WO2005118750A1 - 固体燃料ガス化システム - Google Patents

固体燃料ガス化システム Download PDF

Info

Publication number
WO2005118750A1
WO2005118750A1 PCT/JP2004/007888 JP2004007888W WO2005118750A1 WO 2005118750 A1 WO2005118750 A1 WO 2005118750A1 JP 2004007888 W JP2004007888 W JP 2004007888W WO 2005118750 A1 WO2005118750 A1 WO 2005118750A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
combustion
pyrolysis
furnace
solid fuel
Prior art date
Application number
PCT/JP2004/007888
Other languages
English (en)
French (fr)
Inventor
Kunio Yoshikawa
Original Assignee
Japan Science And Technology Agency
Ecomeet Solutions Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Ecomeet Solutions Co., Ltd. filed Critical Japan Science And Technology Agency
Priority to PCT/JP2004/007888 priority Critical patent/WO2005118750A1/ja
Priority to CN2004800432211A priority patent/CN1961062B/zh
Priority to CA002569009A priority patent/CA2569009A1/en
Priority to EP04735663A priority patent/EP1772511A1/en
Priority to US11/628,002 priority patent/US20070214719A1/en
Priority to AU2004320347A priority patent/AU2004320347B2/en
Publication of WO2005118750A1 publication Critical patent/WO2005118750A1/ja
Priority to KR1020067027965A priority patent/KR20070034543A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/14Continuous processes using gaseous heat-carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/006Reducing the tar content by steam reforming
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1637Char combustion

Definitions

  • the present invention relates to a solid fuel gasification system, and more particularly, to a solid fuel gasification system for producing a synthesis gas containing hydrogen and carbon monoxide as main components by pyrolysis of a solid fuel. is there.
  • a fuel gasification system that gasifies organic waste such as waste plastic, sludge, shredder dust or municipal waste, or low-quality solid fuel such as coal, and supplies relatively high-calorie synthetic gas to power generation facilities. It has been known.
  • the present inventor has developed a fuel gasification system for gasifying and melting solid fuel with high-temperature air of about 100 ° C. in this type of gasification system. Proposed in No. 5, etc.
  • this type of gasification system includes a gasification furnace for gasifying and melting solid fuel.
  • An air heater supplies high-temperature air of 100 ° C. or higher to the gasifier, and a heat recovery / gas purifier cools and purifies the crude gas in the gasifier.
  • the solid fuel supplied to the gasification furnace is gasified and melted by high-temperature air to produce a high-temperature crude gas of about 1000 ° C, and the high-temperature crude gas is supplied to a heat recovery and gas purification device. .
  • the heat recovery and gas purification equipment cools and refines the high-temperature crude gas and supplies the purified gas to power generation equipment.
  • Heat recovery ⁇ The char (carbonized material after pyrolysis) recovered by the gas purifier is introduced into the solid fuel supply channel by char recycling means and supplied to the gasification furnace together with the solid fuel. A portion of the purified gas is aerated as fuel for air heating.
  • the air heating device heats the air by the heat of combustion of the purified gas and supplies high-temperature air to the gasifier.
  • the crude gas temperature is extremely high (about 1000 ° C), so the dinner content is low and the gasification system contains a relatively large amount of hydrogen. Crude gas is obtained.
  • the inventor has also developed a fuel gasification system in which pyrolysis gas generated by pyrolysis of solid fuel is reformed with high-temperature water vapor, and the reformed gas is supplied to power generation equipment and the like. — Proposed in 210 4 4 and others. As shown in FIGS.
  • the gasification system of this type includes a pyrolysis furnace for pyrolyzing solid fuel and a reforming furnace for reforming the pyrolysis gas with high-temperature steam.
  • the solid fuel supplied to the pyrolysis furnace is pyrolyzed in the pyrolysis furnace, and pyrolysis gas generated in the pyrolysis furnace at a temperature of about 300 ° C is supplied to the reforming furnace.
  • the pyrolysis gas is mixed with high-temperature steam at a temperature of about 1000 ° C in the reforming furnace and reformed.
  • high-temperature air of about 100 ° C is supplied to the reforming furnace.
