US20030070808A1 - Use of syngas for the upgrading of heavy crude at the wellhead - Google Patents

Use of syngas for the upgrading of heavy crude at the wellhead Download PDF

Info

Publication number
US20030070808A1
US20030070808A1 US10153144 US15314402A US2003070808A1 US 20030070808 A1 US20030070808 A1 US 20030070808A1 US 10153144 US10153144 US 10153144 US 15314402 A US15314402 A US 15314402A US 2003070808 A1 US2003070808 A1 US 2003070808A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
syngas
process
method according
streams
wellhead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10153144
Inventor
Joe Allison
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ConocoPhillips Holding Co
Original Assignee
ConocoPhillips Holding Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of the groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/007Treatment of hydrocarbon oils in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of the groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 in the presence of hydrogen from a special source or of a special composition or having been purified by a special treatment
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water

Abstract

The present system may be used to hydroprocess heavy crude oil at the wellhead, effectively lowering the viscosity and removing contaminants such as sulfur, nitrogen and metal contents. The hydrogen source for hydroprocessing is the separated hydrogen product from the methane produced from a syngas plant.

Description

    TECHNICAL FIELD OF THE INVENTION
  • The present invention relates to a process for the preparation of synthesis gas, i.e., a mixture of carbon monoxide and hydrogen, from natural gas. More particularly, this invention relates to a method for maximizing the hydrogen production in syngas. Still more particularly, the present invention relates to upgrading crude oil at the wellhead to utilize co-produced natural gas and increase the ease of transportation of the crude by reducing the viscosity and sulfur, nitrogen, and other contaminants. [0001]
  • BACKGROUND OF THE INVENTION
  • Large quantities of methane, the main component of natural gas, are available in many areas of the world, and natural gas is predicted to outlast oil reserves by a significant margin. However, most natural gas is situated in areas that are geographically remote from population and industrial centers. The costs of compression, transportation, and storage make its use economically unattractive. To improve the economics of natural gas use, much research has focused on the use of methane as a starting material for the production of higher hydrocarbons and hydrocarbon liquids, which are more easily transported and thus more economical. The conversion of methane to hydrocarbons is typically carried out in two steps. In the first step, methane is converted into a mixture of carbon monoxide and hydrogen (i.e., synthesis gas or syngas). In a second step, the syngas is converted into hydrocarbons. [0002]
  • This first step, the preparation of synthesis gas from natural gas, is well known in the art and usually referred to as syngas conversion. The amount of hydrogen and carbon in syngas depends on the process technology, feedstock, and the operating conditions used in its manufacture. Synthesis gas can be made from a wide variety of feedstocks including natural gas, liquefied petroleum gas (LPG), oil, coal and petroleum coke. Processes for converting these materials to syngas are steam methane reforming, CO[0003] 2 reforming, auto thermal reforming and partial oxidation or gasification using either air or pure oxygen.
  • The ratio of hydrogen to carbon monoxide can range as low as 0.6 with CO[0004] 2 reforming of natural gas or partial oxidation of petroleum coke to as high as 6.5 with steam methane reforming. When hydrogen is the desired product, the reforming reaction can be followed by the well-known water gas shift reaction (WGS) shown in Equation 1.
  • CO+H2O
    Figure US20030070808A1-20030417-P00900
    CO2+H2  (1)
  • The WGS essentially converts all the carbon monoxide in the raw syngas to carbon dioxide, thereby maximizing the quantity of hydrogen produced. The shift reaction can likewise be avoided and the quantity of carbon monoxide maximized by selecting a feedstock with a higher carbon to hydrogen ratio or recycling carbon dioxide through the process. Although carbon monoxide can be maximized, hydrogen cannot be eliminated and is an inevitable by-product of the process. [0005]
  • Current industrial use of methane as a chemical feedstock proceeds by the initial conversion of methane to carbon monoxide and hydrogen by either steam reforming, which is the most widespread process, or by dry reforming. Steam reforming currently is the major process used commercially for the conversion of methane to synthesis gas, proceeding according to Equation 2.[0006]
  • CH4+H2O
    Figure US20030070808A1-20030417-P00900
    CO+3H2  (2)
  • Although steam reforming has been practiced for over five decades, efforts to improve the energy efficiency and reduce the capital investment required for this technology continue. [0007]
  • The catalytic partial oxidation (CPOX) of hydrocarbons, e.g., natural gas or methane to syngas is also a process known in the art. While currently limited as an industrial process, partial oxidation has recently attracted much attention due to significant inherent advantages, such as the fact that significant heat is released during the process, in contrast to steam reforming processes. [0008]
  • In catalytic partial oxidation, natural gas is mixed with air, oxygen-enriched air, or oxygen, and introduced to a catalyst at elevated temperature and pressure. The partial oxidation of methane yields a syngas mixture with a H[0009] 2:CO ratio of 2:1, as shown in Equation 3.
  • CH4+1/2O2
    Figure US20030070808A1-20030417-P00900
    CO+2H2  (3)
  • This ratio is more useful than the H[0010] 2:CO ratio from steam reforming for the downstream conversion of the syngas to chemicals such as methanol and to fuels. The partial oxidation is also exothermic, while the steam reforming reaction is strongly endothermic. Furthermore, oxidation reactions are typically much faster than reforming reactions. This allows the use of much smaller reactors for catalytic partial oxidation processes. The syngas in turn may be converted to hydrocarbon products, for example, fuels boiling in the middle distillate range, such as kerosene and diesel fuel, and hydrocarbon waxes by processes such as the Fischer-Tropsch Synthesis.
  • The selectivities of catalytic partial oxidation to the desired products, carbon monoxide and hydrogen, are controlled by several factors, but one of the most important of these factors is the choice of catalyst composition. Typically, catalyst compositions have included precious metals and/or rare earths. The large volumes of expensive catalysts needed by prior art catalytic partial oxidation processes have placed these processes generally outside the limits of economic justification. [0011]
  • For successful operation at commercial scale, the catalytic partial oxidation process must be able to achieve a high conversion of the methane feedstock at high gas hourly space velocities, and the selectivity of the process to the desired products of carbon monoxide and hydrogen must be high. Such high conversion and selectivity must be achieved without detrimental effects to the catalyst, such as the formation of carbon deposits (“coke”) on the catalyst, which severely reduces catalyst performance. [0012]
  • Accordingly, the economic evaluation for selection of a syngas process depends upon the required hydrogen to carbon monoxide molar ratio, availability and cost of hydrocarbon feedstocks and catalysts, availability and cost of oxygen and carbon dioxide, the cost of utilities and credits available for export steam and sale of excess hydrogen or carbon monoxide coproduct. This analysis is complex and highly site dependent. Typically, petrochemical applications of syngas require a ratio of hydrogen to carbon monoxide of either 1:1 or 2:1. Commercial processes for syngas yield much higher ratios; therefore, separation technology, by-product credits and production techniques that can adjust the hydrogen to carbon monoxide ratio are important aspects of syngas production. [0013]
  • Presently, heavy crude oil presents processing problems in refineries due to high viscosities, sulfur, nitrogen, and metal contents. Because of environmental requirements, steps are often taken at the refinery to upgrade these crude oils by reducing their viscosity and contaminants. Treatment strategies range from blending lighter crudes with heavier crudes to hydroprocessing. These strategies, though effective, are expensive because they require additional intermediates, such as hydrogen, to be produced. Therefore, there exists a need for a method of upgrading heavy crude oil with an already existing hydrogen source. [0014]
  • SUMMARY OF THE INVENTION
  • The present invention relates to hydrotreating at the wellhead, using hydrogen produced from methane through the syngas process. As defined herein, the term “hydrotreating” is intended to be synonymous with the term “hydroprocessing,” which involves the reaction of hydrocarbons at operating conditions with hydrogen, usually in the presence of a catalyst. Included within the processes intended to be encompassed by the term “hydroprocessing” are hydrocracking, aromatic hydrogenation, ring-opening, and hydrorefining, or hydrodesulfurization, hydrodenitrification, and hydrodemetalation. As will be recognized, one common attribute of these processes, and the reactions being effected therein, is that they are all “hydrogen-consuming,” and are, therefore, exothermic in nature. Although hydroprocessing may be applied to any hydrocarbon feedstock, it is particularly applicable, though less easily applicable, to heavier feedstocks such as residua, vacuum and atmospheric gas oils, coal and shale liquids, etc., since these feedstocks typically contain higher concentrations of less easily removed contaminants. [0015]
  • Additionally, the term “catalytic partial oxidation”, or CPOX, when used in the context of the present syngas production methods, in addition to its usual meaning, can also refer to a net catalytic partial oxidation process, in which hydrocarbons (comprising mainly methane) and oxygen-containing gases (i.e. oxygen, oxygen-enriched air, air) are supplied as reactants and the resulting product stream is predominantly the partial oxidation products CO and H[0016] 2, rather than the complete oxidation products CO2 and H2O. For example, the preferred catalysts serve in the short contact time process of the invention, which is described in more detail below, to yield a product gas mixture containing H2 and CO in a molar ratio of approximately 2:1. Although the primary reaction mechanism of the process is partial oxidation, other oxidation reactions may also occur in the reactor to a lesser or minor extent. As shown in Equation (2), the partial oxidation of methane yields H2 and CO in a molar ratio of 2:1.
  • As explained above, syngas technology can be shifted to produce larger amounts of hydrogen by varying the H[0017] 2:CO ratio and additionally converting the remaining CO to CO2 and additional H2 using the water gas shift reaction. Utilization of the hydrogen from methane allows for a use of an otherwise wasted resource. Additionally, the produced CO2 from the water gas shift reaction can be injected into the formation as a CO2 flood.
  • In a preferred embodiment of the present invention, a method for upgrading heavy crude oils at the wellhead includes producing syngas in a syngas-producing process, separating the syngas into H[0018] 2 and CO streams, and injecting the H2 stream into a hydroprocessing operation located at the wellhead. A hydroprocessing operation located at the wellhead is preferably within 100 miles of the wellhead, more preferably within 10 miles of the wellhead, and most preferably within a mile of the wellhead.
  • In an alternate embodiment of the present invention, a method for upgrading heavy crude oils at the wellhead includes producing syngas in a syngas-producing process, separating the syngas into H[0019] 2 and CO streams, running the CO stream in the presence of a water feed through a water gas shift process to produce a water gas shift product of CO2 and additional H2, separating the water gas shift product into H2 and CO2 streams, and injecting the H2 streams into a hydroprocessing process located at the wellhead.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more detailed understanding of the present invention, reference is now made to the accompanying figures, FIG. 1 and FIG. 2, which are schematic illustrations of first and second systems, respectively, constructed in accordance with the present invention.[0020]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Because of the shrinking world supply of oils, oil processors are faced with the necessity of utilizing heavy feedstocks that are highly contaminated with sulfur, nitrogen and metal contents. In the processing of these feedstocks, it is very desirable to remove as much of the contaminants as early in the refining of these feedstocks as possible, so that downstream catalysts do not suffer build-up and consequent reduced activity. Removing contaminants also makes a higher quality final product that is less corrosive and less polluting when combusted. [0021]
