MSW贮存建筑物9210,清除其负载并直接驶回通路9204。任何时候卡车都不会接近处理设备或人员。这种两个通路进口的概念还避免了下述需求:在装置中设置另外的道路以使卡车从两端进入MSW贮存建筑物9210。
[454]使用机械化铲斗装填机9218将原料从贮料堆转移至粉碎系统。由于其紧凑的尺寸、可操作性、操作便利等,可使用滑移式装填机。市售的标准滑移式装填机具有足够的能力供料MSW,在卡车卸载后清理贮料堆底板,并准备进入废物塑料系统粉碎机和进行供料。
[455]输入输送机9222将MSW从MSW贮存建筑物9210内部向上传送,并使其下落进入MSW粉碎系统9220。输送机9222的装料斗9221完全位于MSW贮存建筑物9210内,以防止碎片被吹到室外周围。输送机9222具有深槽,深槽与装料斗9221的容量相结合能够保存足够一小时操作的原料。对深槽位于MSW贮存建筑物9210外部的部分进行遮盖,以控制碎片和气味的逃逸。输送机9222通过加工控制器来远程控制,以配合加工需要。设置反光镜,以允许装填机操纵者从两侧观测到MSW在料斗9221中的水平。在深槽中设置检测器,用于向加工控制器报警缺少原料。
[456]MSW粉碎系统9220包括输入料斗9223、粉碎机9224和选择输送机,在MSW粉碎系统9220下游为磁捡拾输送机跟随其后。粉碎机9224通过破坏袋子并将大块废物切割成能够处理的大小,确保接收的MSW适合于加工。因为所接收的MSW会包括对于粉碎机9224来说太大或太硬而不能处理的材料,因此会引起粉碎机堵塞,将粉碎机9224设置成:当感应到堵塞时自动停止,自动反转以清理堵塞,随后再启动。如果仍然检测到堵塞,粉碎机9224停机并向控制器发出警告信号。
[457]粉碎的废物落在带式输送机上,以在磁捡拾系统下进行运输,然后落在螺旋输送机9240的输入料斗9239中,螺旋输送机9240将废物供给气化器2200。为避免误将过量的铁类金属供料通过气化器2200,在选择输送机上设置有磁捡拾系统9230,其吸引可能在粉碎废物中存在的铁类金属。在磁铁和废物之间,无磁性带沿与选择输送机方向交叉的方向运行,从而,与磁铁结合的铁类金属横向从废物流中移动出来。随后从磁铁去除铁类金属,使其落至待处理堆中。
[458]MSW供给系统包括输入料斗9239和螺旋输送机9240,以将粉碎的废物从MSW粉碎系统9220运输至气化室2202。粉碎的废物从MSW粉碎系统9220落入输入料斗9239,输入料斗9239为材料提供缓冲,使材料准备供入处理器中。料斗具有高水平和低水平指示器,用于控制从粉碎系统到料斗的流动。输送机9240在加工控制器的控制下操作,以配合废物进料速度,从而符合加工要求。使用带有一体式输入料斗9239的螺旋输送机9240,还为处理器提供气体密封。输入料斗9239与具有盖的MSW粉碎系统连接,以控制碎片和气味。螺旋输送机9240具有另外的进口来接收粉碎的塑料。
塑料处理系统
[459]向气化系统120添加塑料作为工艺添加剂。在将塑料供至气化器2200之前,与MSW分开处理塑料。
[460]塑料处理系统9250设计成:为收到的塑料货包提供储存,将其粉碎,放置在贮料堆9254中,并在独立的控制下将其供给处理器。塑料处理系统9250包括塑料贮存建筑物9255(储存设备)、具有输入料斗9251的粉碎机9252、输出输送机9253和贮料堆9254,上述装置都位于公用建筑物9255中以控制碎片。进料输送机9240将粉碎的塑料移入处理器中。
[461]塑料贮存建筑物9255具有贮存两卡车塑料货物的能力。塑料贮存建筑物9255三面闭合,一面是敞开的,因此能够为储存的材料提供通路来堆放和移出。贮存建筑物还提供对粉碎机9252的保护,以及碎片控制和对粉碎材料的保护。
[462]粉碎机进塑料材料符合加工要求。通过装填机将接收的塑料装载进入粉碎机9252的输入料斗9251。粉碎的材料下落至输出输送机9253上,输出输送机9253将材料向上运输并使其下落至贮料堆9254中。
[463]粉碎的塑料被装填机拾起并下落至进料输送机的输入料斗中。因为输送机在室外,料斗具有一体方式的顶部以及向上延展的壁,以在填充料斗期间使塑料的逃逸最小化。输送机的槽至MSW输送机的槽是封闭的,以便通过MSW输送机将塑料引导至气化器2200中,以来减少气化器2200的开口。输送机是螺旋输送机,与料斗之间是密封的,以在含有原料时提供气体密封。在料斗中安装检测器,来指示高水平和低水平,以及,为滑移式操纵器提供反光镜,以监控填充水平。输送机的活动由加工控制器进行控制。
转化器
[464]转化器1200包括气化器2200和气体重整系统(GRS)3200。将MSW和塑料供入气化室2200,并将所得气体送至GRS3200(其中重整气体)。将从气化器2200得到的所有残渣送至残渣调整系统4200。
[465]设计气化器2200时要考虑:(a)为废物的初级加工提供密封、隔离的空间;(b)以受控并遍布气化器2200分布的方式,将热气和蒸汽引入;(c)控制通过气化器2200的废物堆的高度和移动;(d)为控制气化加工提供装置;(e)将气体转移至GRS3200;(f)移出残渣用于进一步的处理;以及(g)为检测和维护提供进入内部的通道。
[466]参考图6至图9,气化器2200包括:水平定向的耐火材料加衬气化室2202,具有原料进口2204、用于加热气化室的热空气进口、工艺添加剂的气流进口;位于中央的气体出口2206,与GRS直接连接;残渣出口2208;以及各种辅助装置2220和通路2222端口。气化室2202为钢焊件,其具有带有若干个阶梯2212、2214、2216的阶梯形底板。包括载体滑枕2228、2230、2232的系统用于使原料横向移动通过气化器2200。还可安装例如热电偶、原料高度检测器、压力传感器和视口。
[467]气化室2202的耐火衬里保护其免遭高温、腐蚀性气体,且将加工热量的不必要损失减少到最小。参考图10,耐火材料是多层设计,内侧为高密度铬层2402,中间为高密度氧化铝层2404,外层为极低密度隔热板材料2406。用耐火材料为气化室的金属外壳2408加衬。用膜进一步覆盖气化室2402以保护其免遭腐蚀气体影响。
[468]气化室2402阶梯形底板的各个阶梯2212、2214、2216具有穿孔底板2270,通过穿孔底板2270引导气体。选择空气孔的大小以构成限制,使得穿过各个孔的压力降足以防止废物原料进入孔。孔朝上表面向外逐渐变细以清除陷于孔中的颗粒。
[469]参照图1和图2,为不同程度的干燥、挥发和碳转化,设计三个阶梯各自的条件。将原料引入到气化室2202中,通过原料进口2204进入第一阶段。此第一阶段的目标温度范围(如在原料堆底端测量的温度)在300℃至900℃之间。设计阶段II,以使底部温度范围在400℃至950℃之间。设计阶段III,以使温度在600℃至1000℃间。
[470]阶梯形底板的三个阶梯2212、2214和2216将气化室2202分为三个加工阶段,各加工阶段具有各自独立可控的空气供给机构。通过使用独立的气箱2272、2274和2276实现独立性,气箱在各个阶段形成穿孔底板2270。载体滑枕2228、2230和2232的系统用于在气化室2202中移动原料,防止从第一阶梯2212和第二阶梯2214下方进入。因此,对于这些阶段,气箱2272和2274从侧面插入。然而,第三阶段的气箱2276从下面插入,如图7和图8所示。
[471]参照图11和12,本实施例中,气箱2272、2274和2276的穿孔顶板2302是相对薄的板,具有加强肋或结构支撑件2304来防止弯曲或弯折。为使在气箱中平的前板和底板上的应力最小化,在两个板间附有穿孔网。为了能在气箱中热膨胀,穿孔网仅一个边缘固定而其它三个边缘自由伸展。
[472]如在图11中所示,第一阶梯气箱2272和第二阶梯气箱2274中固定的边缘也是输入通气管2278的连接位置。因此,连接凸缘2280处在高温环境,必须与气化器2200的冷却壁密封。如图11所示,使用护罩,以在不产生应力且不使用复杂膨胀接头的情况下实现此目的。将热气箱2272和通气管2278连接至护罩2282的一端,护罩2282的另一端连接至冷却气化器2200。由于护罩2282长度方向上存在温度梯度,在各个连接处不存在应力或应力很小。此布置的另外优点是,将气箱以固定方式布置在所需位置而不产生应力。用隔热体填充在护罩2282和气箱2272的内管之间的空间,以保持热量并确保横过护罩存在温度梯度。当气箱在气化室2202中就位于操作位置时,顶板(与气体连接处相反)伸展超过气箱,搁置在耐火材料架上。这样,顶板在操作期间对气箱提供支持,还作为密封件防止材料落在气箱下方。这也允许气箱自由移动从而膨胀,如图13所示。
[473]气箱的下游边缘也以同样的方式处理。气箱的上游边缘用弹性密封片2306在载体滑枕和气箱2302的顶板之间进行密封。
[474]使用水平法兰将气箱连接至热气体供应管道。因此,拆气箱时仅需解除法兰的连接。
[475]将第三阶段气箱2276从下方插入,并且也使用护罩概念来密封并使其相对于气化器2200定位。
[476]将第三阶段气箱2276布置在第二阶段气箱2214边缘的耐火材料突出部分下方,进行密封,从而防止灰尘落在第三阶段气箱2276的边缘周围。用从耐火材料侧面的下侧开口突出的柔韧密封材料,将侧面密封。这些密封材料位于箱的顶面,在壁和箱之间密封。使用柔韧的密封物质在气箱的下游边缘与提取器的侧面之间进行防尘密封。使用增强结构和穿孔网在气箱的平壁间对气箱进行增强,以允许将薄片金属用于箱。
[477]热气管道连接是竖直的,以允许在管道连接解除后移除第三阶段气箱2276。
[478]参考图16,一系列载体滑枕2228、2230、2232的系统用于确保MSW沿气化器2200横向地移动,以在三个阶梯2212、2214和2216的每一个阶梯中受到适当的处理,且将废渣移动至残渣出口2208。三个阶梯底板的每一个通过各自的载体滑枕发挥作用。载体滑枕控制每个阶段中材料堆的高度以及在气化室中的总居留时间。每个载体滑枕能够在该阶梯的全长或部分长度上以可变的速度移动。因此,如果需要该阶段也能够完全清除。
[479]每个载体滑枕包括安装在外部的引导部分,载体滑枕具有可任选的引导部分连接部件、在外部安装的驱动系统和在外部安装的控制系统。载体滑枕设计包括多个触点(finger),使得气箱的气孔图案排列成,载体滑枕的操作不会干扰气体通过气孔。
[480]以这种多触点载体滑枕的设计,在载体滑枕的结构中,触点与载体滑枕体连接,各触点基于位置而具有不同的宽度。多触点载体滑枕设计中,触点之间的间隔选择为避免反应物材料颗粒架桥。各触点宽约2英寸至约3英寸,厚约0.5英寸至约1英寸,其间隔宽度约0.5英寸至2英寸。