  • the reformed gas at about 800 ° C is supplied from the reforming furnace to the heat recovery and gas purification unit.
  • the heat recovery and gas purification unit cools and refines the reformed gas and supplies the purified gas to power generation facilities.
  • a part of the purified gas is supplied to the air / steam heating device.
  • the air / water steam heating device heats the air and steam by the heat of combustion of the purified gas.
  • High-temperature steam is supplied to the reforming furnace.
  • the gasification system of this type since the solid fuel stays in the pyrolysis furnace for a relatively long time, it is possible to pyrolyze relatively large-sized wastes and the like, Since the conversion rate is high and the generation of soot is suppressed, it is possible to eliminate the need for char recycling.
  • the gasification system of this system has the advantage that it is possible to extract molten ash that does not mix with char by incorporating a ash melting combustion furnace. Is obtained.
  • the gasification system equipped with the gasification-melting type gasifier described above Fig. 10 and Fig.
  • the gasification system needs to be provided with a char recycling means for collecting a portion of the char.
  • the calorific value of the purified gas is about l OOO kca l Z Nm 3 , and only a low calorific value syngas can be obtained.
  • the purified gas contains a relatively large amount of methane.
  • An object of the present invention is to provide a solid fuel gasification system capable of eliminating a char recycling means and producing a high calorific value synthesis gas containing hydrogen and carbon monoxide as main components.
  • DISCLOSURE OF THE INVENTION As a result of intensive studies to achieve the above object, the present inventor has focused on the point that in the conventional gasification system, the crude gas or reformed gas contains a relatively large amount of nitrogen, A gasification system capable of producing synthesis gas with low nitrogen content was studied.
  • the present inventor cut off the supply of air to the pyrolysis furnace, supplied only high-temperature steam of 600 ° C. or more to the pyrolysis gasifier, and pyrolyzed the solid fuel, thereby producing a relatively large amount of solid fuel. It has been found that a pyrolysis gas containing hydrogen is generated, and based on this finding, the present invention has been achieved. That is, the present invention provides a solid fuel gasification system that pyrolyzes a solid fuel to produce a synthesis gas containing hydrogen and carbon monoxide as a main component.
  • a char combustion region for burning a char in the presence of combustion air to generate a combustion gas a steam heating device for heating steam by heat exchange between the combustion gas and the water vapor;
  • a dust removal device that purifies the combustion gas in the first combustion zone between the steam heating device and a combustion gas that burns the combustion gas after dust removal sent from the dust removal device to the steam heating device and raises the temperature of the combustion gas.
  • a reheating combustion means wherein the steam heating device comprises: a heat exchanger for heating steam to a high-temperature steam of 600 ° C. or more by heat exchange between the combustion gas and the steam.
  • the pyrolysis zone It is supplied, the solid fuel of the pyrolysis zone is thermally decomposed to provide a solid fuel gasification system which is characterized in that to generate pyrolysis gases in the pyrolysis zone.
  • the solid fuel gasification system is characterized by The steam is heated to 600 ° C or more using the burning heat as a heat energy source, and the solid fuel is thermally decomposed with high-temperature steam at 600 ° C or more. Except for the solid fuel supply, the pyrolysis zone with the air supply cut off is substantially closed, and the heat source fluid supplied to the pyrolysis zone consists essentially of water vapor or its components. 100% is steam.
  • Nitrogen-free pyrolysis gas is generated in the pyrolysis zone, and the generation of soot is also suppressed.
  • the remaining char in the pyrolysis zone is incinerated in the char combustion zone.
  • the combustion heat of the chamber is supplied to a heat exchanger for steam heating using the combustion gas generated by the chamber combustion as a heat medium, and is effectively used as a heat source for steam heating. Since the combustion gas in the char combustion zone is supplied to the heat exchanger through the dust remover, the temperature of the combustion gas is suppressed to 800 ° C or lower (the high temperature limit of the purification section of the dust remover).
  • the combustion gas that has gone through the purification step is subjected to secondary combustion or reburn by the combustion means for reheating the combustion gas, and the temperature rises.