  • Referring now to FIG. 1, one embodiment of the present system [0022] 100 preferably includes a syngas plant 10, a hydrogen separation unit 20, and a hydroprocessing plant 30. Methane and oxygen-containing gas stream 11 is fed into syngas plant 10 and reacts with a suitable catalyst to form a stream of hydrogen and carbon monoxide 12. Hydrogen and carbon monoxide stream 12 is fed into hydrogen separation unit 20, where it is separated into carbon monoxide export stream 13 and hydrogen stream 14. Hydrogen stream 14 is injected into hydroprocessing plant 30, located at the wellhead.
  • Referring now to FIG. 2, an alternate embodiment of the present system [0023] 200 preferably includes a syngas plant 10, a first hydrogen separation unit 20, a water gas shift reactor 40, a second hydrogen separation unit 50, and a hydroprocessing plant 30. In some embodiments, system 200 further includes a carbon dioxide compressor 60. Methane and oxygen stream 11 is fed into syngas plant 10 and reacts with a suitable catalyst to form a stream of hydrogen and carbon monoxide 12. Hydrogen and carbon monoxide stream 12 is fed into first hydrogen separation unit 20, where it is separated into carbon monoxide stream 13 and hydrogen stream 14. Carbon monoxide stream 13 may either exit system 200 as export steam 13 b or comprise carbon monoxide feed stream 13 a for water gas shift reactor 40. In the latter embodiment, carbon monoxide stream 13 a is recycled into water gas shift reactor with water feed 21 under water gas shift favorable conditions to produce hydrogen and carbon dioxide stream 22. Hydrogen and carbon dioxide stream 22 is fed into second hydrogen separation unit 50, where it is separated into carbon dioxide stream 23 and hydrogen stream 24. Hydrogen streams 14 and 24 are injected into hydroprocessing plant 30, located at the wellhead. Carbon dioxide stream 23 may either exit system 200 as export steam 23 b or comprise carbon dioxide feed stream 23 a for carbon dioxide compressor 60. The compressed CO2 may then be injected into the wellhead to further upgrade the heavy oil.
  • In some embodiments, system [0024] 200 may include a syngas plant 10, a hydrogen separation unit 20, a water gas shift reactor 40, and a hydroprocessing plant 30. In these embodiments, the hydrogen separation unit separates both the hydrogen-carbon monoxide and the hydrogen-carbon dioxide streams into a hydrogen stream and a carbon monoxide-carbon dioxide stream. A carbon dioxide removal process such as membrane separation or an amine system may be utilized to separate the carbon monoxide from the carbon dioxide.
  • In some embodiments, the methane from the methane and oxygen-containing stream is associated gas. Associated gas is herein defined as gas co-produced from the same oil field or same wellhead being treated. In other embodiments, the methane from the methane and oxygen-containing stream is supplied via pipeline from other sources. [0025]
  • Process of Producing Syngas [0026]
  • A feed stream comprising a hydrocarbon feedstock and an oxygen-containing gas is contacted with a suitable syngas catalysts in a reaction zone maintained at partial oxidation-promoting conditions of temperature, pressure and flowrate, effective to produce an effluent stream comprising carbon monoxide and hydrogen. Preferably a millisecond contact time reactor is employed. The hydrocarbon feedstock may be any gaseous hydrocarbon having a low boiling point, such as methane, natural gas, associated gas, or other sources of light hydrocarbons having from 1 to 5 carbon atoms. The hydrocarbon feedstock may be a gas arising from naturally occurring reserves of methane which contain carbon dioxide. Preferably, the feed comprises at least 50% by volume methane, more preferably at least 75% by volume, and most preferably at least 80% by volume methane. [0027]
  • The hydrocarbon feedstock is in the gaseous phase when contacting the catalyst. The hydrocarbon feedstock is contacted with the catalyst as a mixture with an oxygen-containing gas, preferably pure oxygen. The oxygen-containing gas may also comprise steam and/or CO[0028] 2 in addition to oxygen. Alternatively, the hydrocarbon feedstock is contacted with the catalyst as a mixture with a gas comprising steam and/or CO2.
  • Preferably, the methane-containing feed and the oxygen-containing gas are mixed in such amounts to give a carbon (i.e., carbon in methane) to oxygen (i.e., atomic oxygen) ratio from about 1.25:1 to about 3.3:1, more preferably, from about 1.3:1 to about 2.2:1, and most preferably from about 1.5:1 to about 2.2:1, especially the stoichiometric ratio of 2:1. [0029]
  • The process is operated at atmospheric or superatmospheric pressures, the latter being preferred. The pressures may be from about 100 kPa to about 12,500 kPa, preferably from about 130 kPa to about 10,000 kPa. [0030]
  • The process is preferably operated at catalyst temperatures of from about 600° C. to about 1,200° C., preferably from about 700° C. to about 1,100° C. The hydrocarbon feedstock and the oxygen-containing gas are preferably pre-heated before contact with the catalyst. [0031]
  • It will be understood that the selection of a catalyst or catalyst system requires many technical and economic considerations. The process of selecting a precious metal catalyst can be broken down into components. Key catalyst properties include high activity, high selectivity, high recycle capability and filterability. Catalyst performance is determined mainly by the precious metal component. A metal is chosen based both on its ability to complete the desired reaction and its inability to complete an unwanted reaction. Typical catalysts used in CPOX include metals from Group 6B, 7B, & 8B of the periodic table associated with promoters from Groups 1B through 8B, Groups 1A through 5A, and metals from the Lanthanide group. [0032]
  • Generally, catalysts are supported on a carrier material or support. The catalyst support may be any of a variety of materials that a catalytically active material is coated on. The catalyst support preferably allows for a high degree of metal dispersion. The choice of support is largely determined by the nature of the reaction system. The support catalyst is preferably stable under reaction and regeneration conditions. Further, it preferably does not adversely react with solvent, reactants, or reaction products. [0033]
  • Suitable supports include activated carbon, alumina, silica, silica-alumina, silicon carbide, carbon black, TiO[0034] 2, ZrO2, CaCO3, and BaSO4, or stabilized forms of the aforementioned materials. Preferably, the catalytically active material is supported on either zirconia, stabilized zirconia, or alumina.
  • It will be understood that alternative choices of support may be made without departing from the preferred embodiments of the present invention by one of ordinary skill in the art. A support preferably favorably influences any of the catalyst activity, selectivity, recycling, refining, material handling reproducibility and the like. Properties of a support include surface area, pore volume, pore size, distribution, particle size, attrition resistance, acidity, basicity, impurity levels, and the ability to promote metal-support interactions. Metal dispersion increases with surface support area. Support porosity influences metal dispersion and distribution, metal sintering resistance, and intraparticle diffusion of reactants, products and poisons. Smaller support particle size increases catalytic activity but decreases filterability. The support preferably has desirable mechanical properties, attrition resistance and hardness. For example, an attrition resistant support allows for multiple catalyst recycling and rapid filtration. Further, support impurities preferably are inert. Alternatively, the support may contain promoters that enhance catalyst selectivity. [0035]
  • The catalysts used may be prepared by any of the methods known to those skilled in the art. By way of illustration and not limitation, such methods include impregnating the catalytically active compounds or precursors onto a support, extruding one or more catalytically active compounds or precursors together with support material to prepare catalyst extrudates, and/or precipitating the catalytically active compounds or precursors onto a support. Accordingly, supported catalysts may be used in the form of powders, particles, pellets, monoliths, honeycombs, packed beds, foams, and aerogels. [0036]
  • The hydrocarbon feedstock and the oxygen-containing gas may be passed over the catalyst at any of a variety of space velocities. Space velocities for the process (weight hourly space velocity), stated as normal liters of gas per kilogram of catalyst per hour, are from about 20,000 to about 100,000,000 NL/kg/h, preferably from about 50,000 to about 50,000,000 NL/kg/h. It is preferred that the residence time on the catalyst is about 10 milliseconds or less. Although, for ease in comparing with other syngas production systems, space velocities at standard conditions have been used to describe the present invention, it is well recognized in the art that residence time is the inverse of space velocity and that the disclosure of high space velocities equates to low residence times on the catalyst. Under these operating conditions a flow rate of reactant gases is preferably maintained sufficient to ensure a residence time of no more than 10 milliseconds with respect to each portion of reactant gas in contact with the catalyst. The product gas mixture emerging from the reactor is harvested and directly routed into hydrogen separation unit. [0037]
  • Process of Separating Hydrogen from Syngas/WGS Product [0038]
  • A preferred method for hydrogen separation employs pressure swing adsorption. At a high partial pressure, solid molecular sieves can absorb a greater quantity of certain gaseous components than others and absorb some compounds more strongly than others. For example, hydrogen is adsorbed less strongly than carbon monoxide and carbon dioxide, and the strength of adsorption of carbon monoxide and carbon dioxide increases with increasing molecular weight. As a result, at elevated pressures, hydrocarbons and other impurities are absorbed from a hydrogen-rich stream and most of the hydrogen passes through the system, leaving the impurities behind. Very high purity hydrogen can be produced this way. The hydrogen-rich stream can then be piped to a hydroprocessing unit. When the pressure on the system is reduced, the impurities adsorbed at high pressure are released from the solid adsorbent and purged. [0039]
  • Process of Upgrading Heavy Oil [0040]
  • In some embodiments of the present invention, hydrodesulfurization is the preferred process for removing undesirable compounds. In hydrodesulfurization, oil is combined with high-purity hydrogen, vaporized, and then passed over a catalyst such as tungsten, nickel, or a mixture of cobalt and molybdenum oxides supported on a carrier material such as alumina. Hydrodesulfurization is performed according to methods known to one of ordinary skill in the art. A general description of major considerations involved in performing hydrodesulfurization, and more generally hydrorefining, is given by W. S. Bland and R. L. Davidson, [0041] Petroleum Processing Handbook, Chapter 3 (1967). Operating temperatures are usually between 260° C. and 425° C. (500° F. and 800° F.) at pressures of 14 to 70 kilograms per square centimeter (200 to 1,000 pounds per square inch). Operating conditions are set to facilitate the desired level of sulfur removal without promoting any change to the other properties of the oil.
  • The sulfur in the oil is converted to hydrogen sulfide, which is removed from the circulating hydrogen stream by absorption in a solution such as diethanolamine. The solution can then be heated to remove the sulfide and reused. The hydrogen sulfide recovered is useful for manufacturing elemental sulfur of high purity. [0042]
  • Hydrodenitrification, a common process for removing nitrogen compounds and hydrodemetalation, a common process for removing metal contents, generally follow the same requirements as hydrodesulfurization. [0043]
  • CO[0044] 2 Flooding
  • According to some embodiments of the present invention, the CO product stream is fed into a water gas shift plant in the presence of water and operated at water gas shift favorable conditions. After the CO product has gone through the WGS, there will be CO[0045] 2 remaining. This CO2 can be used to additionally upgrade the heavy oil; it is known to inject carbon dioxide, either alone or in conjunction with natural gas, either at high pressure or containing sufficient petroleum gases in the vapor phase to perform tertiary oil recovery. The carbon dioxide can greatly improve tertiary recovery, but the effort is not economical unless very large quantities of carbon dioxide are available at a reasonable price. Conventionally, most of the successful projects of this type depend on tapping and transporting (by pipeline) carbon dioxide from underground reservoirs. However, because CO2 is a biproduct of our desired method to maximize hydrogen content, the cost is essentially the cost of separation of the hydrogen from the CO2.
  • While the preferred embodiments of the invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the invention. The embodiments described herein are exemplary only, and are not intended to be limiting. For example, while CPOX is preferably employed to produce syngas, any syngas-producing technology such as autothermal reforming (ATR) and steam reforming could be utilized. Many variations and modifications of the invention disclosed herein are possible and are within the scope of the invention. Accordingly, the scope of protection is not limited by the description set out above, but is only limited by the claims which follow, that scope including all equivalents of the subject matter of the claims. The disclosures of all patents, patent applications, and publications cited herein are incorporated by reference. [0046]