[481]排列气箱的气孔图案,以便载体滑枕的操作不会干扰气体通过气孔。例如,气孔图案可以为:加热时,气孔在触点之间(在间隔中),并以箭头的方式相互抵消(offset)。或者,气孔图案也能够是混合式的,其中一些孔不被覆盖且其它孔被覆盖,以便最大程度使气体平均分布(即没有气体输入的底板区域被最小化)。选择气孔图案时要考虑的因素包括:避免会导致底料悬浮的高速率;避免孔太接近气化器壁和端部,以避免气体沿耐火壁不均匀分布;以及,确保孔间的间隔不超过接近于额定进料颗粒尺寸(2"),以确保可接受的流体动力学。
[482]多触点载体滑枕能够具有独立的内部韧性,以便各个触点的末端能够更符合于气箱顶面的任何不平整。使用台阶螺栓将触点连接至载体滑枕主架,以提供上述适应性,台阶螺栓没有紧固在触点上。这种概念也允许容易地更换触点。
[483]在载体滑枕和气箱的相对位置发生改变时(例如由于膨胀),载体滑枕触点的端部向下弯曲,以确保末端与气箱顶部接触。此特性也减轻了由于载体滑枕覆盖气孔而对加工造成的不利影响,使气体继续流动通过载体滑枕与气箱之间的间隔。
[484]参照图13,引导部分包括一对安装在框架上且大致水平的大致细长轨道2240。每条轨道具有基本上L形状的横截面。移动单元包括载体滑枕体2326和一个或多个细长的大致矩形载体滑枕触点2328,载体滑枕触点2328的尺寸设计为可使其滑动通过气化室壁上的对应可密封开口。
[485]载体滑枕触点由适合在高温下使用的材料构成。这种材料对于本领域的技术人员是已知的,可包括不锈钢、软钢或用耐火材料局部保护的或完全保护的软钢。可选的,特定的个别载体滑枕触点或全部的载体滑枕触点可部分或完全由耐火材料覆盖。可选的,通过在载体滑枕触点中循环的流体(空气或水),能够从气化室2202外部提供载体滑枕触点的内部冷却。
[486]载体滑枕触点调节为与气化室壁密封接合,以避免不受控制的气体进入气化器2200,否则将干扰加工或产生易爆气氛。还需要避免危险有毒且可燃的气体从气化室2202逃逸,以及避免碎片的过多逃逸。通过在密封箱中容纳载体滑枕机构,防止气体逃逸到大气。该密封箱具有氮气吹送装置,以防止在箱内形成易爆气体混合物。为载体滑枕的各个触点提供碎片密封和限定气体密封,如图14所示,用柔韧性的条带2308将载体滑枕各触点的每个表面压紧。另外,密封可以是为各个触点提供气体和碎片密封的填函料密封(packinggland seal)。
[487]当经受载体滑枕的竖向和横向运动时,此密封的设计为各个载体滑枕触点提供良好的气体和碎片密封。在触点侧面的密封是最大的挑战,因为必须在保持与载体滑枕以及载体滑枕上下表面的密封紧密接触的同时,适用于载体滑枕的竖向和横向运动。通过在密封箱内的视窗装置,能够监控碎片的逃逸,以及,通过除尘装置避免碎片累积过多。如图15所示,可以不破坏载体滑枕箱的密封完整性而完成除尘。
[488]参照图15,除尘装置2310包括:金属托架2312,其具有安装带盖2316的灰尘出口2314,以及用于灰尘盒2332的连接部2318;以及手动操作的链条2320,用于驱动灰尘推动器2322。当使用操作器把手2324时,通过灰尘推动器2322将灰尘推至灰尘出口2314。
[489]参照图16,通过电动机提供用于移动载体滑枕2228、2230和2232的能量,电动机通过齿轮箱和链条系统驱动载体滑枕。简言之,通过在外部安装的变速电动机2256,提供沿轨道驱动载体滑枕的能量,变速电动机2256可选择正向或反向驱动电动机的输出轴2258,以允许载体滑枕以可控的速度延展或缩回。位置传感器2269将载体滑枕位置信息传送至控制系统。可选的,电动机可进一步包括变速箱。将两个驱动链轮2260安装在电动机输出轴上。驱动链轮2260和相应的从动链轮2262(安装在轴2264上)可操作地与链件2266啮合,链件2266通过支架2268固定至细长的矩形块2244。
[490]通过整个系统控制装置来控制电动机,该系统控制装置能够指令开启和停止位置、移动速度和移动频率。能够独立地控制各个载体滑枕。因为链条提供高强度并耐受极高负载环境,其用于实施上述控制。每个载体滑枕使用两个链条,以提供维持载体滑枕成角度排列的装置,而不需要精密度引导。当载体滑枕收回时,载体滑枕顶端的材料容易被向后拉。通过将载体滑枕排序能够解决上述问题,其中最低载体滑枕2232首先延伸,中间载体滑枕2230随后延伸,其将原料向下推至最低载体滑枕2232上,填充由滑枕2232移动所造成的空隙;随后最低的载体滑枕2232缩回;上端的载体滑枕2228随后延伸,填充中间载体滑枕2230后面的空隙;中间载体滑枕2230随后缩回;从供给口落下的新材料填充顶端载体滑枕2228的空隙;顶端载体滑枕2228缩回。所以,通过响应于系统仪器数据的系统控制装置,自动且独立地控制这些运动。
[491]参照图16和17,交错进行载体滑枕顺序控制,使载体滑枕移动,方式如下:
载体滑枕C 2232移动固定距离(具有可调节的设定位置),在阶梯C 2216的开始处形成凹穴。
载体滑枕C 2232移过启动距离(启动距离具有可调节的设定位置)后,载体滑枕B 2230随动,载体滑枕B推动/运载原料,以立即填充阶梯C 2230开始处的凹穴。根据堵塞水平开关C 2217的需要,进行反馈控制,如果水平开关C 2217已经被堵塞,使设定位置的距离最小,如果堵塞未发生,使设定位置的距离最大。载体滑枕B 2230阶梯C 2216开始处凹穴进行填充的同时,在阶梯B 2230的开始处形成凹穴。
载体滑枕B 2228移过启动距离后,载体滑枕A 2228随动。载体滑枕A 2228推动/运载原料,以立即填充在阶梯B 2214开始处的凹穴。根据堵塞水平开关B 2215的需要,进行反馈控制,如果水平开关B 2215已经被堵塞,使设定位置的距离最小,如果堵塞未发生,使设定位置的距离最大。载体滑枕A 2228对阶梯B 2214开始处凹穴进行填充的同时,在阶梯A 2212的开始处形成凹穴。这典型地触发进料机运行并填充气化器2200,直到水平开关A 2213再次被堵塞。所有载体滑枕同时退回原始位置。
[492]在气化器2200的一端使用检修孔提供进入通路。操作时,使用可密封的耐火材料加衬盖将检修孔关闭。也可通过移除第三阶梯气箱2276来形成另外的通路。
[493]气化后所残留的残渣(例如焦炭或灰末)必须从气化器2200中移除,并转送至残渣调整系统(RCS)4220。随着原料被处理和移动至气化器2200中,在材料堆中产生的热量造成熔化,会引起残渣的结块。结块的残渣会造成下落口类型出口被堵塞。为了确保结块不会造成气化室2202出口的堵塞,使用螺旋输送机2209从气化室2202提取残渣。载体滑枕的运动将残渣推入提取器螺杆2209,提取器螺杆2209将残渣推出气化室2202并供给残渣输送机系统。提取器螺杆2209在残渣进入输送机系统前将结块打碎。通过在提取器螺杆螺纹的边缘设置锯齿状凸起,可加强打碎作用。
[494]为实现加工控制,必须在气化室2202中监控各种参数。例如,需要沿各个阶段的不同位置以及在各个阶段的多种高度处监控温度。使用热电偶进行温度监控,热电偶在操作中经常需要更换。为了在不停止加工处理的情况下更换热电偶,使用密封端管将各热电偶插入气化室2202中,密封端管随后被密封至容器外壳。这种设计允许使用软线热电偶,软线热电偶比密封管长,这样热电偶的接头(温度传感点)压靠在密封管的末端,来确保对温度变化的准确和快速响应。密封管被密封至气化室2202,并且通过压缩盖(compression gland)装置将密封管机械地保持在适当的位置,压缩盖也能够适合突出调节至气化室2202中。测量MSW堆中的温度时,如果需要移动,密封管可能会阻挡材料堆。为避免这种问题,将导向板安装在密封管的端部,以防止MSW堆被热电偶管阻挡。
[495]参照图18和图19,在气化器2200中所产生的废气随后移入气体重整系统(GRS)3200。设计GRS 3200以满足广泛的需要:(a)提供必要的容积以获得所需气体重整居留时间;(b)为保存热量提供绝热,以及为外部钢外壳提供保护;(c)设置进口用于添加气体和蒸汽;(d)能混合气体;(e)使用等离子体喷管3208在高温下处理气体;(f)提供监控气体组成的装置,以使加工处理控制和等离子体喷管3208的性能得到提高;以及(g)将处理后的气体输出至下游热交换器5200。
[496]气体重整系统(GRS)3200提供密封的环境,具有安装和连接特征[feature],用于加工处理空气、蒸汽、等离子体喷管3208和喷管处理机构、测量仪器以及输出合成气的排气装置。如图20所示,GRS 3200包括基本上竖直安装且带有耐火材料加衬的圆筒状或管状重整室3202,重整室3202具有单个的锥形废气进口3204,气化室2200通过安装法兰3214与废气进口3204相连。GRS 3200的长径比约3:1。在GRS 3200中的居留时间是1.2秒。GRS 3200进一步包括三层水平且切线方向放置的气体喷嘴、两个切线方向放置的等离子体喷管3208、六个热电偶端口、两个燃烧端口、两个压力传感器端口和数个备用端口。在GRS 3200中通过等离子体喷管3208产生高温,确保废气中的分子离解为其组成元素,随后组合在一起形成合成气。热的未加工合成气通过合成气出口3206离开GRS 3200。
[497]参照图21,如先前所述,GRS 3200具有用于耐火材料衬里的支承结构。耐火材料的主要支承结构是一系列的支架3222,支架3222围绕布置于GRS 3200的内部。在操作加工中,这些支架3222的温度明显高于重整室3202外壳的温度。因此,需要将热传导至GRS3200来避免热损失,同时允许不均匀膨胀。支架3222还必须能够支持相当重的耐火材料。上述要求通过下述手段实现:使支架3222分段,各段之间具有膨胀间隙,以允许膨胀。在支架3222和壁之间存在间隔以避免热传导。为承受耐火材料的重量,通过焊接至壁的多个结点板3224,支持各个支架段,如在图21中所示。如果支架3222被焊接至结点板3224,支架3222沿其长度的膨胀会造成应力,并可能在结点板3224中出现失效。然而,将支架3222搁在结点板3224上而不焊接,则允许支架3222自由膨胀。为将各段维持在其正确的位置,各段仅焊接至中心结点板3224,此处膨胀很小,并且,即使在这种情况下,仅外部进行焊接。这使在结点板3224上的应力和支架3222的潜在弯曲最小化。
[498]重整室3202的顶部装有耐火材料加衬盖3203,从而建立了密封封装。整个GRS 3200内部涂有耐高温膜,以预防由未精炼废气造成的腐蚀。外表面漆有热致变色颜料,以显示由于耐火材料失效或其它原因造成的热点。