  • the heated combustion gas heats the steam to a high temperature in the steam heating means, and the high-temperature steam is supplied to the thermal decomposition zone as described above.
  • the pyrolysis gas generated in the pyrolysis zone is reformed by the high-temperature steam to produce a relatively high calorific value synthesis gas containing hydrogen and carbon monoxide as main components. Therefore, according to the above configuration of the present invention, since the char is incinerated in the char combustion zone, the char recycling means can be omitted.
  • the high-temperature steam heated using the combustion heat of the chamber as a source of heat energy is supplied to the pyrolysis zone where the air supply is cut off, and the solid fuel is pyrolyzed only with the high-temperature steam. Are generated in the pyrolysis zone.
  • the pyrolysis gas is further reformed with high-temperature steam, and thus the solid fuel gasification system produces a high calorific value synthesis gas containing hydrogen and carbon monoxide as main components, power generation equipment, hydrogen production equipment Etc. can be supplied.
  • the present invention also provides a solid fuel gasification system for thermally decomposing solid fuel in which char is unlikely to remain after pyrolysis to produce a synthesis gas containing hydrogen and carbon monoxide as main components.
  • a pyrolysis zone in which air supply is cut off, a pyrolysis gas generated by pyrolysis of the solid fuel in the pyrolysis zone, or a purified gas obtained by reforming the pyrolysis gas is burned to 100 °
  • the present invention provides a solid fuel gasification system characterized by generating a pyrolysis gas.
  • the pyrolysis gas in the pyrolysis zone or the purified gas after purification of the pyrolysis gas is burned by the combustion means to generate a high-temperature combustion gas.
  • the combustion gas generated by the combustion of the pyrolysis gas or purified gas can be directly introduced into the heat exchanger of the steam heating device without going through a purification process. For this reason, the temperature of the combustion gas can be set to a high temperature exceeding 1000 ° C.
  • the pyrolysis gas generated in the pyrolysis zone is reformed by high-temperature steam to produce a synthesis gas having a relatively low calorific value containing hydrogen and carbon monoxide as main components.
  • a solid fuel for example, a biomass fuel, in which chars hardly remain after combustion. Therefore, the solid fuel gasification system of the present invention thermally decomposes solid fuel, in which char is unlikely to remain after combustion, using only high-temperature steam, and produces a pyrolysis gas or a purified gas.
  • FIG. 1 is a block flow diagram showing an overall configuration of a solid fuel gasification system according to a first embodiment of the present invention.
  • FIG. 2 is a block flow diagram showing a heat source configuration of the gasification system shown in FIG.
  • FIG. 3 is a system configuration diagram schematically showing a heat source configuration of the gasification system shown in FIG.
  • FIG. 4 is a block flow diagram showing the overall configuration of the solid fuel gasification system according to the second embodiment of the present invention.
  • FIG. 5 is a block flow diagram showing a heat source configuration of the gasification system shown in FIG.
  • FIG. 6 is a system configuration diagram schematically showing a heat source configuration of the gasification system shown in FIG. 4, and shows an operation mode of the first step of the first and second furnaces.
  • FIG. 7 is a system configuration diagram schematically showing a heat source configuration of the gasification system shown in FIG. 4, and shows an operation mode of the second step of the first and second furnaces.
  • FIG. 8 is a block diagram illustrating a configuration of a gasification system according to the third embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a heat source configuration of the gasification system shown in FIG.
  • FIG. 10 is a block diagram showing the overall configuration of a conventional fuel gasification system, and illustrates a gasification system in which solid fuel is gasified by a gasification and melting furnace.
  • FIG. 10 is a block diagram showing the overall configuration of a conventional fuel gasification system, and illustrates a gasification system in which solid fuel is gasified by a gasification and melting furnace.
  • FIG. 11 is a block flow diagram showing a heat source configuration of the gasification system shown in FIG.
  • Fig. 12 is a block diagram showing the overall configuration of a conventional fuel gasification system, in which a solid fuel is pyrolyzed by a pyrolysis furnace and the pyrolysis gas is reformed by a reforming furnace. Is exemplified.
  • FIG. 13 is a block diagram showing a heat source configuration of the gasification system shown in FIG.