Claims (26)

    What is claimed is:
  1. 1. A method for upgrading heavy crude oils at the wellhead comprising:
    producing syngas in a syngas-producing process;
    separating the syngas into H2 and CO streams; and
    injecting the H2 stream into a hydroprocessing operation located at the wellhead.
  2. 2. The method according to claim 1 wherein the syngas-producing operation is of a type selected from the group consisting of CPOX (catalytic partial oxidation), ATR (autothermal reforming), and steam reforming processes.
  3. 3. The method according to claim 2 wherein the syngas-producing process is CPOX.
  4. 4. The method according to claim 3 wherein a methane-containing gas and oxygen-containing gas feed is supplied to the CPOX process.
  5. 5. The method according to claim 4 wherein the methane-containing gas is associated gas co-produced from the oil well.
  6. 6. The method according to claim 4 wherein the methane-containing gas is supplied via pipeline from other sources.
  7. 7. The method according to claim 1 wherein a hydrogen separation process separates the syngas into H2 and CO streams and optionally co-existing nitrogen streams.
  8. 8. The method according to claim 7 wherein the hydrogen separation process employs membrane separation technology.
  9. 9. The method according to claim 1 wherein the hydroprocessing operation is of a type selected from the group consisting of hydrogenation, hydrocracking, hydrodenitrogenation, hydrodemetalization, and hydrodesulfurization processes.
  10. 10. The method according to claim 9 wherein the hydroprocessing operation is hydrodesulfurization.
  11. 11. A method for upgrading heavy crude oils at the wellhead comprising:
    producing syngas in a syngas-producing process;
    separating the syngas into H2 and CO streams;
    running the CO stream in the presence of a water feed through a water gas shift process to produce a water gas shift product comprising CO2 and additional H2;
    separating the water gas shift product into H2 and CO2 streams; and
    injecting the H2 streams into a hydroprocessing process located at the wellhead.
  12. 12. The method according to claim 11 wherein the syngas-producing process is of a type selected from the group consisting of CPOX (catalytic partial oxidation), ATR (autothermal reforming), and steam reforming processes.
  13. 13. The method according to claim 12 wherein the syngas-producing process is CPOX.
  14. 14. The method according to claim 13 wherein a methane-containing gas and oxygen-containing gas feed is supplied to the CPOX process.
  15. 15. The process according to claim 14 wherein the methane-containing gas is associated gas co-produced from the oil well.
  16. 16. The process according to claim 14 wherein the methane-containing gas is supplied via pipeline from other sources.
  17. 17. The method according to claim 11 wherein a hydrogen separation process separates the syngas into H2 and CO streams and optionally co-existing nitrogen streams.
  18. 18. The method according to claim 17 wherein the hydrogen separation process employs membrane separation technology.
  19. 19. The method according to claim 11 wherein the hydroprocessing process is of a type selected from the group consisting of hydrogenation, hydrocracking, hydrodenitrogenation, hydrodemetalization, and hydrodesulfurization processes.
  20. 20. The method according to claim 19 wherein the hydroprocessing process comprises a hydrodesulfurization process.
  21. 21. The method according to claim 11 further comprising feeding the product CO2 into a carbon dioxide compressor.
  22. 22. The method according to claim 21 wherein the compressed CO2 is injected into the formation via injection wells to facilitate movement of the crude oil to the producing wellhead.
  23. 23. A method for upgrading heavy crude oils at the wellhead comprising:
    producing syngas in a syngas-producing process running at CPOX favorable conditions with a methane-containing gas and oxygen-containing gas feed;
    separating the syngas into H2 and CO streams; and
    injecting the H2 stream into a hydroprocessing process located at the wellhead.
  24. 24. A method for upgrading heavy crude oils at the wellhead comprising:
    producing syngas in a syngas-producing process running at CPOX favorable conditions with a methane-containing gas and oxygen-containing gas feed;
    separating the syngas into H2 and CO streams;
    running the CO stream in the presence of a water feed through a water gas shift process to produce a water gas shift product comprising CO2 and additional H2;
    separating the water gas shift product into H2 and CO2 streams; and
    injecting the H2 streams into a hydroprocessing process located at the wellhead.
  25. 25. A system for upgrading heavy crude oils at the wellhead comprising:
    providing a syngas-producing process running at CPOX favorable conditions with a methane-containing gas and oxygen-containing gas feed to produce syngas;
    providing a hydrogen separation process, wherein the syngas is separated into H2 and CO streams; and
    providing a hydroprocessing process located at the wellhead, wherein the H2 stream is injected.
  26. 26. A system for upgrading heavy crude oils at the wellhead comprising:
    providing a syngas-producing process running at CPOX favorable conditions with a methane-containing gas and oxygen-containing gas feed to produce syngas;
    providing a first hydrogen separation process, wherein the syngas is separated into H2 and CO streams;
    providing a water gas shift process with a water feed and a recycle means for running the CO stream to the water gas shift process, wherein the water gas shift process produces a water gas shift product comprising additional H2 and CO2;
    providing a second hydrogen separation process, wherein the water gas shift product is separated into additional H2 and CO2 streams; and
    providing a hydroprocessing process located at the wellhead, wherein the H2 streams are injected.
US10153144 2001-10-15 2002-05-21 Use of syngas for the upgrading of heavy crude at the wellhead Abandoned US20030070808A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US32967301 true 2001-10-15 2001-10-15
US10153144 US20030070808A1 (en) 2001-10-15 2002-05-21 Use of syngas for the upgrading of heavy crude at the wellhead

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10153144 US20030070808A1 (en) 2001-10-15 2002-05-21 Use of syngas for the upgrading of heavy crude at the wellhead
CA 2407102 CA2407102A1 (en) 2001-10-15 2002-10-09 Use of syngas for the upgrading of heavy crude at the wellhead

Publications (1)

Publication Number Publication Date
US20030070808A1 true true US20030070808A1 (en) 2003-04-17

Family

ID=26850215

Family Applications (1)

Application Number Title Priority Date Filing Date
US10153144 Abandoned US20030070808A1 (en) 2001-10-15 2002-05-21 Use of syngas for the upgrading of heavy crude at the wellhead

Country Status (2)