[499]所使用的耐火材料是内侧具有高密度层的多层设计,以抵抗GRS3200中的高温、侵蚀和腐蚀。高密度材料的外侧是抗性较低但隔热系数较高的低密度材料。在低密度材料层的外侧,考虑到不会暴露于侵蚀磨损,使用具有极高隔热系数的极低密度泡沫板材。外层(在泡沫板和容器钢壳之间)是陶瓷毯材料,用来提供缓冲层,以允许密实耐火材料与容器壳之间的膨胀差异。通过使用可压缩耐火层将不可压缩耐火材料部分分隔开,以允许耐火材料的竖向膨胀。通过重叠但可扩展的高密度耐火材料,防止可压缩层的侵蚀。
[500]如图22、图23和图25所示,空气通过三级喷气嘴注入废气流中,三级喷气嘴包括较低层的四个喷口和较高层的另六个喷口,较高层中,三个喷口比另三个喷口略高,以产生交叉射流混合效应,实现良好的混合。使输入管和法兰与重组室3202相垂直,同时,使用输入喷嘴尖端处的导向板,使空气以一定角度吹入GRS 3200,也能得到良好的混合。在GRS 3200中,改进气体混合能改善合成气的重整。通过加工空气的速度,在重整室3202底部产生漩涡作用,实现上述改进。空气穿过漩涡口3212进入废气流,以在废气流中产生漩涡运动或湍流,从而混合废气,并在GRS 3200内产生再循环涡流分布。
[501]如前面所提及的,GRS 3200还包括两个切线方向安装的300kW、水冷却、铜电极、NTAT、DC等离子体喷管3208,等离子体喷管3208安装在滑行机构上,如图24所示。DC等离子体喷管3208由DC电源供能。在GRS 3200内的不同位置安装热电偶,以确保合成气的温度维持在约1000℃。
[502]等离子体喷管3208需要定期维护,最重要的是,可在进行加工时更换等离子体喷管3208。如前面所提及的,本实施例在GRS3200中使用两个等离子体喷管3208,严格说起来仅需一个等离子体喷管操作。等离子体喷管3208的移除和更换不得不在GRS 3200中存在高温毒性和易燃性气体时进行。此外,如果喷管冷却系统故障,也需要移除喷管3208以保护其免受GRS 3200中的热。
[503]通过将喷管3208安装在滑行机构上,满足上述要求,滑行机构能够将喷管3208移入和移出重整室3202。通过密封压盖,将喷管3208与重整室3202之间密封。这个密封压盖压抵闸阀3209进行密封,闸阀3209进而安装在容器上并对容器进行密封。为了移除喷管3208,通过滑动机构将喷管3208从重整室3202拉出。为了安全目的,滑动开始运动时,无法执行高压喷管的电源供给。当喷管3208已经缩回并穿过闸阀3209时,闸阀3209自动关闭,且冷却剂再循环终止。软管和电缆与喷管3208不连接,压盖从闸阀3209释放,且通过升降机提升喷管3208。
[504]逆向执行上述程序,以进行喷管3208的更换;能够调整滑行机构以允许喷管3208的插入深度变更。
[505]为了简便和安全,除闸阀3209的关闭之外,手动执行所有上述操作。机械操作闸阀3209,使此操作是自动的。如果发生冷却系统故障,使用气动执行器3210来自动收回喷管。用于操作气动执行器3210的压缩空气由专门的空气存贮器提供,即使发生电源故障,也能提供动力源。相同的空气存贮器为闸阀3209提供空气。使用电动互锁盖来阻止接近高压喷管接头,从而提供进一步的安全措施。
残渣调整系统
[506]气化之后剩余的残渣在处置前必须转为惰性且可用的。参见图26,这通过以下方式进行:将残渣从气化器2200中提取并送入等离子体基残渣调整室(RCC)4220;将残渣熔化,并使其成为惰性熔渣4202;在将熔渣移入待去除熔渣贮料堆4204之前,使用骤冷槽4240将其冷却,并将熔渣粉碎成颗粒。最终副产物适合用作筑路填料或制造混凝土。
[507]如前面所述的,从气化器2200移动残渣是复杂的操作,这是由于在贮料堆内产生的热会造成结块。通过在气化器2200的出口端使用螺旋式输送机2209,解决这个问题。输送机在螺纹上设置有锯齿状边缘,以破碎任何块状材料。
[508]参见图27,然后通过包括串联螺旋输送机的主输送系统4210系统,将残渣放入RCC 4220。这个输送系统4210还从GCS袋式过滤器6230下游取走残渣,并将其传递至RCC 4220上。为使RCC4220的进口端的数目最小化,在将残渣引入RCC 4220之前,合并来自所有来源的残渣。这避免了扩大RCC 4220以满足多个进料源的问题。为了在RCC 4220停工期间继续气化,可以转移残渣。在这种情况下,必须将残渣重新引入RCC进料系统。残渣调整系统的总体示意图示于图26。
[509]如图28所示,将残渣投入RCC 4220,残渣在储存器4222(其深度由堰4224的高度确定)中堆积,且通过等离子体喷管4230加热。随着储存器4222内熔渣水平的上升,熔渣溢出堰4224,进入骤冷槽4240。水槽4240确保RCC 4220对大气密封。将未在MSW操作系统阶段移除的金属转入RCC 4220,在熔渣的正常玻璃化温度下,金属不一定熔化。这样,储存器4222可能由于金属而堵塞,因为与熔渣相比,金属的密度更高。为了避免这种情况,周期性提高储存器的温度以熔化金属,熔化金属从熔锅底部流出。
[510]由于使残渣和尤其是其中的金属组分熔化需要极高的温度,耐火材料必须经受非常恶劣的操作要求。除高温之外,这些要求包括腐蚀和侵蚀,尤其是在熔渣水线处。这些耐火材料还必须提供良好的隔热以保存热量,且RCC 4220必须尽可能小。选择耐火材料以提供对热、腐蚀和侵蚀有极高抵抗力的内衬。然后选择内衬外侧的耐火材料层来增强隔热性能。
[511]熔锅耐火材料特别需要定期维修。为了进行上述操作,具有熔锅的RCC 4229的底部能够移除,而不干扰RCC 4221顶部的接头。这通过下述方法实施:将RCC悬挂在其支撑结构4270上,而不是将其设置于结构体上,如图29和图31所示。这样不必拆开接头,具有储存器的RCC 4229的底部就能够从RCC 4221的顶部脱离。此外,整个RCC也能够通过拆开接头并将其降低来移除。这样不需要升高输送机4260以进行取出操作。
[512]当熔渣落入骤冷槽4240时,熔渣冷却并粉碎成粒状。然后,熔渣输送机4260将颗粒熔渣4203从骤冷槽4240移除,并将其放入贮料堆4204,用于处理或进一步使用,如图30所示。熔渣投放端口通过由以下方式构成的水陷阱对环境密封:对RCC 4220顶部密封有覆盖物,并且将其下边缘淹没在骤冷介质中。相同的骤冷介质使熔渣输送机4260与RCC 4220之间密封。
[513]相似地处理RCC 4220中所产生的气体与转化器1200中产生的气体。参见图28、图32和图32A,残余气经由气体出口4228排出RCC 4220,并进入残余气调整器(RGCS)4250。在气体穿过袋式过滤器4254(其移除颗粒物质和重金属污染物)之前,在间接式空气-气体热交换器4252中进行预冷却步骤。然后,在气体穿过进一步移除重金属和颗粒物质的活性炭床4258之前,使用第二热交换器4256冷却残余气。参见图3,经净化和调整的残余气转回下游GCS6200,供给来自转化器1200的合成空气流。
[514]参见图33和图35,粗合成气从转化器1200排出并穿过热再循环系统。在本实施方式中,热再循环系统使用合成气与空气热交换器(HX)5200(其中热量从合成空气流转移到空气流)。这样,冷却合成气,同时将热空气流反馈给转化器1200作为反应空气。然后,冷却的合成气流入气体调整系统(GCS)6200,在那里合成气进一步冷却,并依次清除颗粒、金属和酸性气体。在向产生电流的气体发动机9260投料之前,将经净化和调整的合成气(具有所需湿度)送入SRS 7200。按照合成气的加工顺序,表1列出了转化器1200和RCS 4200之后的系统中主要部件(装置)的功能。这些重主要部件示于图34。
表1.转化器1200和RCS 4200之后的步骤
子系统或设备 主要功能
热交换器5200 冷却合成气和回收焓
蒸发冷却器6210 在袋式过滤器之前进一步冷却合成气
干式注入系统6220 重金属吸附
袋式过滤器6230 颗粒或尘埃的收集
HCL净化器6240 HCl的去除和合成气的冷却/调整
碳过滤床6260 进一步去除汞
H2S移除系统6270 H2S去除和元素硫回收
RGCS4250 RCC废气净化和冷却
合成气储存室7230 合成气储存和均化
冷却器7210;气液分离器7220 湿度控制
气体发动机9260 用于电流产生的第一驱动器
燃烧组9299 启动期间燃烧合成气
合成气与空气热交换器
[515]离开GRS 3200的输出合成气的温度约900℃至1100℃。为了回收合成气中的热能,将从GRS 3200排出的粗合成气送往管壳式合成气-空气热交换器(HX)5200。空气进入环境温度(即,约-30℃至约40℃)的HX 5200。使用空气鼓风机5210,循环空气,空气以以下速率进入HX 5200:1000Nm3/hr至5150Nm3/hr之间,通常为约4300Nm3/hr。
[516]参见图35,合成气竖向流动穿过管侧,且空气以逆时针方式流动穿过壳侧。合成气的温度从1000℃降低到500℃至800℃之间(优选约740℃),同时空气温度从环境温度增加到500℃至625℃之间(优选约600℃)。参见图3,经加热的交换空气再循环进入转化器1200用于气化。
[517]HX 5200专门设计用于合成气体中颗粒水平高的情况。设计合成气和空气的流动方向,以使颗粒物质可能发生堵塞或侵蚀的区域最小化。同样,气体速度设计为足够高,从而能自清洁同时仍然最小化侵蚀。
[518]由于空气与合成气之间显著的温度差异,HX 5200中的每个管5220具有各自的膨胀式风箱。这对避免管破裂非常重要,管破裂时非常危险,因为空气会进入合成气混合物。当单个管被堵塞因而不再随其余管束膨胀/收缩时,管破裂的可能性高。
[519]多个温度传感器放置在气体-空气热交换器5200的气体出口盒上。这些温度传感器用来检测由于气体漏入合成气时燃烧产生的任何可能的温度升高。在这种情况下,空气鼓风机5210自动关闭。
[520]由于涉及合成气中的硫含量和其在高温时的反应,必须谨慎选择HX5210中气体管的材料,以确保不存在腐蚀问题。在本实施例中,选择合金625。
气体调整系统(GCS)
[521]通常,气体调整系统(GCS)6200指一系列步骤,其包括将热交换器5200之后所获得的粗合成气转换为适合下游端应用的形式。在本实施例中,GCS 6200可分成两个主要阶段。阶段1包括:(a)蒸发冷却器(干式骤冷)6210;(b)干注入系统6220;以及(c)袋式过滤器(用于去除颗粒物质/重金属)6230。阶段2包括:(d)HCl净化器6240;(e)合成气(处理气体)鼓风机6250;(f)碳过滤床(汞过滤器)6260;(g)H2S(硫)移除系统6270;以及(h)使用冷却器7210和气液分离器7220的湿度控制。