  • the above-mentioned char combustion zone is formed in a char-burning furnace.
  • the remaining char in the pyrolysis zone is introduced into the char combustion zone, and combustion air for char incineration is supplied to the char combustion zone.
  • a first furnace and a second furnace that are used for both pyrolysis and char-combustion are used.
  • Each of the first furnace and the second furnace has an in-furnace area serving as a pyrolysis zone and a char combustion zone.
  • Switching means for switching the operation of the first furnace and the second furnace comprising: a first position for supplying high-temperature steam to the first furnace and for supplying combustion air to the second furnace; Is supplied to the first furnace and the second position supplies hot steam to the second furnace.
  • the in-furnace region of the first furnace functions as a pyrolysis region
  • the in-furnace region of the second furnace functions as a char combustion region.
  • the furnace area of the first furnace functions as a char combustion area
  • the furnace area of the second furnace The zone functions as a pyrolysis zone.
  • the char that remains in the hearth after the thermal decomposition of the solid fuel is burned by the subsequent introduction of combustion air into the furnace, thereby generating a high-temperature combustion gas. Therefore, it is not necessary to provide a char combustion furnace exclusively for the char combustion, and it is also possible to omit the installation of the char supply path for taking out the char from the first and second furnaces and transferring the char to the char combustion furnace.
  • the first or second furnace may be a batch type in which solid fuel is charged into the furnace before the high-temperature steam is supplied to the furnace, even if the high-temperature steam is supplied to the first or second furnace.
  • the combustion means for reheating the combustion gas has an injection part for adding a part of the synthesis gas and Z or the combustion air to the purified combustion gas, and the injection part is, for example, a combustion gas pipe or a duct. And a T-shaped connection between synthesis gas or combustion air piping or duct, or a combustor that can mix combustion gas with synthesis gas or combustion air.
  • synthesis gas or combustion air By injecting synthesis gas or combustion air, the combustion gas is reburned or secondary burned, and the temperature of the combustion gas rises.
  • Injection of syngas is when sufficient combustion air is supplied to the char combustion zone (i.e., when the char burns substantially completely in the char combustion zone and the combustion gas contains a relatively large amount of oxygen).
  • the combustion gas is recombusted by the addition of synthesis gas.
  • combustion air is supplied to the injection section and added to the combustion gas. By injecting the combustion air, the combustion gas undergoes secondary combustion, the temperature of the combustion gas rises, and complete combustion of the unburned portion of the combustion gas is promoted.
  • the gasification system has a reforming furnace into which the pyrolysis gas and the high-temperature steam in the pyrolysis zone are introduced.
  • high-temperature air or oxygen at 900 ° C. or higher is injected into the pyrolysis gas supply path or the reforming furnace.
  • oxygen at room temperature (equivalent to atmospheric temperature) may be injected into the pyrolysis gas supply path or the reforming furnace.
  • the pyrolysis gas, high-temperature steam and high-temperature air (or oxygen) are mixed in the reforming furnace, and the hydrocarbons (mainly tar) in the pyrolysis gas are converted into hydrogen and monoxide by the water vapor reforming reaction. It is reformed into a reformed gas (synthesis gas) containing carbon as a main component.
  • the reformed gas is purified in a subsequent purification step and supplied to a power generation facility, a hydrogen production device, or the like as a purified gas.
  • a heat recovery device is provided to cool the reformed gas before purification, and the feedwater supplied to the heat recovery device is vaporized into steam by the sensible heat of the reformed gas.
  • This water vapor is supplied to the water vapor heating device, and is heated to high-temperature water vapor as described above. More preferably, a part of the purified gas is supplied to an air heating device, and the normal temperature air is heated to the high temperature air by the combustion heat of the purified gas.
  • the high-temperature steam has a temperature of 900 ° C. or more, and the generation of tar components in a pyrolysis zone is minimized. Omitted.
  • a part of the purified gas or the pyrolysis gas is supplied to the char combustion zone as an auxiliary fuel, and the shortage of the char combustion heat is compensated by the combustion heat of the purified gas or the pyrolysis gas.