Country Link
US (1) US20030070808A1 (en)
CA (1) CA2407102A1 (en)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040104147A1 (en) * 2001-04-20 2004-06-03 Wen Michael Y. Heavy oil upgrade method and apparatus
US20050133417A1 (en) * 2003-12-19 2005-06-23 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050135997A1 (en) * 2003-12-19 2005-06-23 Wellington Scott L. Systems and methods of producing a crude product
US20060006556A1 (en) * 2004-07-08 2006-01-12 Chen Hung Y Gas supply device by gasifying burnable liquid
US20060231457A1 (en) * 2005-04-11 2006-10-19 Bhan Opinder K Systems, methods, and catalysts for producing a crude product
US20060234877A1 (en) * 2005-04-11 2006-10-19 Bhan Opinder K Systems, methods, and catalysts for producing a crude product
US20060231456A1 (en) * 2005-04-11 2006-10-19 Bhan Opinder K Systems, methods, and catalysts for producing a crude product
US20060249430A1 (en) * 2005-04-06 2006-11-09 Mesters Carolus Matthias A M Process for reducing the total acid number (TAN) of a liquid hydrocarbonaceous feedstock
US20060289340A1 (en) * 2003-12-19 2006-12-28 Brownscombe Thomas F Methods for producing a total product in the presence of sulfur
US20070000811A1 (en) * 2003-12-19 2007-01-04 Bhan Opinder K Method and catalyst for producing a crude product with minimal hydrogen uptake
US20070000810A1 (en) * 2003-12-19 2007-01-04 Bhan Opinder K Method for producing a crude product with reduced tan
US20070000808A1 (en) * 2003-12-19 2007-01-04 Bhan Opinder K Method and catalyst for producing a crude product having selected properties
US20070012595A1 (en) * 2003-12-19 2007-01-18 Brownscombe Thomas F Methods for producing a total product in the presence of sulfur
US20070090019A1 (en) * 2005-10-20 2007-04-26 Keusenkothen Paul F Hydrocarbon resid processing and visbreaking steam cracker feed
WO2007077138A1 (en) * 2005-12-30 2007-07-12 Shell Internationale Research Maatschappij B.V. Enhanced oil recovery process and a process for the sequestration of carbon dioxide
US20070266634A1 (en) * 2006-05-05 2007-11-22 Andreas Tsangaris Horizontally-Oriented Gasifier with Lateral Transfer System
US20070266633A1 (en) * 2006-05-05 2007-11-22 Andreas Tsangaris Gas Reformulating System Using Plasma Torch Heat
US20070295647A1 (en) * 2006-06-22 2007-12-27 Brownscombe Thomas F Methods for producing a total product with selective hydrocarbon production
US20070295645A1 (en) * 2006-06-22 2007-12-27 Brownscombe Thomas F Methods for producing a crude product from selected feed
US20070295646A1 (en) * 2006-06-22 2007-12-27 Bhan Opinder K Method for producing a crude product with a long-life catalyst
US20080083650A1 (en) * 2006-10-06 2008-04-10 Bhan Opinder K Methods for producing a crude product
US20080147241A1 (en) * 2006-05-05 2008-06-19 Placso Energy Group Inc. Control System for the Conversion of Carbonaceous Feedstock into Gas
US20080283249A1 (en) * 2007-05-19 2008-11-20 Zubrin Robert M Apparatus, methods, and systems for extracting petroleum using a portable coal reformer
US20090014170A1 (en) * 2007-05-20 2009-01-15 Zubrin Robert M Systems for extracting fluids from the earth's subsurface and for generating electricity without greenhouse gas emissions
US20090020456A1 (en) * 2007-05-11 2009-01-22 Andreas Tsangaris System comprising the gasification of fossil fuels to process unconventional oil sources
US20090217589A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Carbonaceous Fines Recycle
US20090217586A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Coal Compositions for Catalytic Gasification
US20090217590A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Coal Compositions for Catalytic Gasification
US20090217587A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Biomass Compositions for Catalytic Gasification
US20090229815A1 (en) * 2006-03-29 2009-09-17 Pioneer Energy, Inc. Apparatus and Method for Extracting Petroleum from Underground Sites Using Reformed Gases
US20090236093A1 (en) * 2006-03-29 2009-09-24 Pioneer Energy, Inc. Apparatus and Method for Extracting Petroleum from Underground Sites Using Reformed Gases
US20100071262A1 (en) * 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock
US20100076235A1 (en) * 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock
US20100088951A1 (en) * 2008-07-17 2010-04-15 Pioneer Astronautics Novel Methods of Higher Alcohol Synthesis
US20100121125A1 (en) * 2008-09-19 2010-05-13 Greatpoint Energy, Inc. Char Methanation Catalyst and its Use in Gasification Processes
US20100168494A1 (en) * 2008-12-30 2010-07-01 Greatpoint Energy, Inc. Processes for Preparing a Catalyzed Coal Particulate
US20100168495A1 (en) * 2008-12-30 2010-07-01 Greatpoint Energy, Inc. Processes for Preparing a Catalyzed Carbonaceous Particulate
US20100287836A1 (en) * 2009-05-13 2010-11-18 Greatpoint Energy, Inc. Processes for Hydromethanation of a Carbonaceous Feedstock
US20100287835A1 (en) * 2009-05-13 2010-11-18 Greatpoint Energy, Inc. Processes for Hydromethanation of a Carbonaceous Feedstock
US20100314136A1 (en) * 2007-05-20 2010-12-16 Zubrin Robert M Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
US20110064648A1 (en) * 2009-09-16 2011-03-17 Greatpoint Energy, Inc. Two-mode process for hydrogen production
US20110062012A1 (en) * 2009-09-16 2011-03-17 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US20110062722A1 (en) * 2009-09-16 2011-03-17 Greatpoint Energy, Inc. Integrated hydromethanation combined cycle process
US7918992B2 (en) 2005-04-11 2011-04-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20110088897A1 (en) * 2009-10-19 2011-04-21 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US20110088896A1 (en) * 2009-10-19 2011-04-21 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US20110146978A1 (en) * 2009-12-17 2011-06-23 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US20110207002A1 (en) * 2010-02-23 2011-08-25 Greatpoint Energy, Inc. Integrated Hydromethanation Fuel Cell Power Generation
US20110203292A1 (en) * 2009-09-23 2011-08-25 Pioneer Energy Inc. Methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
WO2011084580A3 (en) * 2009-12-17 2012-01-12 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8361428B2 (en) 2008-02-29 2013-01-29 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
US8366795B2 (en) 2008-02-29 2013-02-05 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
US8372169B2 (en) 2006-05-05 2013-02-12 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
US8557878B2 (en) 2010-04-26 2013-10-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with vanadium recovery
US8648121B2 (en) 2011-02-23 2014-02-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
US8652696B2 (en) 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8653149B2 (en) 2010-05-28 2014-02-18 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
US8748687B2 (en) 2010-08-18 2014-06-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US9012524B2 (en) 2011-10-06 2015-04-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9034061B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9234149B2 (en) 2007-12-28 2016-01-12 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US9273260B2 (en) 2012-10-01 2016-03-01 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
US9347302B2 (en) 2007-03-22 2016-05-24 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US9353322B2 (en) 2010-11-01 2016-05-31 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US10144882B2 (en) 2010-10-28 2018-12-04 E I Du Pont De Nemours And Company Hydroprocessing of heavy hydrocarbon feeds in liquid-full reactors

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2021894A4 (en) 2006-05-05 2010-10-13 Plascoenergy Ip Holdings Slb A gas homogenization system
EP2260241A4 (en) 2007-02-27 2012-03-28 Plascoenergy Ip Holdings S L Gasification system with processed feedstock/char conversion and gas reformulation
US9321640B2 (en) 2010-10-29 2016-04-26 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228467A (en) * 1963-04-30 1966-01-11 Texaco Inc Process for recovering hydrocarbons from an underground formation
US3905892A (en) * 1972-03-01 1975-09-16 Cities Service Res & Dev Co Process for reduction of high sulfur residue
US4141417A (en) * 1977-09-09 1979-02-27 Institute Of Gas Technology Enhanced oil recovery
US4160479A (en) * 1978-04-24 1979-07-10 Richardson Reginald D Heavy oil recovery process
US4183405A (en) * 1978-10-02 1980-01-15 Magnie Robert L Enhanced recoveries of petroleum and hydrogen from underground reservoirs
US4706751A (en) * 1986-01-31 1987-11-17 S-Cal Research Corp. Heavy oil recovery process
US5883138A (en) * 1997-04-25 1999-03-16 Exxon Research And Engineering Company Rapid injection catalytic partial oxidation process and apparatus for producing synthesis gas (law 562)
US5935489A (en) * 1997-04-25 1999-08-10 Exxon Research And Engineering Co. Distributed injection process and apparatus for producing synthesis gas
US6016868A (en) * 1998-06-24 2000-01-25 World Energy Systems, Incorporated Production of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking
US6103773A (en) * 1998-01-27 2000-08-15 Exxon Research And Engineering Co Gas conversion using hydrogen produced from syngas for removing sulfur from gas well hydrocarbon liquids
US6147126A (en) * 1998-02-10 2000-11-14 Exxon Research And Engineering Company Gas conversion using hydrogen from syngas gas and hydroconversion tail gas
US20020053432A1 (en) * 2000-04-24 2002-05-09 Berchenko Ilya Emil In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6479557B1 (en) * 1999-02-15 2002-11-12 Shell Oil Company Process for the preparation of hydrocarbons from carbon monoxide and hydrogen
USRE38170E1 (en) * 1998-02-13 2003-07-01 Exxonmobil Research And Engineering Company Gas conversion using synthesis gas produced hydrogen for catalyst rejuvenation and hydrocarbon conversion