[522]GCS 6200之前的热交换器5200有时被视为GCS 6200中阶段1的一部分。合成气(处理气体)鼓风机6250通常包括气体冷却器6252,气体冷却器6252有时在GCS 6200的阶段2中单独提到。同样,此处提到的作为GCS 6200中阶段2一部分的湿度控制常常被认为是GCS 6200更下游的SRS 7200的一部分。
[523]图33示出在本实施例的系统中所采用的GCS 6200的方块图。这也是汇聚加工的实施例,其中GCS 6200与RGCS 4250结合为一体。图34示出GCS的布局视图。
[524]在热交换器5200中初步冷却之后,通过干式骤冷6210进一步冷却输入合成气,干式骤冷6210降低合成气温度还防止凝结。以受控方式(绝热饱和),使用蒸发冷却塔(也称为‘干式骤冷’)6210,通过直接将水喷入气体流而实现上述操作。在将水汇流喷入合成流之前,使水雾化。因为在冷却时不存在液体,此加工也称为干式骤冷。水蒸发时,其从合成气中吸收焓,从而将合成气温度从740℃降到150℃至300℃之间(通常约250℃)。进行控制以确保排出气体中不包含水。因此,排出气体的相对湿度仍然在100%以下。
[525]参见图36和图37,一旦空气流从蒸发冷却塔6210排出,储存在料斗中的活性炭气动式喷入空气流中。活性炭具有非常高的孔隙率,此特征有利于大分子类(例如,汞和二噁英)的表面吸附。因此,空气流中大部分重金属(镉、铅、汞等)和其它污染物吸附在活性炭表面。通过袋式过滤器6230收集失效的碳颗粒,并再循环返回RCS4200,用于在下一步骤中进一步能量回收。为了获得有效吸收,在此阶段需要确保合成气有足够的居留时间。在此干注入阶段6220中,可使用其它材料(诸如,长石、石灰)和其它吸收剂代替活性炭,或与活性炭一起使用,来俘获合成空气流中的重金属和焦油,而不会阻断空气流。
[526]参见图37,然后,极高效地将表面有重金属的颗粒物质和活性炭从袋式过滤器6230中的合成空气流中除去。调节操作参数以避免任何水蒸气凝结。从合成空气流中移除的全部颗粒物质形成滤饼,进一步提高了袋式过滤器6230的效率。所以,虽然新的未涂覆袋的移除率为99.5%时,袋式过滤器6230通常设计为具有99.9%的颗粒物质移除率。袋式过滤器6230采用加衬的玻璃纤维袋、未加衬的玻璃纤维袋或P84玄武岩袋,并在200℃至260℃之间的温度操作。
[527]当袋式过滤器6230的压力降升高到设定限度时,使用氮气脉冲式喷射剂来净化该袋。因为安全的原因,氮气是首选的气体。从袋外表面落下的残渣收集在底部料斗中,并输送给残渣调整器4200用于进一步转化或处理。可使用专门的试剂来吸收高分子量碳氢化合物(焦油),以保护袋式过滤器6230。图37分别示出了袋式过滤器的示意图。袋式过滤器使用不需要支撑件的筒式过滤器。
[528]袋式过滤器6230的典型操作规程如下(假设输入物是带有重金属的飞灰):
设置空气流速 9500Nm3/hr
尘埃载荷 7.4g/Nm3
镉 2.9mg/Nm3
铅 106.0mg/Nm3
汞 1.3mg/Nm3
保证过滤系统出口:
颗粒物质 11mg/Nm3(约99.9%移除)
镉 15μg/Nm3(约99.65%移除)
铅 159μg/Nm3(约99.9%移除)
汞 190μg/Nm3(约90%移除)
[529]从袋式过滤器6230排出的受重金属污染的残渣量很大。因此,如图27和图33所示,将残渣送入等离子体基RCC 4220,以转化为玻璃熔渣4203。参见图32和图33,然后在分离残余气调整器(RGCS)4250中将RCC 4220产生的次级空气流进行处理,使用以下阶段1进行处理:在间接空气与气体热交换器4252中冷却,并在较小的袋式过滤器4254中移除颗粒物质和重金属。较小的袋式过滤器4254专用来处理RCC 4220产生的次级空气流。如图33所示,由RGCS 4250执行的其它步骤包括:进一步使用气体冷却器4256来冷却气体,以及,在碳床4258中去除重金属和颗粒物质。参见图3,然后,经处理的次级合成空气流转回GCS 6200,以在袋式过滤器6230之前并流进初级输入合成空气流。
[530]与GCS 6200中袋式过滤器6230的量相比,从RGCS 4250的袋式过滤器4254移除的残渣量明显较少。小袋式过滤器4254作为用于重金属的净化装置。根据MSW原料组分,从RGCS 4250净化出的重金属量不同。要求定期净化,以在重金属积累到限定量时将材料移到危险废物处理装置。
[531]下面是较小RGCS袋式过滤器4254的典型设计规格,再次假设输入物是带有重金属的飞灰:
设置空气流速 150Nm3/hr
尘埃载荷 50g/Nm3
镉 440mg/Nm3
铅 16.6mg/Nm3
汞 175mg/Nm3
保证过滤系统出口:
颗粒物质 10mg/Nm3(约99.99%移除)
镉 13μg/Nm3(约99.997%移除)
铅 166μg/Nm3(约99.999%移除)
汞 175μg/Nm3(约99.9%移除)
[532]GCS 6200可包括直接式的和间接式的反馈或监控系统。在本实施方式中,GCS和RGCS袋式过滤器都在出口设置有尘埃传感器(直接监控),以通知袋破裂。如果袋发生破裂,切断系统以进行维护。任选地,可在启动时分析HCl净化器6240中的水流,以确定颗粒物移除率。
[533]参见图38,使用再循环碱性溶液,在填充塔中净化从袋式过滤器6230排出的无颗粒合成空气流,以移除其中的HCl。该HCl净化器6240还提供足够的接触面积,以将气体冷却至约35℃。碳床过滤器6260用来从液体溶液中分离诸如金属、HCN、氨等潜在的可溶性水污染物。设计HCl净化器6240,以将输出物的HCl浓度保持在约5ppm。将废水流送入废水储存槽6244进行处理,如图39所示。
[534]由于冶金学的考虑,将HCl净化器6240置于气体鼓风机6250的上游。包括相关部件(诸如热交换器6242)的HCl净化器6240的示例性示意图示于图38。图39示出了用于收集和储存来自GCS6200的废水的示例性系统。将碳床加入排料水中以从废水移除焦油和重金属。HCl净化器6240的典型规格如下:
设置空气流速 9500Nm3/hr
净化器的正常输入/最大HCl载荷 0.16%/0.29%
HCl输出浓度 5ppm
[535]移除HCl之后使用气体鼓风机6250,气体鼓风机6250提供驱动力以使气体从转化器1200穿过整个系统120到达气体发动机9260下游。鼓风机6250位于汞过滤器6260的上游,这是因为汞过滤器6260在压力下具有较好的汞移除率。这也减少了汞过滤器6260的尺寸。图3示出了包括加工气体鼓风机6250位置的整个气化系统120的示意图。
[536]使用所有上游的容器和管路设计压力降来设计鼓风机6250。鼓风机6250还设计为下游设备压力损失提供必需的压力,直至HC7230中的最终压力约为2.1psig至3.0psig(通常为2.5psig)。因为气体在穿过鼓风机6250时受压,所以气体温度上升至约77℃。使用嵌入式气体冷却器6252来使气体温度减回35℃,这是因为H2S移除系统6270的最高操作温度约为40℃。
[537]碳床过滤器6260用作合成空气流中剩余重金属的最终过滤设备。当系统在压力下而不是在真空下操作时、当系统在较低温度下操作时、当气体饱和时、以及当去除HCl以免使碳劣化时,碳床过滤器的效率提高。该加工也能够吸收其它有机污染物,诸如合成空气流中可能存在的二噁英。碳床过滤器6260设计成具有99%以上的汞移除率。
[538]通过周期性分析气体中的汞来测量这个系统的性能。通过以下方式进行校正:修改进碳率和监控穿过过滤器6260的压力降,以及经由采样来分析碳床效率。
[539]对碳床过滤器6260的典型的规格如下:
设置空气流速 9500Nm3/hr
正常/最大汞载荷 190μg/Nm3/1.3mg/Nm3
碳床寿命 3-5年
保证汞碳床输出 19μg/Nm3(99%)
[540]H2S移除系统6270基于SO2排放极限,该排放极限在加拿大安大略环境部的A7方针中列出,该方针规定在气体发动机中燃烧的合成气将产生低于15ppm的SO2排放。H2S移除系统6270设计为约20ppm的H2S排出浓度。图40示出H2S移除系统6270的详细资料。
[541]选择生物脱硫技术(Shell Paques生物技术)用于H2S移除系统6270。该技术由两步组成:首先,使来自碳床过滤器6260的合成气穿过净化器6272,在该净化器6272中,通过使碱性溶液再循环从合成气中移除H2S;接着,将含硫溶液送入生物反应器6274,用于碱度的再生、硫化物氧化成元素硫、硫的过滤、硫和污水排出流的杀菌以满足规章要求。H2S移除系统6270设计成具有20ppm的H2S输出浓度。
[542]硫杆菌用于生物反应器6274,以通过空气氧化将硫化物转化为元素硫。控制系统控制进入生物反应器的空气流速,以维持系统中的硫含量。使用压滤机6276过滤生物反应器6274的冲流(slipstream)。将来自压滤机6276的滤出液送回加工,将来自该滤出液的小流(small stream)作为液体排放。排出物有两种;一种是固体排出物,含有一些生物体的硫;一种是液体排出物,含有硫酸盐、碳酸盐和一些生物体的水。两种物流在最终处理前进行杀菌。
[543]H2S移除系统6270的典型规格如下:
设置空气流速 8500Nm3/hr
正常/最大H2S载荷 353ppm/666ppm
保证系统的H2S输出 20ppm
[544]移除H2S之后,使用冷却器7210用来冷却来自合成气的水,并将其重新加热至适合用于气体发动机9260的温度。冷却器7210将气体从35℃低温冷却至26℃。通过气液分离器7220,移除从输入空气流凝结出的水。在气体储存之后、输送至气体发动机9260之前,将其重新加热至40℃(发动机要求),这保证气体具有80%的相对湿度。
[545]下表给出整个GCS 6200的主要规格:
骤冷塔6210 | 2秒的居留时间内将气体从740℃骤冷至200℃ |
干注入6220 | 90%的汞移除率 |
袋式过滤器6230 | 99.9%的颗粒移除率99.65%的镉移除率99.9%的铅移除率 |
HC1净化器6240 | 99.8%的HCl移除率 |
气体鼓风机6250 | 零泄漏的密封旋转鼓风机 |
气体冷却器6252 | 0.5MBtu/hr的冷却载荷 |
碳床过滤器6260 | 99%的汞移除率 |
H2S净化器6270 | 净化器出口处H2S为20ppm |