  • FIG. 1 is a block flow diagram showing a solid fuel gasification system according to a first embodiment of the present invention.
  • the solid fuel gasification system consists of a pyrolysis gasifier that pyrolyzes solid fuels such as industrial waste, and a steam heating device that supplies high-temperature steam at a temperature of about 100 ° C to the pyrolysis gasifier. And a char combustion furnace for burning the char discharged from the pyrolysis gasification furnace.
  • the steam heater is connected to the pyrolysis gasifier by the high-temperature steam supply line HS.
  • the pyrolysis gasification furnace is connected to a solid fuel supply path L1 for supplying solid fuel to the pyrolysis gasification furnace, and supplies the pyrolysis gasification furnace to the combustion furnace.
  • the channel L2 is connected.
  • the air supply passage L3 is connected to a char combustion furnace, and the combustion gas delivery passage L4 is connected to a steam heating device via a high-temperature dust remover.
  • the high-temperature dust remover interposed in the combustion gas delivery path L4 is composed of, for example, a high-temperature ceramic filter capable of purifying the combustion gas.
  • a branch L30 of the air supply passage L3 is connected to the combustion gas delivery passage L4 between the high-temperature dust remover and the steam heater.
  • the pyrolysis gasification furnace is connected to a reforming furnace by a pyrolysis gas feed line L5, and the reformer is connected to a heat recovery / gas purification device by a reformate gas feed line L6.
  • the area inside the furnace of the pyrolysis gasifier is composed of air and oxygen, except for the air and oxygen initially present in the furnace and the small amount of air that can flow into the furnace together with the solid fuel when the solid fuel is supplied.
  • the supply of water is cut off, and substantially only high-temperature steam is supplied to the furnace area of the pyrolysis gasifier.
  • the pyrolysis gas of the pyrolysis gasification furnace is supplied to the reforming furnace via the pyrolysis gas feed line L5, and the reformed gas of the reforming furnace is heated via the reformed gas feed line L6. Recovery ⁇ Supplied to gas purification equipment. If desired, a portion of the pyrolysis gas is supplied to the char-burning furnace via branch L9 (shown in broken lines).
  • the heat recovery and gas purification device is connected to the water supply line SW and the upstream end of the water vapor supply line L7.
  • the downstream end of the steam supply passage L7 is connected to a steam heating device.
  • the water vapor generated by the recovered heat of the pyrolysis gas is supplied to the water vapor heating device via the water vapor supply path L7.
  • Heat recovery ⁇ The gas purification device is connected to a power generation facility or a hydrogen production facility by a purified gas delivery line L8.
  • Heat recovery ⁇ The purified gas from the gas purification unit is supplied as fuel gas or raw material gas to power generation equipment or hydrogen production equipment.
  • the first branch L11 of the purified gas supply passage L8 is connected to an air heating device, and a part of the purified gas is supplied to the air heating device as air heating fuel.
  • the high-temperature air supply path L10 of the air heating device is connected to the pyrolysis gas supply path L5, and high-temperature air at about 100 ° C is injected into the pyrolysis gas supply path L5.
  • a second branch L12 of the purified gas supply passage L8 is connected to the char-burning furnace. If desired, a portion of the purified gas is supplied to the char-burning furnace as auxiliary fuel.
  • the third branch L13 further branches from the purified gas supply line L8, and the downstream end of the third branch L13 is connected to the combustion gas delivery line L4 between the high-temperature dust remover and the steam heater. Is done.
  • Solid fuel such as industrial waste is supplied to the pyrolysis gasifier and injected into the furnace area of the pyrolysis gasifier.
  • Auxiliary fuel supply equipment (not shown) outside the system supplies the fuel for initial combustion to the burner furnace's parner equipment, and the air supply fan interposed in the air supply passage L3 burns the combustion air. Supply to furnace.
  • an air preheating device (not shown) for preheating the combustion air is interposed in the air supply passage L3.
  • combustion gas having a temperature of about 800 ° C is discharged from the char combustion furnace to the combustion gas delivery path L4.
  • the combustion gas is supplied to the steam heating device via the high-temperature dust removing device and the combustion device for reheating the combustion gas.