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228467A (en) * 1963-04-30 1966-01-11 Texaco Inc Process for recovering hydrocarbons from an underground formation
US3905892A (en) * 1972-03-01 1975-09-16 Cities Service Res & Dev Co Process for reduction of high sulfur residue
US4141417A (en) * 1977-09-09 1979-02-27 Institute Of Gas Technology Enhanced oil recovery
US4160479A (en) * 1978-04-24 1979-07-10 Richardson Reginald D Heavy oil recovery process
US4183405A (en) * 1978-10-02 1980-01-15 Magnie Robert L Enhanced recoveries of petroleum and hydrogen from underground reservoirs
US4706751A (en) * 1986-01-31 1987-11-17 S-Cal Research Corp. Heavy oil recovery process
US5883138A (en) * 1997-04-25 1999-03-16 Exxon Research And Engineering Company Rapid injection catalytic partial oxidation process and apparatus for producing synthesis gas (law 562)
US5935489A (en) * 1997-04-25 1999-08-10 Exxon Research And Engineering Co. Distributed injection process and apparatus for producing synthesis gas
US6103773A (en) * 1998-01-27 2000-08-15 Exxon Research And Engineering Co Gas conversion using hydrogen produced from syngas for removing sulfur from gas well hydrocarbon liquids
US6147126A (en) * 1998-02-10 2000-11-14 Exxon Research And Engineering Company Gas conversion using hydrogen from syngas gas and hydroconversion tail gas
USRE38170E1 (en) * 1998-02-13 2003-07-01 Exxonmobil Research And Engineering Company Gas conversion using synthesis gas produced hydrogen for catalyst rejuvenation and hydrocarbon conversion
US6016868A (en) * 1998-06-24 2000-01-25 World Energy Systems, Incorporated Production of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking
US6479557B1 (en) * 1999-02-15 2002-11-12 Shell Oil Company Process for the preparation of hydrocarbons from carbon monoxide and hydrogen
US20020053432A1 (en) * 2000-04-24 2002-05-09 Berchenko Ilya Emil In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources

Cited By (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040104147A1 (en) * 2001-04-20 2004-06-03 Wen Michael Y. Heavy oil upgrade method and apparatus
US20050167330A1 (en) * 2003-12-19 2005-08-04 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050133414A1 (en) * 2003-12-19 2005-06-23 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050135997A1 (en) * 2003-12-19 2005-06-23 Wellington Scott L. Systems and methods of producing a crude product
US20050133416A1 (en) * 2003-12-19 2005-06-23 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050133415A1 (en) * 2003-12-19 2005-06-23 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050133406A1 (en) * 2003-12-19 2005-06-23 Wellington Scott L. Systems and methods of producing a crude product
US20050139520A1 (en) * 2003-12-19 2005-06-30 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050139521A1 (en) * 2003-12-19 2005-06-30 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050139518A1 (en) * 2003-12-19 2005-06-30 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050139512A1 (en) * 2003-12-19 2005-06-30 Wellington Scott L. Systems and methods of producing a crude product
US20050139519A1 (en) * 2003-12-19 2005-06-30 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050145537A1 (en) * 2003-12-19 2005-07-07 Wellington Scott L. Systems and methods of producing a crude product
US20050145543A1 (en) * 2003-12-19 2005-07-07 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050145536A1 (en) * 2003-12-19 2005-07-07 Wellington Scott L. Systems and methods of producing a crude product
US20050150818A1 (en) * 2003-12-19 2005-07-14 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050155908A1 (en) * 2003-12-19 2005-07-21 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050155906A1 (en) * 2003-12-19 2005-07-21 Wellington Scott L. Systems and methods of producing a crude product
US20050167328A1 (en) * 2003-12-19 2005-08-04 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050167324A1 (en) * 2003-12-19 2005-08-04 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050170952A1 (en) * 2003-12-19 2005-08-04 Wellington Scott L. Systems and methods of producing a crude product
US20050167327A1 (en) * 2003-12-19 2005-08-04 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050167329A1 (en) * 2003-12-19 2005-08-04 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050133417A1 (en) * 2003-12-19 2005-06-23 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050167322A1 (en) * 2003-12-19 2005-08-04 Wellington Scott L. Systems and methods of producing a crude product
US20050167323A1 (en) * 2003-12-19 2005-08-04 Wellington Scott L. Systems and methods of producing a crude product
US20050167320A1 (en) * 2003-12-19 2005-08-04 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050167326A1 (en) * 2003-12-19 2005-08-04 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050167325A1 (en) * 2003-12-19 2005-08-04 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050167321A1 (en) * 2003-12-19 2005-08-04 Wellington Scott L. Systems and methods of producing a crude product
US20050173301A1 (en) * 2003-12-19 2005-08-11 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20050173298A1 (en) * 2003-12-19 2005-08-11 Wellington Scott L. Systems and methods of producing a crude product
US7807046B2 (en) 2003-12-19 2010-10-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7780844B2 (en) 2003-12-19 2010-08-24 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7763160B2 (en) 2003-12-19 2010-07-27 Shell Oil Company Systems and methods of producing a crude product
US7837863B2 (en) 2003-12-19 2010-11-23 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8163166B2 (en) 2003-12-19 2012-04-24 Shell Oil Company Systems and methods of producing a crude product
US20060289340A1 (en) * 2003-12-19 2006-12-28 Brownscombe Thomas F Methods for producing a total product in the presence of sulfur
US20070000811A1 (en) * 2003-12-19 2007-01-04 Bhan Opinder K Method and catalyst for producing a crude product with minimal hydrogen uptake
US20070000810A1 (en) * 2003-12-19 2007-01-04 Bhan Opinder K Method for producing a crude product with reduced tan
US20070000808A1 (en) * 2003-12-19 2007-01-04 Bhan Opinder K Method and catalyst for producing a crude product having selected properties
US20070012595A1 (en) * 2003-12-19 2007-01-18 Brownscombe Thomas F Methods for producing a total product in the presence of sulfur
US7854833B2 (en) 2003-12-19 2010-12-21 Shell Oil Company Systems and methods of producing a crude product
US7736490B2 (en) 2003-12-19 2010-06-15 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8394254B2 (en) 2003-12-19 2013-03-12 Shell Oil Company Crude product composition
US8268164B2 (en) 2003-12-19 2012-09-18 Shell Oil Company Systems and methods of producing a crude product
US8241489B2 (en) 2003-12-19 2012-08-14 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7955499B2 (en) 2003-12-19 2011-06-07 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7879223B2 (en) 2003-12-19 2011-02-01 Shell Oil Company Systems and methods of producing a crude product
US8070936B2 (en) 2003-12-19 2011-12-06 Shell Oil Company Systems and methods of producing a crude product
US8070937B2 (en) 2003-12-19 2011-12-06 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8506794B2 (en) 2003-12-19 2013-08-13 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7745369B2 (en) 2003-12-19 2010-06-29 Shell Oil Company Method and catalyst for producing a crude product with minimal hydrogen uptake
US8025791B2 (en) 2003-12-19 2011-09-27 Shell Oil Company Systems and methods of producing a crude product
US8025794B2 (en) 2003-12-19 2011-09-27 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20110210043A1 (en) * 2003-12-19 2011-09-01 Scott Lee Wellington Crude product composition
US20080210594A1 (en) * 2003-12-19 2008-09-04 Scott Lee Wellington Systems and methods of producing a crude product
US20080245702A1 (en) * 2003-12-19 2008-10-09 Scott Lee Wellington Systems and methods of producing a crude product
US8663453B2 (en) 2003-12-19 2014-03-04 Shell Oil Company Crude product composition
US20080272027A1 (en) * 2003-12-19 2008-11-06 Scott Lee Wellington Systems and methods of producing a crude product
US20080272029A1 (en) * 2003-12-19 2008-11-06 Scott Lee Wellington Systems and methods of producing a crude product
US8608946B2 (en) 2003-12-19 2013-12-17 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20110192762A1 (en) * 2003-12-19 2011-08-11 Scott Lee Wellington Crude product composition
US20110192763A1 (en) * 2003-12-19 2011-08-11 Scott Lee Wellington Crude product composition
US20110186479A1 (en) * 2003-12-19 2011-08-04 Scott Lee Wellington Crude product composition
US20090134060A1 (en) * 2003-12-19 2009-05-28 Scott Lee Wellington Systems and methods of producing a crude product
US20090178953A1 (en) * 2003-12-19 2009-07-16 Opinder Kishan Bhan Systems, methods, and catalysts for producing a crude product
US7811445B2 (en) 2003-12-19 2010-10-12 Shell Oil Company Systems and methods of producing a crude product
US20090206005A1 (en) * 2003-12-19 2009-08-20 Opinder Kishan Bhan Systems, methods, and catalysts for producing a crude product
US8475651B2 (en) 2003-12-19 2013-07-02 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8613851B2 (en) 2003-12-19 2013-12-24 Shell Oil Company Crude product composition
US7674370B2 (en) 2003-12-19 2010-03-09 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7828958B2 (en) 2003-12-19 2010-11-09 Shell Oil Company Systems and methods of producing a crude product
US7959796B2 (en) 2003-12-19 2011-06-14 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7959797B2 (en) 2003-12-19 2011-06-14 Shell Oil Company Systems and methods of producing a crude product
US20090288987A1 (en) * 2003-12-19 2009-11-26 Opinder Kishan Bhan Systems, methods, and catalysts for producing a crude product
US7648625B2 (en) 2003-12-19 2010-01-19 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20080245700A1 (en) * 2003-12-19 2008-10-09 Scott Lee Wellington Systems and methods of producing a crude product
US7674368B2 (en) 2003-12-19 2010-03-09 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8608938B2 (en) 2003-12-19 2013-12-17 Shell Oil Company Crude product composition
US20060006556A1 (en) * 2004-07-08 2006-01-12 Chen Hung Y Gas supply device by gasifying burnable liquid
US20060249430A1 (en) * 2005-04-06 2006-11-09 Mesters Carolus Matthias A M Process for reducing the total acid number (TAN) of a liquid hydrocarbonaceous feedstock
US20060231456A1 (en) * 2005-04-11 2006-10-19 Bhan Opinder K Systems, methods, and catalysts for producing a crude product
US20110160044A1 (en) * 2005-04-11 2011-06-30 Opinder Kishan Bhan Catalysts for producing a crude product
US8481450B2 (en) 2005-04-11 2013-07-09 Shell Oil Company Catalysts for producing a crude product
US20060231457A1 (en) * 2005-04-11 2006-10-19 Bhan Opinder K Systems, methods, and catalysts for producing a crude product
US20060234877A1 (en) * 2005-04-11 2006-10-19 Bhan Opinder K Systems, methods, and catalysts for producing a crude product
US7678264B2 (en) 2005-04-11 2010-03-16 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7918992B2 (en) 2005-04-11 2011-04-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8696888B2 (en) 2005-10-20 2014-04-15 Exxonmobil Chemical Patents Inc. Hydrocarbon resid processing
US8784743B2 (en) 2005-10-20 2014-07-22 Exxonmobil Chemical Patents Inc. Hydrocarbon resid processing and visbreaking steam cracker feed
US20070090019A1 (en) * 2005-10-20 2007-04-26 Keusenkothen Paul F Hydrocarbon resid processing and visbreaking steam cracker feed
US20070090020A1 (en) * 2005-10-20 2007-04-26 Buchanan John S Resid processing for steam cracker feed and catalytic cracking