生物反应器6274 | 具有最少排污的最大再生效率 |
压滤机6276 | 2天的硫移除能力 |
均化室7230 | 2分钟的气体储存量 |
[546]如上,GCS 6200将输入气体转换为理想特征的输出气体。图33示出GCS系统6200的整个加工流程图,GCS系统6200与气化系统120和下游应用相结合。此处,将RCS 4200中产生的次级空气流送入GCS 6200。
残余气调整器(RGCS)
[547]如前面,周期性使用氮气将来自GCS袋式过滤器6230(可含有活性炭和金属)的残渣净化,并送入RCC 4220,在RCC 4220中将残渣变为玻璃状。将从RCC 4220出来的气体引导穿过残余气调整器(RGCS)4250的袋式过滤器4254,以移除颗粒,并且在进入活性炭床4285前由热交换器4256进行冷却。同样,根据穿过系统的压力降,定期净化袋式过滤器4254。通过合适的手段对在RGCS袋式过滤器4254中收集的残渣进行处理。从RGCS 4250排出的可燃性气体作为次级空气流被送回主GCS系统6200,以充分利用回收的能量。
合成气调节系统
[548]来自GCS 6200经净化和冷却的合成气进入气体调整系统。在本实施例中,气体调整系统是合成气调节系统(SRS)7200,设计用于确保流入下游气体发动机9260的合成气具有均一的气体品质。SRS 7200用于消除气体组分(主要是其低热值LHV)及其压力的短期变化。尽管即使在合成气的LHV或压力存在短期变化时,下游气体发动机9260也将继续运行并产生电流,但是气体发动机9260会由于不良燃烧和不良的燃料空气比而偏离排放门限值。
[549]参见图41,SRS 7200包括冷却器7210、气液分离器7220和均化室(HC)7230。在气体发动机9260之前,在气体储存器出口处加热气体,以满足发动机温度要求。
[550]可使用下述两种类型的均化室(HC):固定容积HC和可变容积HC。可变容积HC通常更有利于降低流量和压力波动,而固定容积HC更有利于降低LHV波动。由于MSW原料的本性,在我们的应用中LHV波动更明显。固定容积HC在结构与维护方面通常比可变容积HC更可靠。
[551]图42示出本实施例中均化室(HC)7230的示意图。均化室7230设计为保持约2分钟的合成气体流量。该滞留时间满足气体发动机保证标准对LHV波动规格的要求,要求值为约1%LHV波动/30秒钟。适合于气体分析器8130的居留时间典型地约30秒(包括分析和反馈)。最大LHV波动典型地约10%。这样,为了使LHV波动降低到3%的LHV波动,需要>1.5min的储存。2min储存允许一些富余时间。
[552]在2.2至3.0psig的范围内操作HC 7230,以满足下游气体发动机9260的燃料规格。使用压控阀保持排出气体的压力恒定。HC7230被设计用于最大压为5psig,并且安装安全阀以处理异常超压情况。
[553]HC 7230的2min的滞留时间也提供足够的储存,以减小压力波动。对于我们的设计,气体发动机9260允许的压力波动是0.145PSI/sec。在气体发动机9260下游故障的情况下,需要缓冲器(依赖控制系统反应时间和30秒至35秒的气体居留时间)提供时间,以减缓加工或使过剩气体燃烧。
[554]典型的,进入HC7230的合成空气流速约8400Nm3/hr。因此,为达到2min的滞留时间,HC的容积约280m3。
[555]HC 7230是自立的,且位于室外,会暴露于雪、雨和风。因此,设计HC 7230的尺寸以满足机械工程要求。HC 7230的支撑结构与混凝土底座连接。
[556]由于从合成气中凝结出一些水,HC 7230设计有底部排泄喷嘴。为了协助HC 7230的排泄,其底部有意未设计为平的,而是带有裙部的锥形底部。使用示踪/隔热排泄管道形成排泄法兰。因为HC 7230内部的水必须借助重力排泄至底板排水管,将HC7230保持为稍微偏高。
[557]设计HC 7230以满足以下设计要求。
正常/最大进口温度 | 35℃/40℃ |
正常/最大操作压力 | 1.2psig/3.0psig |
正常/最大气体进口流速 | 7000Nm3/hr/8400Nm3/hr |
正常/最大气体出口流速 | 7000Nm3/hr/8400Nm3/hr |
相对湿度 | 60%-100% |
储存容积 | 290m3 |
机械设计温度 | -40℃至50℃ |
机械设计压力 | 5.0psig |
[558]HC 7230所用材料必须既考虑以上机械设计要求又考虑以下给出的典型气体组分。由于存在水、HCl和H2S,腐蚀是特别受关注的。
N2 | 47.09% |
CO2 | 7.44% |
H2S | 20ppm |
H2O | 3.43% |
CO | 18.88% |
H2 | 21.13% |
CH4 | 0.03% |
HCl | 5ppm |
[559]HC 7230中设置有下述开孔:
一个36"检修孔,在底部附近用于进入;
一个6"法兰,在顶部用于泄压;
一个16"法兰,在壳上用于气体进入;
一个16"法兰,在壳上用于气体排出;
六个1"法兰,在壳上(2个用于压力、1个用于温度,以及3个作为备用);
一个2"法兰,在HC底部(排泄);以及
一个1"法兰,在底部锥体上用于水平开关。
[560]除满足设计要求之外,HC 7230还设有:
开孔盖、检修孔盖、和用于所有备用喷嘴的盲法兰。
允许安全进入的阶梯(例如,带有栏杆),通往顶部和安全阀。
必需的吊钩和锚定螺栓。
混凝土围墙。
根据需要,在HC 7230的内部和外部施加涂料。
HC 7230底部的隔热和热示踪。
用于支撑的混凝土板。
[561]气体发动机9260的设计要求进口气体在特定相对湿度下具有特定组分范围。因此,使用冷却器7210将从H2S净化器6270排出的净化气体从35℃低温冷却至26℃。由于用气液分离器7220移除空气流凝结形成的水。确保合成气重新加热至40℃时具有80%的相对湿度,这是气体发动机9260的典型要求。
[562]使用气体鼓风机6250,按照以下说明通过所有设备和管道,提供适当抽吸来从系统提取合成气。该鼓风机设计时要考虑良好的工程实践和所有可应用的省份和国家代码、标准和OSHA指南。鼓风机6250的操作条件为约600伏特、3相和60Hz。
[563]设计气体鼓风机6250以满足下面的功能性需求:
正常气体进口温度 | 35℃ |
正常气体抽吸压力 | -1.0psig |
正常空气流速 | 7200Nm3/hr |
最大空气流速 | 9300Nm3/hr |
最大气体提取温度 | 40℃ |
正常排出压力 | 3.0psig |
正常排出温度(气体冷却器后) | <35℃ |
机械设计压力 | 5.0psig |
在鼓风机进口处的相对湿度 | 100% |
气体分子量 | 23.3 |
冷却水供应温度(产品气体冷却器) | 29.5℃ |
最大可接受气体排出温度(产品气体冷却器后) | 40℃ |
调节比 | 10% |
[564]排出物的典型气体组分(湿基准)如下:
CH4 | 0.03% |
CO | 18.4% |
CO2 | 7.38% |
H2 | 20.59% |
正常/最大H2S | 354/666ppm |
H2O | 5.74% |
正常/最大HCl | 5ppm/100ppm |
N2 | 47.85% |
[565]因为合成气是可燃的,并且与空气形成爆炸混合物,设置鼓风机6250使得来自大气的空气尽可能最小,以及尽可能没有气体泄漏于大气。使用氮进行所有工作介质的密封净化,并且使用无泄漏的轴密封。采用高级检密系统来监控每一方向的泄漏。
[566]除以上的设计标准之外,鼓风机6250还设有:
防爆电动机,具有无泄漏的鼓风机轴密封。
气体冷却器6252。
消音器,具有吸音盒以满足1m处80dBA的噪音控制。
鼓风机和发动机的共用基板。
具有电动机的辅助油泵,以及鼓风机辅助系统必需的所有仪器。
所有仪表和控制(即,低油压和高油压开关、高排放压力和温度开关、差异温度和压力开关)。所有的开关是CSA批准的排放压力计、排放温度计、油压和温度计。所有仪表连接于通用防爆接线盒,且通过安装在鼓风机上游的压力传感器来控制VFD。
零泄漏排出检查阀。
设备安全系统,防止鼓风机有过多的压力/真空/关掉排出(例如,类似PRV和再循环线路等系统)。
[567]因为气体鼓风机6250位于建筑外部,暴露于雨、雪和风。所以气体鼓风机6250设置为耐受下面的环境条件。
平均海平面以上的高度 | 80m |
纬度 | 45°24′N |
经度 | 75°40′W |
平均大气压力 | 14.5psia |
最高夏季干球温度 | 38℃ |
设计夏季干球温度 | 35℃ |
设计夏季湿球温度 | 29.4℃ |
最低冬季干球温度 | 36.11℃ |
平均风速 | 12.8ft/sec |
最大风速 | 123ft/sec |
设计风速 | 100mph/160kph |
主流风向 | 主要来自南方和西方 |
地震信息 | 3区 |
[568]因为鼓风机6250在爆炸气可能存在的环境中运行,因此安装在合成气管上或约2米距离内的所有仪表和电子装置被设计用于2区、1类的分类。
[569]为了确保可靠性,为了快速隔离和修复故障,提供合适的进口用于检查与维护。尽管鼓风机6250能够连续(24/7)运行,但是在处理稳定期间通常会频繁地进行开启/关闭操作。
[570]基于设计条件和气体组分,选择结构的材料。例如,电路板、接头和外部元件施加有涂层或其它方式的保护,以最小化来自污垢、潮湿和化学药品的潜在问题。控制面板和开关具有坚固的结构,设计成由带工作手套的人操作。
[571]通常,采用流量范围在10%至100%的变速驱动装置(VSD)用于发动机控制。包括超压和超负荷保护。通过分布式控制系统(DCS),远程监控和控制发动机状态、开/关操作和速度变化。
[572]调整气体从HC 7230排出后,根据发动机要求将气体加热,并导入气体发动机9260。
气体发动机
[573]使用五个分别具有1MW容量的往复式GE颜巴赫(Jenbacher)气体发动机(燃气发动机)9260来产生电流。因此,电流产生的全部容量是5MW。任选地,根据整体要求,可关掉任意气体发动机9260。气体发动机9260能够高效率且低排放地燃烧低热值或中热值合成气。然而,由于相对低的气体热值(与诸如天然气的燃料相比较时),气体发动机9260减载运行,在其最有效的运行点700kW附近运行。任选地,下游应用可扩展为包括其它气体发动机9260从而使总数为六。
燃烧组
[574]在启动、关闭和加工稳定阶段期间,使用封闭式燃烧组9299燃烧合成气。一旦加工稳定,燃烧组9299将仅仅用于紧急用途。设计燃烧组9299以达到约99.99%的摧毁效率。