  • Initial combustion fuel is supplied to the combustion gas reheating combustion means from an auxiliary fuel supply facility (not shown) outside the system.
  • Relatively low-temperature steam (temperature about 150 to 300 ° C) is initially supplied to a steam heating device from a process steam generator (not shown) outside the system, etc. It exchanges heat with the combustion gas and is heated to a high temperature of about 1000 ° C.
  • the high-temperature steam is supplied to the pyrolysis gasifier through the high-temperature steam supply channel HS.
  • the air inside the furnace (pyrolysis zone) of the pyrolysis gasifier is cut off, and only the high-temperature steam from the steam heater is supplied to the pyrolysis gasifier.
  • the temperature of the high-temperature steam supplied from the high-temperature steam supply path HS to the pyrolysis gasifier (the outlet temperature of the supply path HS) is set to, for example, 100 ° C.
  • Pyrolysis gasification ;! The furnace pressure of the door is set to atmospheric pressure (normal pressure) or 1-2 atm.
  • the solid fuel in the pyrolysis zone is pyrolyzed by the heat of the high-temperature steam introduced into the pyrolysis gasifier, and pyrolysis gas at a temperature of about 600 ° C is generated by the pyrolysis of the solid fuel. I do.
  • the pyrolysis gas generated in the pyrolysis zone by the pyrolysis of solid fuel that substantially depends only on high-temperature steam does not contain nitrogen, contains hydrogen and carbon monoxide as main components, and has a temperature of about 600 °. Pyrolysis gas with a temperature of about C contains only a relatively small amount of tar.
  • the pyrolysis gas is sent to the pyrolysis gas supply line L5 together with the high-temperature steam in the pyrolysis gasification furnace.
  • An auxiliary fuel supply system (not shown) outside the system supplies fuel for initial combustion to the air heating unit.
  • the air heating device heats air at a temperature equivalent to the atmosphere to a high temperature of about 1000 ° C by the heat of combustion of the fuel, and heats the high-temperature air from the high-temperature air supply passage L10 to the pyrolysis gas supply passage L5. Inject into The addition of high-temperature air is to supplement the heat required for the reforming reaction in the next step (reforming step), and it is desirable to limit the amount of high-temperature air added to the minimum amount of air required for heat supply. .
  • the reforming furnace consists of a hollow, non-catalytic reactor.
  • the pyrolysis gas, high-temperature steam and high-temperature air in the pyrolysis gas feed line L5 flow into the furnace inside the reforming furnace, and are mixed in the reforming zone of the reforming furnace.
  • the steam reforming reaction (endothermic reaction) of the tar component mainly occurs in this mixing process.
  • the pyrolysis gas is reformed into a high calorie gas containing a relatively large amount of hydrogen and carbon monoxide by such a reforming process.
  • the exothermic reaction of the high-temperature air and the pyrolysis gas proceeds simultaneously, so that the reformed gas (synthesis gas) at a temperature of about 800 ° C is sent to the reformed gas feed line L6.
  • the reformed gas contains a small amount of water vapor and a small amount of nitrogen supplied into the system by the addition of hot air.
  • an oxygen heating device may be used instead of the above-described air heating device in order to prevent such nitrogen contamination.
  • oxygen preheated by the oxygen heating device is added to the pyrolysis gas from the supply passage L10.
  • oxygen at a temperature equivalent to the atmosphere normally temperature oxygen
  • the reformed gas (synthesis gas) in the reformed gas feed line L6 is introduced into a heat recovery and gas purification device.
  • the heat recovery and gas purification device includes a heat recovery unit that generates steam by heat exchange between the reformed gas and the feedwater, and a purification unit (such as a scrubber) that purifies the reformed gas after heat recovery.
  • the high-temperature reformed gas having a temperature of about 800 ° C is cooled by exchanging heat with feed water, and the feed water is vaporized into water vapor and sent to the steam supply path L7.
  • the reformed gas further passes through a purifying section, which removes water vapor, solids, and the like in the reformed gas.
  • the purified gas of the gas purification device is supplied as a fuel gas to a gas turbine engine or the like of a power generation facility via a purified gas supply path L8, or supplied as a raw material gas to a hydrogen production facility.