US7972498B2 (en) 2005-10-20 2011-07-05 Exxonmobil Chemical Patents Inc. Resid processing for steam cracker feed and catalytic cracking
US8636895B2 (en) 2005-10-20 2014-01-28 Exxonmobil Chemical Patents Inc. Hydrocarbon resid processing and visbreaking steam cracker feed
WO2007077138A1 (en) * 2005-12-30 2007-07-12 Shell Internationale Research Maatschappij B.V. Enhanced oil recovery process and a process for the sequestration of carbon dioxide
US9605522B2 (en) 2006-03-29 2017-03-28 Pioneer Energy, Inc. Apparatus and method for extracting petroleum from underground sites using reformed gases
US8602095B2 (en) 2006-03-29 2013-12-10 Pioneer Energy, Inc. Apparatus and method for extracting petroleum from underground sites using reformed gases
US20090229815A1 (en) * 2006-03-29 2009-09-17 Pioneer Energy, Inc. Apparatus and Method for Extracting Petroleum from Underground Sites Using Reformed Gases
US20090236093A1 (en) * 2006-03-29 2009-09-24 Pioneer Energy, Inc. Apparatus and Method for Extracting Petroleum from Underground Sites Using Reformed Gases
US8475551B2 (en) 2006-05-05 2013-07-02 Plasco Energy Group Inc. Gas reformulating system using plasma torch heat
US20070266634A1 (en) * 2006-05-05 2007-11-22 Andreas Tsangaris Horizontally-Oriented Gasifier with Lateral Transfer System
US8372169B2 (en) 2006-05-05 2013-02-12 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
US9109172B2 (en) 2006-05-05 2015-08-18 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
US8435315B2 (en) 2006-05-05 2013-05-07 Plasco Energy Group Inc. Horizontally-oriented gasifier with lateral transfer system
US8306665B2 (en) 2006-05-05 2012-11-06 Plasco Energy Group Inc. Control system for the conversion of carbonaceous feedstock into gas
US20070266633A1 (en) * 2006-05-05 2007-11-22 Andreas Tsangaris Gas Reformulating System Using Plasma Torch Heat
US20080147241A1 (en) * 2006-05-05 2008-06-19 Placso Energy Group Inc. Control System for the Conversion of Carbonaceous Feedstock into Gas
US20070295647A1 (en) * 2006-06-22 2007-12-27 Brownscombe Thomas F Methods for producing a total product with selective hydrocarbon production
US20070295646A1 (en) * 2006-06-22 2007-12-27 Bhan Opinder K Method for producing a crude product with a long-life catalyst
US20070295645A1 (en) * 2006-06-22 2007-12-27 Brownscombe Thomas F Methods for producing a crude product from selected feed
US20080087578A1 (en) * 2006-10-06 2008-04-17 Bhan Opinder K Methods for producing a crude product and compositions thereof
US20080085225A1 (en) * 2006-10-06 2008-04-10 Bhan Opinder K Systems for treating a hydrocarbon feed
US20090188836A1 (en) * 2006-10-06 2009-07-30 Opinder Kishan Bhan Methods for producing a crude product
US20090057197A1 (en) * 2006-10-06 2009-03-05 Opinder Kishan Bhan Methods for producing a crude product
US20080083650A1 (en) * 2006-10-06 2008-04-10 Bhan Opinder K Methods for producing a crude product
US20080087575A1 (en) * 2006-10-06 2008-04-17 Bhan Opinder K Systems and methods for producing a crude product and compositions thereof
US20080083655A1 (en) * 2006-10-06 2008-04-10 Bhan Opinder K Methods of producing a crude product
US7749374B2 (en) 2006-10-06 2010-07-06 Shell Oil Company Methods for producing a crude product
US9347302B2 (en) 2007-03-22 2016-05-24 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US20090020456A1 (en) * 2007-05-11 2009-01-22 Andreas Tsangaris System comprising the gasification of fossil fuels to process unconventional oil sources
US7654330B2 (en) * 2007-05-19 2010-02-02 Pioneer Energy, Inc. Apparatus, methods, and systems for extracting petroleum using a portable coal reformer
US20080283249A1 (en) * 2007-05-19 2008-11-20 Zubrin Robert M Apparatus, methods, and systems for extracting petroleum using a portable coal reformer
US7810565B2 (en) * 2007-05-20 2010-10-12 Pioneer Energy, Inc. Systems for extracting fluids from the earth's subsurface and for generating electricity without greenhouse gas emissions
US20090014170A1 (en) * 2007-05-20 2009-01-15 Zubrin Robert M Systems for extracting fluids from the earth's subsurface and for generating electricity without greenhouse gas emissions
US9605523B2 (en) 2007-05-20 2017-03-28 Pioneer Energy, Inc. Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
US8616294B2 (en) 2007-05-20 2013-12-31 Pioneer Energy, Inc. Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
US20100314136A1 (en) * 2007-05-20 2010-12-16 Zubrin Robert M Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US9234149B2 (en) 2007-12-28 2016-01-12 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US20090217589A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Carbonaceous Fines Recycle
US8297542B2 (en) 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8652222B2 (en) 2008-02-29 2014-02-18 Greatpoint Energy, Inc. Biomass compositions for catalytic gasification
US8286901B2 (en) 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8361428B2 (en) 2008-02-29 2013-01-29 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
US8366795B2 (en) 2008-02-29 2013-02-05 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
US8349039B2 (en) 2008-02-29 2013-01-08 Greatpoint Energy, Inc. Carbonaceous fines recycle
US20090217590A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Coal Compositions for Catalytic Gasification
US20090217586A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Coal Compositions for Catalytic Gasification
US20090217587A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Biomass Compositions for Catalytic Gasification
US20100088951A1 (en) * 2008-07-17 2010-04-15 Pioneer Astronautics Novel Methods of Higher Alcohol Synthesis
US8785699B2 (en) 2008-07-17 2014-07-22 Pioneer Energy, Inc. Methods of higher alcohol synthesis
US8450536B2 (en) 2008-07-17 2013-05-28 Pioneer Energy, Inc. Methods of higher alcohol synthesis
US8328890B2 (en) 2008-09-19 2012-12-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8647402B2 (en) 2008-09-19 2014-02-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US20100071262A1 (en) * 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock
US8502007B2 (en) 2008-09-19 2013-08-06 Greatpoint Energy, Inc. Char methanation catalyst and its use in gasification processes
US20100076235A1 (en) * 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock
US20100121125A1 (en) * 2008-09-19 2010-05-13 Greatpoint Energy, Inc. Char Methanation Catalyst and its Use in Gasification Processes
US8734547B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed carbonaceous particulate
US8734548B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
US20100168494A1 (en) * 2008-12-30 2010-07-01 Greatpoint Energy, Inc. Processes for Preparing a Catalyzed Coal Particulate
US20100168495A1 (en) * 2008-12-30 2010-07-01 Greatpoint Energy, Inc. Processes for Preparing a Catalyzed Carbonaceous Particulate
US20100287836A1 (en) * 2009-05-13 2010-11-18 Greatpoint Energy, Inc. Processes for Hydromethanation of a Carbonaceous Feedstock
US8728183B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8728182B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US20100287835A1 (en) * 2009-05-13 2010-11-18 Greatpoint Energy, Inc. Processes for Hydromethanation of a Carbonaceous Feedstock
US20110062722A1 (en) * 2009-09-16 2011-03-17 Greatpoint Energy, Inc. Integrated hydromethanation combined cycle process
US20110062012A1 (en) * 2009-09-16 2011-03-17 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US20110064648A1 (en) * 2009-09-16 2011-03-17 Greatpoint Energy, Inc. Two-mode process for hydrogen production
US20110203292A1 (en) * 2009-09-23 2011-08-25 Pioneer Energy Inc. Methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
US8047007B2 (en) 2009-09-23 2011-11-01 Pioneer Energy Inc. Methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
US8479833B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US20110088897A1 (en) * 2009-10-19 2011-04-21 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US20110088896A1 (en) * 2009-10-19 2011-04-21 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8479834B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US20110146978A1 (en) * 2009-12-17 2011-06-23 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
WO2011084580A3 (en) * 2009-12-17 2012-01-12 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8733459B2 (en) 2009-12-17 2014-05-27 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US20110207002A1 (en) * 2010-02-23 2011-08-25 Greatpoint Energy, Inc. Integrated Hydromethanation Fuel Cell Power Generation
US8669013B2 (en) 2010-02-23 2014-03-11 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8652696B2 (en) 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8557878B2 (en) 2010-04-26 2013-10-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with vanadium recovery
US8653149B2 (en) 2010-05-28 2014-02-18 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
US8748687B2 (en) 2010-08-18 2014-06-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US10144882B2 (en) 2010-10-28 2018-12-04 E I Du Pont De Nemours And Company Hydroprocessing of heavy hydrocarbon feeds in liquid-full reactors
US9353322B2 (en) 2010-11-01 2016-05-31 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US8648121B2 (en) 2011-02-23 2014-02-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9012524B2 (en) 2011-10-06 2015-04-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
US9273260B2 (en) 2012-10-01 2016-03-01 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9034061B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US9739122B2 (en) 2014-11-21 2017-08-22 Exxonmobil Upstream Research Company Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation

Also Published As

Publication number Publication date Type
CA2407102A1 (en) 2003-04-15 application

Similar Documents

Publication Publication Date Title
US3252774A (en) Production of hydrogen-containing gases
US3388074A (en) Two-stage steam reforming with rapid warm-up in first stage by means of a promoted catalyst
Tsang et al. Recent advances in the conversion of methane to synthesis gas
De Groote et al. Simulation of the catalytic partial oxidation of methane to synthesis gas
US4927857A (en) Method of methanol production
US3351563A (en) Production of hydrogen-rich synthesis gas
US5522983A (en) Hydrocarbon hydroconversion process
US6872753B2 (en) Managing hydrogen and carbon monoxide in a gas to liquid plant to control the H2/CO ratio in the Fischer-Tropsch reactor feed
US4039429A (en) Process for hydrocarbon conversion
Chauvel et al. Petrochemical Processes....
US4981676A (en) Catalytic ceramic membrane steam/hydrocarbon reformer
US4579985A (en) Process for the preparation of hydrocarbons
US6395944B1 (en) Process for the preparation of mono-olefins from paraffinic hydrocarbons
US5648582A (en) Stable, ultra-low residence time partial oxidation
US6974842B1 (en) Process for catalyst recovery from a slurry containing residual hydrocarbons
US5284717A (en) Method for producing raw materials for a reformer by cracking and desulfurizing petroleum fuels
US5504118A (en) Process for the production of hydrocarbons
US20060074134A1 (en) Control of CO2 emissions from a fischer-tropsch facility by use of dual functional syngas conversion
US3551124A (en) Process of gasifying hydrocarbon fractions containing sulfur
US20040018144A1 (en) Hydrogen to steam reforming of natural gas to synthesis gas
US20060063845A1 (en) Control of CO2 emissions from a Fischer-Tropsch facility by use of multiple reactors
US4338292A (en) Production of hydrogen-rich gas
US5752995A (en) Catalyst and process for the production of hydrogen and/or methane
Dry The Fischer-Tropsch process-commercial aspects
US5817701A (en) Slurry hydrocarbon synthesis with cyclic CO purge and catalyst rejuvenation

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONOCO INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALLISON, JOE D.;REEL/FRAME:013136/0514

Effective date: 20020610