控制系统
[575]实施时,本实施例的气化系统120包括用于控制其中气化加工的集成控制系统,该集成控制系统可包括多种独立的和交互式的局部、区域或整体加工处理。控制系统可以设置用来增强并尽可能优化用于预定的前端结果和/或后端结果的多个加工处理。
[576]前至后(front-to-back)控制方案可包括:促进原料的恒定输送量,例如在设计用于MSW气化的系统中,同时满足用于这种类型系统的法规标准。可优化这样的前至后控制方案,以得到具体设计和/或实施该系统所给定的结果,或者,将这样的前至后控制方案设计作为较大控制系统的分支或简化版的一部分(例如在加工的启动或关闭时),或者,优化成减轻多种异常或紧急状况。
[577]后至前(back-to-front)控制方案可包括优化产品气体质量或特征,以用于所选择的下游应用(即经由下游气体发动机9260产生电流)。设置控制系统来优化这样的后端结果时,可提供前端特征的监控和调节,以便确保系统具有符合法规标准(当采用这样的标准时)的正确且连续的功能。
[578]也可设置控制系统来提供补充结果,该结果最好定义为前端结果和后端结果的组合,或作为从气化系统120内任何位置产生的结果。
[579]实施时,将控制系统设计成,在气化加工启动时作为前至后控制系统来运转,然后,在最初启动波动充分削弱时作为后至前控制系统。在此具体实施例中,控制系统用来控制气化系统120,以便将原料转变为适合所选下游应用的气体,即作为适合气体发动机9260燃烧以产生电流的气体。通常,控制系统大致包括:一个或多个传感元件,用于传感气化系统120的多种特征;一个或多个计算平台,用于计算一个或多个加工控制参数,该加工控制参数用于将所代表传感特征的特征值维持在适合下游应用的特征值预定范围内;以及一个或多个响应元件,用于根据这些参数操作气化系统120的加工装置。
[580]例如,一个或多个传感元件可以分布于整个气化系统120,用于传感加工中不同位置处的合成气特征。通信连接至这些传感元件的一个或多个计算平台可设置为:获取代表传感特征的特征值;将该特征值与特征值预定范围相比较,特征值预定范围表示产品气体适合所选下游应用;以及计算一个或多个加工控制参数,该加工控制参数用于将这些特征值维持在这些预定范围内。多个响应元件操作性地连接至气化系统的一个或多个加工装置和/或模块(可操作来影响该加工并从而调节产品气体的一个或多个特征),响应元件能够通信连接至用于获取一个或多个计算加工控制参数的一个或多个计算平台,且被设置来随之操作一个或多个加工装置。
[581]控制系统还可配置成提供强化的前端结果,例如,使输入原料具有提高或恒定的消耗和转化率;或者控制系统作为启动、关闭和/或紧急程序的一部分;或者控制系统设置成用来实施气化系统120的加工,从而实现前端利益和后端利益之间的预定平衡,例如,使原料的转化能够产生适合所选下游应用的产品气体,同时使原料通过转化器的输入量最大化。其它的或进一步的系统增强可以包括但不限于:优化系统的能量消耗,例如最小化系统的能量碰撞从而最大化所选下游应用的能量产生;或者,促进额外或其它下游产物的生产,诸如可消耗的产品气体、化合物、残渣等。
[582]图43提供了用于本实施例的高级加工控制示意图,其中提供上述气化系统120作为将要控制的加工。图44提供了气化系统120和图3所示控制系统的另一示图,以识别示例性特征和与其相关的传感元件。如上所述,气化系统120包括转化器1200,转化器1200包括根据本实施例的气化器2200和GRS 3200,用于将一种或多种原料(例如,MSW和塑料)转化为合成气和残渣产物。气化系统120进一步包括残渣调整系统(RCS)4200和从合成气同流换热的热交换器5200,在本实施例中,通过同流换热来加热转化器1200中使用的空气输入添加剂。还设有用于调整(例如,冷却、纯化和/或净化)合成气的气体调整系统(GCS)6200,SRS 7200用于至少部分地均化合成气以供下游使用。如此处所描述的,残渣可以从转化器1200和GCS 6200两者提供给RCS 4200,调整转化器1200和GCS 6200的组合,以产生固体产品(例如,玻璃熔渣4203)和待调整并与转化器合成气混合的合成气,用于进一步调整、均化和下游使用。
[583]在图43和44中示出了多种传感元件和响应元件,这些元件设置用于为气化系统120提供各种水平的控制。如以上所讨论的,某些控制元件可用于局部和/或区域系统控制,例如以影响加工和/或其子系统的一部分,因此,对系统整体性的影响很小或没有影响。例如,尽管GCS 6200可为下游使用提供合成气的调整和制备,但是其实施和由此带来的变化对气化系统120的整体性能和输出产量几乎没有影响。
[584]另一方面,某些控制元件可用于区域和/或整个系统控制,例如用于实质上影响作为整体的加工和/或气化系统120。例如,MSW处理系统9200和/或塑料处理装置9250造成的原料输入变化会对产品气体产生显著的下游影响,即影响组分和/或流量的变化,以及影响转化器1200内的局部加工。类似地,无论对于转化器1200整体还是不同部分的局部,添加剂输入速率的变化也会对产品气体(即对于气体组分和流量)产生显著的下游影响。其它控制操作,例如转化器1200内的反应物转移顺序、空气流分布的调节、等离子体热源功率变化和其它这样的因素,也会影响产品气体的特征,并可用作对这种特征的控制,或通过其他手段对其进行影响以降低对下游应用的冲击。
[585]在图43和图44中示出多种传感元件用在本实施例中,以控制气化加工的局部、区域和整体特征。例如,气化系统120包括多种温度传感元件,用于传感整个加工中不同位置的加工温度。在图43中,设置一个或多个温度传感元件,分别用于检测转化器1200内与等离子体热源3208有关的温度变化和与RCS 4200中残渣调整加工有关的温度变化。例如,可设置独立传感元件(通常由图43的温度传感器和指示器控制器8102来识别)用于传感温度T1、T2和T3,温度T1、T2和T3与气化器2200(例如,参见图44)的阶段1、2和3内进行的加工有关。可使用附加温度传感元件8104来传感温度T4(例如,参见图44),该温度T4与GRS 3200的重整加工相关,且特别与等离子体热源3208的输出功率相关。在本实施例中,还设置温度传感元件8106用于传感RCC 4220内的温度(例如,图44的温度T5),其中该温度T5至少部分与残渣调整器等离子体热源4230的输出功率相关。可理解的是,也可在转化器1200的不同位置下游处使用其它温度传感元件,用于参与不同局部、区域和/或整体加工,例如,温度传感元件能够与热交换器5200联合使用,以确保足够的传热,并向转化器1200提供充分加热的空气添加剂输入。例如,温度监控也可与GCS 6200相联合,以确保将气体调节为对于给定子加工来说气体不会太热。其它这样的实施例对本领域技术人员来说是容易理解的。
[586]气化系统120进一步包括操作性地布置于整个气化系统120的多种压力传感元件。例如,设置压力传感元件(图1中描述为压力传感器和指示器控制器8110)来传感转化器1200(图2的实施例中描述为特别是与GRS 3200相联合)内的压力,经由速度指示器控制、可变频率驱动和发动机组件8113,压力传感元件操作性地与鼓风机6500相联合,用于将转化器1200内的整体压力维持为低于大气压力;在这个特定实施例中,对转化器1200内的压力(在一个实施方式中)在频率大约20Hz处连续监控并相应的调节。在另一实施方式中,根据操作需要,鼓风机维持在频率约20Hz或之上;当要求鼓风率在20Hz以下时,可以临时使用超压阀。压力传感元件8112还设置为与RCC 4220操作性联合,并操作性地连接至调节阀,该调节阀将来自RCC 4220的残渣调整气体导入GCS 6200。还设置压力传感元件8116用于监控输入热交换器5200的空气压力,且将压力传感元件8116操作性地连接至鼓风机5210,用于经由速度指示器控制、可变频率驱动器和发动机组件8120来调节压力。设置压力调节阀8115,以在合成气鼓风机速度6250降到鼓风机的最小操作频率之下时提供次级控制,来补偿和调节系统内的压力。
[587]设置另一个压力传感元件8114用于SRS 7200,压力传感元件8114操作性地连接至调节阀7500,用于在超压时经由燃烧组9299控制和/或紧急排放合成气,例如,在启动和/或紧急运转期间。该压力传感元件8114进一步经由流量传感器和控制指示器8124操作性地连接至调节阀8122,以增加进入转化器1200的操作添加剂的输入流量,例如,在将不足量的合成气提供给SRS 7200来维持气体发动机9260继续运转的情况下。如下文将要更详细描述的,尤其涉及控制系统根据后至前控制方案来运转时。注意,在图44中使用空气流量传感元件8124和调节阀8122来调节进入气化器2200的阶段1、2和3的添加剂空气流量,如通过各流量F1、F2和F3所描述的,以及,调节进入GRS 3200的添加剂空气流量,如通过流量F4所描述的,其中根据限定的预设比例来设置相对流量,以在每个加工阶段大致维持预设温度范围。例如,F1:F2:F3:F4的比值大约36:18:6:40时,能够将相对温度T1、T2和T3分别维持在约300-600℃、500-900℃和600-1000℃的范围内,或者可选择地相对温度分别维持在约500-600℃、700-800℃和800-900℃的范围内,尤其是当输入额外原料以补偿由于容积增加而造成燃烧增加时,如下文所述。
[588]系统120还包括可操作性地布置在整个系统120的多个流量传感元件。例如,如上,流量传感元件8124与进入转化器1200的空气添加剂输入相关,且可操作性地连接至调节阀8122,用于调节该流量,例如,响应于由传感元件8114测出的SRS 7200压力降。还设有流量传感元件8126,以检测进入SRS 7200的合成气流量,使用测出值来调节空气添加剂输入速率以提供对流量下降的快速反应,以及,分别经由MSW和/或塑料进料机械装置9200和9250调节原料输入速率,例如,根据当前限定的燃料与空气的比(例如,当前正使用的(MSW+塑料):(总添加剂空气输入)的比值),获得更长期的稳定化;当根据后至前控制方案操作系统时,这也特别有用,如以下所述。在本实施例中,空气燃料比通常维持在约0至4kg/kg之间,在正常运转期间通常维持在大约1.5kg/kg。还可设置流量传感元件8128以监控进入燃烧组9299超量气体的流量,例如,在启动、紧急和/或前至后控制操作期间,如下文所述。
[589]图43和图44还示出气体分析仪8130,该气体分析仪8130用于分析合成气在到达SRS 7200时的组分,设置控制系统以使用此气体组分分析结果来确定合成气的燃料值和碳含量,并分别调节燃料空气比以及MSW和塑料的比,从而有助于调节MSW和塑料各自的输入速率。同样,此特征在控制系统执行后至前控制方案时特别有用,如以下更详细地描述的。
[590]虽然在图43和图44中没有示出,但前文所述气化器2200的示例性实施方式中包括:多种传感元件,设置用于检测气化器2200内各位置(即第一阶梯2212、第二阶梯2214和第三阶梯2216)处的反应物高度。这些传感元件可用于控制诸如载体滑枕2228、2230和2232的横向转移装置的运动,以增强气化器2200内的有效处理。在这样的实施例中,载体滑枕顺序控制器既影响实际原料输入速率的计算,也使需要传送给载体滑枕顺序控制器的预期原料输入速率改变。也就是说,载体滑枕顺序控制器能够用来调节原料输入速率,以及,控制系统与载体滑枕顺序控制器连通时,可补偿由于下游加工中载体滑枕顺序的改变(例如,为解决由于各种检出反应物分布引起的问题)所引起的变化。
[591]图45提供了控制流程图,示出本实施例的控制系统中的各种传感特征值、控制器(例如,响应元件)和运转参数,以及,示出彼此之间用于促进原料受到合适且有效处理的相互作用。图中:
转化器固体水平检测模块8250,设置用于对转移单元控制器8252(用于控制转移单元8254的运动)进行协调控制,以及,协调控制总体MSW+HCF进料速率8256;
合成气(产品气体)碳含量检测模块8258(例如,得自气体分析仪8130),操作性地结合至MSW:HCF比例控制器8260,MSW:HCF比例控制器8260设置用于协调控制MSW/HCF分离器8262,用于分别控制MSW和HCF各自的进料速率8264和8266;
合成气(产品气体)燃料值确定模块8268(例如,LHV=c1*[H2]+c2*[CO],其中c1和c2是常数,[H2]和[CO]从合成气分析仪8130中获得),操作性地结合至燃料空气比控制器8270,用于对导入MSW/HCF分离器8262和转移单元控制器8252的总体MSW+HCF进料速率8256进行协调控制;
合成空气流量检测模块8272,操作性地结合至总体空气流量控制器8274,用于控制总体气体流量8276和协调控制总体MSW+HCF进料速率8256;以及
加工温度检测模块8278,操作性地结合至温度控制器8280,用于控制空气流量分布8282(例如,图2的F1、F2、F3和F4)和等离子体热8284(例如,经由PHS 1002)。
[592]在此结构中,为了确定输入气化系统120的空气添加剂的量,使合成气组分在适合于下游应用的范围内或有益于提高能量效率和/或产品气体消耗的范围内,可设置控制系统以基于LHV所需特征值(例如,从合成气中[H2]和[CO]的分析结果)计算控制参数。例如,通过设定温度和压力常数,或在预期设定点,可经验性地限定整个系统参数,从而可使用下式的线性计算来非常精度地评估空气输入参数:
[LHV]=a[空气]
其中,a是用于特定系统设计和预期输出特征的经验常数。使用此方法,已经证明可以有效地和连续地操作本实施例的气化系统120,以在最优化加工效率和一致性的同时满足法规标准。
[593]图46提供可供选择的控制流程图,其描述了能够由结构略改动的控制系统所使用的各种传感特征值、控制器(例如,响应元件)和运转参数,以及彼此之间促进原料的合适和有效处理的相互作用。在此图中:
转化器固体水平检测模块8350,设置用于对进行转移单元控制器8352(设置用于控制转移单元8354的运动)协调控制,和协调控制总体MSW+HCF进料速率8356;
合成气(产品气体)碳含量检测模块8358(例如,得自气体分析仪8130),操作性地结合至MSW:HCF比例控制器8360,MSW:HCF比例控制器8360设置用于协调控制MSW/HCF分离器8362,用于分别控制MSW和HCF各自的进料速率8364和8366;
合成气(产品气体)[H2]含量检测模块8367(例如,得自气体分析仪8130),操作性地结合至燃料空气比控制器8370(协调控制总体MSW+HCF进料速率8356),用于协调控制转移单元控制器、MSW/HCF分离器8362、蒸汽流量计算和总体空气流量;
合成气(产品气体)[CO]含量检测模块8369(例如,得自气体分析仪8130),操作性地结合至燃料蒸汽比控制器8371(用于协调控制蒸汽流量计算)的,用于控制蒸汽添加率(注:蒸汽添加剂输入机构可操作性地结合至转化器1200(在图1和图2中未示出),并用于补充空气添加剂和参与精炼合成气的化学组成);
合成气流量检测模块8372,操作性地结合至总体空气流量控制器8374,用于协调控制总体气体流量8376和协调控制总体MSW+HCF进料速率8356;以及
加工温度检测模块8378,操作性地结合至温度控制器8380,用于控制空气流量分布8382(例如,图44的F1、F2、F3和F4)和等离子体热8384(例如,经由PHS 1002)。
[594]在此结构中,为了确定输入气化系统120的空气添加剂和蒸汽添加剂的量,以合成气组分处在适合于下游应用的范围内或能增加能量效率和/或产品气体消耗的范围内,可设置控制系统以基于所获得的[H2]和[CO]特征值计算控制参数。例如,通过设置温度和压力常数,或在预期设置点,可经验性地确定整个系统参数,从而可使用下式的线性计算来非常精度地评估空气蒸汽输入参数:
其中,a、b、c和d是用于特定系统设计和预期输出特征的经验常数。本领域技术人员可理解,尽管简化为线性系统,但是以上实施例可延伸包括其他特征值,从而提供其他控制参数的线性计算。当需要进一步限制加工波动以用于更精确的下游应用时,也可考虑高阶计算来精确计算控制参数。然而,使用以上所述的方式,已经证明可以有效地和连续地操作本实施例的气化系统120,以在最优化加工效率和一致性的同时满足法规标准。
[595]可理解的是,控制系统的各种控制器通常平行运转,以调节各控制器的值,包括绝对值(例如,总空气流量)和相对值(例如,原料与空气的比),但是,部分或全部操作器也可依次运转。
[596]如以上所讨论的,本实施例中,在系统120的启动运转期间使用前至后控制策略(或供给驱动),在系统120中转化器1200以固定的MSW进料速率运行。使用此控制方案,气化系统120允许通过诸如气体发动机9260和燃烧组9299的下游设备而吸收加工变化。因为产生了少量缓冲的超额合成气,所以使用小的连续喷管。可将超过此正常量的额外合成气生产送入喷管,增加燃烧量。合成气生产的不足首先消耗缓冲器,且最终会要求减少发生器功率的输出(通过可调的功率设定点,发生器可在50%至100%功率输出运作),或者进一步通过控制系统实施系统调节,如下所述。此控制方案尤其适用于启动和试运转阶段。
[597]此前至后控制方案的主要加工控制目标包括:稳定HC7230内的压力、稳定要产生的合成气的组分、控制气化室2202中材料堆的高度、稳定气化室2202中的温度、控制重整室3202中的温度,以及控制转化器加工压力。
[598]当使用GE/颜巴赫(Jenbacher)气体发动机9260时,产品气体的最小压力约150mbar(2.18psig),最大压力约200mbar(2.90psig),燃料气体压力的允许波动约+/-10%(+/-17.5mbar,+/-0.25psi),而产品气体压力波动最高率约10mbar/s(0.145psi/s)。气体发动机9260具有进口调节器,进口调节器能够处理供给压力的小幅扰动,以及,管道和HC中的积存能稍微作用来减弱这些变化。然而,控制系统还使用快速作用控制环(fast acting control loop)来维持适当的压力水平。如上文所述,此控制方案中的转化器1200以足够的MSW进料速率运行,以产生小缓冲的超额连续燃料的合成气生产。因此,HC 7230压力控制变为简单的压力控制环,其中根据要求调整从HC 7230至燃烧组9299之间的压力调节阀,以保持HC压力在适合的范围内。
[599]控制系统通常起作用来稳定要产生合成气的组分。只要变化率不过量,气体发动机9260能够在较宽范围的燃料值内运转。对于此实施例中相关的低热值(LHV)变化的可允许率低于1%的合成气LHV波动/30秒。对于氢基燃料,燃料气体本身的氢低达15%,且LHV低至50btu/scf(1.86MJ/Nm3)。通过提供约2分钟的合成气生产,该系统容积和HC7230有助于稳定LHV变化率。
[600]在此控制方案中,可通过安装在HC 7230进口处或附近的气体分析仪8130来测量产品气体的组分。基于此测量,为了稳定气体燃料值,控制系统可调节燃料空气比(即,相对于空气添加剂输入空气,略增加/降低MSW进料速率)。相对于空气添加剂,增加MSW或塑料的原料,增加了气体的燃料值。然而,应理解的是,基于气化系统120的整体实施,此控制行为具有相对长的响应时间,这样,可用于防止长期变化,而不会对短期变化进行响应。
[601]当塑料原料单独为较丰富的燃料源(例如,LHV约MSW的两倍)时,通常其加入量与MSW的比率约1:20(0至14%),因此,根据本实施例,对于添加于系统的燃料而言,塑料不起关键作用。因为向气化系统120中添加太多的塑料不经济,所以塑料原料可用作微调而不是主要控制。通常,塑料原料以一定比例加入总原料中,可选择性地调节塑料原料与总原料的比率,来稳定合成气中从气化系统120排出的总碳,如通过气体分析仪8130测量的。因此能减缓MSW燃料值波动的影响。
[602]此外,可用反应物堆水平控制系统来帮助维持转化器1200内稳定的堆高度。稳定的水平控制可防止加工空气喷射时材料悬浮(可能发生于低水平情况下),并防止高水平时发生因空气流量有限而造成材料堆的温度分布不良。维持稳定水平还有助于维持一致的转化器居留时间。可使用气化室2202中的一系列水平开关用于例如测量堆深度。本实施例中的水平开关可包括但不限于:在转化器的一侧有发射器而另一侧有接收器的微波装置,其检测转化器1200内该位置处是否有材料。气化器2200中的储存量通常是进料速率和载体滑枕运动(例如载体滑枕运动)的函数,以及,在较小的程度上,是转化效率的函数。
[603]在本实施例中,阶段3载体滑枕通过以固定的行程长度和频率移动,设置转化器生产量,以从气化器2200排放残渣。阶段2载体滑枕随动,并将材料尽可能远地推至阶段3上,以及将阶段3开始阶段水平开关的状态改变至“完全(满)”。阶段1的载体滑枕随动,并将材料尽可能远地推至阶段2上,以及,将阶段2开始阶段水平的状态改变至“完全”。然后同时撤回所有载体滑枕,在重复整个顺序之前,执行预定延迟。可使用附加结构来将连续行程长度的变化限制至低于水平开关所要求的程度,以避免载体滑枕引起的扰动过多。为了防止转化器底部过温条件,载体滑枕可相当频繁地移动。此外,可偶尔设定使载体滑枕行程完全伸展至每个阶段的末端,以防止滞积材料在该阶段末端附近堆积和结块。对本领域技术人员来说,可使用其他载体滑枕顺序,而不脱离本发明公开内容和范围。
[604]为了最优化转化效率,根据本发明的一个实施方式,尽可能长时间地将材料维持在尽可能高的温度。设置温度上限,以避免材料开始熔化和结块(例如,形成熔渣),熔化和结块会减少可利用的表面积进而降低转化效率,造成材料堆中的空气流在结块周围环绕,加剧了温度问题并加速了结块的形成,干扰了载体滑枕的正常运转,并由于残渣移除螺旋2209的堵塞,潜在地导致系统关闭。还可控制材料堆中的温度分布,以避免形成第二类结块,在这种情况下,塑料熔融并作用为其他材料的粘合剂。
[605]在一个实施方式中,通过改变加工空气进入给定阶段的流量(即,或多或少燃烧)来实现材料堆内的温度控制。例如,可通过控制系统调节提供给底室中每个阶段的加工空气流量,来稳定每一阶段的温度。还可采用过量的载体滑枕行程的温度控制来破坏热点。在一个实施方式中,预设置每个阶段的空气流量,以维持大致恒定的温度和各阶段之间的温度比率。例如,总空气流量的大约36%可导入阶段1,约18%可导入阶段2,以及约6%可导入阶段3,剩余的导入GRS(例如,总空气流量的40%)。可选择地,可动力学改变空气输入比率,以调节气化器2200和/或GRS3200的每个阶段内的温度和加工发生。
[606]还可调节等离子体热源功率(例如,等离子体喷管功率)以将GRS 3200(例如,重整室输出)的排出温度稳定在约1000摄氏度的设计设置点处。这也可用于确保气化室2202中形成的焦油和煤烟完全分解。通过向重整室3202添加加工空气,还可经由合成气燃烧时释放热能来承担部分热载荷。因此,可设置控制系统以调整加工空气的流速,以保持喷管功率处于良好的运转范围。
[607]此外,可通过调节合成气鼓风机6250的速度来稳定转化器压力,在图1的实施方式中示出为最接近均化子系统输入。当速度低于鼓风机的最小运转频率时,次级控制可以超控并代替调节再循环阀。一旦再循环阀回到完全关闭状态,初始控制重新启用。通常,压力传感器8110经由控制系统操作性地结合至鼓风机6250,控制系统设置为监控系统内的压力(例如以频率约20Hz),并经由操作性地与其结合的合适的响应元件8113(用于将系统压力维持在预定值范围内),调节鼓风机速度。
[608]此外,在单独的容器(例如,RCC 4220)中以连续运转方式来执行残渣熔化操作,单独的容器直接连接至转化器1200的出口。通过安装在气化器2200末端的锯齿状螺旋输送机(残渣提取器螺杆)或类似物,从气化室2202中移除熔渣,并经由例如一连串螺旋输送机,送入RCS 4200的顶端。来自袋式过滤器6230的小部分颗粒也可经由螺旋输送机混入主流残渣中,例如,用于进一步处理。
[609]RCS 4200是小的、耐火材料加衬的残渣调整室(RCC)4220,具有:安装于顶端的300kW的等离子体喷管4230;连接气体处理滑动滑板(gas treatment skid)的加工气体出口4228;和熔渣出口4226。在主袋式过滤器6230进口处,从气体处理滑动垫木排出的气体被引入来自转化器1200的主流合成气中,或可供选择地用于进一步处理。在此实施例中,残渣直接落入RCC 4220的顶端,在那里残渣通过与等离子体喷管烟羽(plasma torch plume)4230密切接触而熔化。例如通过RCC 4220内部的V形槽口堰4224,支撑该熔渣。当额外的熔渣颗粒流入RCC 4220并熔化时,相应量的熔化材料溢出堰4224,并落入与螺旋输送机一体的充水骤冷槽4240中,在那里熔化材料凝固、碎裂成小块玻璃状熔渣,并输送入储存容器。
[610]在控制残渣处理时,可根据需要调节等离子体喷管4230的功率,以维持足够温度用于熔化操作。RCC 4220温度仪器(例如,温度传感元件8106)可包括:例如,两个光学测温仪(OT),其测量所瞄准表面的表面温度;3个蒸汽空间热电偶,安装在熔化池上方的陶瓷热电偶套管中;以及5个外皮安装的热电偶,安装在外部金属壳上。RCC 4220还可包括用于测量RCC 4220内部的加工压力的压力传感器(例如,压力传感元件8112)。
[611]本文涵盖的一个熔化温度控制策略是通过两个光学测温仪测量正在被观察的温度增量。一个OT针对喷管4230下面的熔化池,另一个OT针对堰4224附近的熔化池。如果与喷管4230下面的温度相比堰4224附近的温度正变冷,提供更多的喷管功率。可供选择的方法是直接使用OT温度。将1400℃至1800℃范围中的预定点(已知高于大部分MSW组成的熔化温度)输入控制器中。根据要求调节喷管功率以满足该设定点。
[612]通常,不直接测量水平,而是通过两个OT温度和蒸汽空间热电偶来推断。如果温度降至低于温度设定点,这是未熔化材料的指示,使用联锁装置(interlocks)来暂时减缓残渣的进料速率,或作为最后的选择切断RCS 4200。例如,可经由驱动发动机可变频率驱动器(VFD),通过调节RCC原料螺旋输送机速度,来控制材料流速。可在等离子体喷管4230的熔化速率能力内,根据需要调节进料速率,以确保可接受的温度控制,以及防止由于未熔材料而在RCC4220中造成的高水平。通常,气化室2202中可留有一些滞留量用于超出阶段3的残渣,但是持续操作将依赖RCC 4220,RCC 4220具有足以匹配残渣生产稳定状态的熔化能力。
[613]可通过接进容器蒸汽空间的压力传感器(例如,元件8112),监控RCC 4220中的压力。通常,RCC 4220的操作压力与转化器气化室2202的操作压力大致匹配,从而,用于以任一方向使空气流(仅固体残渣颗粒流)穿过螺旋输送机的驱动力最小。在气体出口管线中设置调节阀8134,从而能够限制下游真空机(合成气鼓风机)移除的气体流量。DCS PID控制器计算需要的阀位置,以实现预期的操作压力。
[614]经过启动阶段后,能够使用后至前控制或因需而动的控制,其中在气化系统120后端处的气体发动机9260驱动该加工。基于燃料气体(即,产品气体)的能量值和产生的电功率,气体发动机9260消耗一定体积/小时的燃料。因此,该控制系统的高水平目标是确保足够的MSW/塑料原料进入气化系统120,并转化为具有足够能量值的合成气,以便一直以全功率运转发生器,而合成气的产生与合成气的消耗足够匹配,使得合成气的不稳定燃烧(flaring)减少,或基本消失,且提高每消耗一吨MSW所产生的电功率,并优选地被优化。
[615]通常,以上描述的前至后控制方案包括后至前控制方案的子集。例如,基本上维持以上方案所列出的全部或大部分加工控制目标,然而,控制系统进一步被精确化,以在增加每消耗一吨MSW或其他这样的原料所产生的电功率量的同时,减少合成气的不稳定燃烧。为了提供加工的提高控制、实现增加的加工效率和对下游应用的实用性,所产生的合成空气流基本与由气体发动机9260所消耗的燃料相匹配,从而降低来自气化系统120的超额产品气体的不稳定燃烧或其它处置,并降低不足以维持下游应用运转的可能性。概念地,控制系统因而变为实施后至前控制(或因需而动的控制),使得下游应用(例如气体发动机/发生器)驱动该加工。
[616]通常,为了稳定短期内从转化器1200排出的合成空气流,可调节进入转化器1200的空气添加剂输入流,对空气流波动提供快速响应,空气流波动产生通常归因于原料质量变化(例如,原料湿度和/或热值的变化)。通常,调节空气流产生的效应通常以声速在系统内传播。反之,通过调节MSW和/或塑料的进料速率也可显著影响系统输出(例如,合成空气流),原料在转化器1200内具有相对长的居留时间(例如,对本特定实施例有高达45分钟或更长的时间),与这种调节相关的系统响应时间大致在约10分钟至15分钟的范围内,其在短期可能不足以及时影响产品气体来避免不想要的操作条件(例如,不稳定燃烧的超额气体、不足以用于最佳运转的气体供应、不足以进行连续运转的气体供应等)。虽然与空气流增加相比MSW进料速率具有较慢的响应,与塑料原料增加相比MSW进料速率的增加可造成较快的响应,这是因为MSW的水分含量可在约2分钟至3分钟内产生蒸汽。
[617]因此,调节总空气流通常提供了可最快作用的环来控制压力,从而满足了用于下游应用的输入流要求。此外,由于转化器1200中大量的材料,向底室添加更多的空气或其它这样的添加剂不一定会成比例地稀释气体。额外的空气进一步渗入材料堆中,并与上层的材料反应。相反地,添加较少的空气会马上富集气体,但是最终造成温度下降以及反应速率/合成气流量降低。
[618]因此,总空气流量通常与图45示出的材料进料速率(MSW+塑料)成比例,籍此,增加添加剂输入将造成原料输入速率的增加。因此,调谐控制系统,从而马上看到增加空气的效果,最终观察到额外原料的效果,以提供长期的稳定合成气流量。也可基于系统动力学临时降低发生器功率输出,以渡过MSW/塑料进料速率增加与合成气流增加之间的死时间,然而,这可能不是必要的或不能预期,除非遇到异常原料条件。在本实施例中,虽然优选地调节空气流(快速作用环)以及调节燃料空气比和总燃料速率(都为长期响应),来维持适用于下游应用的气体特征,MSW与塑料原料的比控制是不必要的,但是此控制可作为额外的控制来帮助消除长期的可变性。
[619]在本实施例中,MSW的水分含量通常在0和80%之间变化,热值在约3000kJ/kg和33000kJ/kg之间变化,HC有2分钟的居留时间,且通常压力约210mbar。可存在约+/-60mbar的变化而不超过约150mbar的发动机最小供应压力。如果没有控制系统,压力能够上升至约1000mbar,因此,长期流量的波动通过控制系统积极地降低了高达4倍(或75%),以便根据需要以恒定的载荷运转气体发动机9260。此外,如果没有控制系统,转化器气体的压力波动可达到约25mbar/s,这是用于本实施例发动机最大值(约10mbar/s)的2.5倍(或约60%)。因此,本发明的控制系统可降低至少2.5倍(60%)的短期加工变化和约4倍(75%)的长期加工变化。在本实施例中使用HC7230能够帮助降低短期变化。
[620]本文提及的全部专利、出版物(包括专利申请公开)和数据输入的公开内容以全文引用的方式并入本文,如同各专利、出版物和数据输入在本文中记载并单独说明将其以引用的方式并入一样。
[621]虽然本文结合具体实施方式说明了本发明,但是本领域技术人员容易理解,可以对其进行多种修改和变化,所有这些变化都包括在所附权利要求的范围内。