  • the air heating device includes, for example, an air heating device having a configuration described in Japanese Patent Application Laid-Open No. 2002-158885.
  • the air heating device heats the air at approximately the atmospheric temperature to about 1000 by the heat of combustion of the purified gas and sends it out to the high-temperature air supply passage L10.
  • a part of the purified gas is sent to the second branch L12 as auxiliary fuel for the char-burning furnace and supplied to the char-burning furnace.
  • a part of the purified gas or a part of the combustion air in the air supply path L3 flows from the branch L13 or the branch L30 to the combustion gas delivery path between the high-temperature dust remover and the steam heater.
  • Both purified gas and combustion air may be injected into the combustion gas delivery passage L4.
  • the air injection section is formed by a T-shaped connection of a pipe or a duct, or a combustor interposed in the combustion gas delivery path L4.
  • the temperature of the combustion gas to be supplied to the high-temperature dust removal equipment is regulated to a temperature of about 600 to 800 ° C by the combustion control of the charcoal combustion furnace, but the combustion gas is purified gas (L13).
  • the addition of combustion air (L 30) causes re-combustion or secondary combustion, so the combustion gas temperature rises. Therefore, the combustion gas introduced into the steam heating device has a temperature of more than 100 ° C., for example, a temperature of 1200 ° C.
  • FIG. 2 and FIG. 3 are a block flow diagram and a schematic structural diagram showing a heat source configuration of the gasification system in the present embodiment.
  • the gasification system can be switched to steady operation using the pyrolysis gasifier furnace as a source of thermal energy for steam heating.
  • the air (or oxygen) used for reforming the pyrolysis gas is heated by the combustion heat of the purified gas, and the water supply exchanges heat with the reformed gas to produce a steam heating device.
  • the pyrolysis gasification furnace 1 includes a furnace body 10 forming a pyrolysis zone 11. At the lower part of the furnace body 10, a hearth 12 having a number of ventilation holes is formed. As the hearth 12, a ceramic fixed bed having a large number of ventilation holes can be suitably used. High-temperature steam supply channel HS and channel supply channel L 2 are connected to the furnace bottom.
  • Solid fuel is introduced from the solid fuel supply passage L1 into the pyrolysis zone 11, and is deposited on the hearth 12.
  • Pyrolysis gasifier 1 Is a fixed-bed type furnace to which high-temperature steam is supplied from the furnace.
  • the pyrolysis zone 11 is provided with the exception of the solid fuel supply passage L1 and the pyrolysis gas supply passage L5 located at the top of the furnace body. It is closed. Therefore, the entry of outside air into the pyrolysis zone 11 is substantially completely eliminated.
  • the high-temperature steam from the steam heating device 3 is blown upward into the furnace from the bottom of the furnace, passes through the vents in the hearth 12, comes into contact with the solid fuel 13, and heats the solid fuel 13.
  • the solid fuel 13 is pyrolyzed only by supplying high-temperature steam to generate pyrolysis gas.
  • the temperature of the steam is set to 100 ° C. or higher in order to increase the rate of the thermal decomposition reaction.
  • the pyrolysis gas and the high-temperature water vapor in the pyrolysis zone 11 flow out to the pyrolysis gas feed line L5 connected to the upper part of the furnace body, and are supplied to the reforming furnace 5.
  • the high-temperature air (or oxygen) in the high-temperature air supply path L10 is added to the pyrolysis gas and the high-temperature steam in the pyrolysis gas supply path L5.
  • oxygen at approximately atmospheric temperature may be added from the supply path L14 to the pyrolysis gas supply path L5.
  • the pyrolysis gas, steam and air (or oxygen) are introduced into the reforming furnace 5 and mixed therein, and the hydrocarbons (mainly tar content) in the pyrolysis gas are reformed. Therefore, a reformed gas (synthetic gas) containing a relatively large amount of hydrogen and carbon monoxide is sent out to the reformed gas supply line L6 and supplied to the heat recovery / gas purification device (FIG. 1).
  • the reforming furnace 5 for example, a reforming furnace having a structure disclosed in Japanese Patent Application Laid-Open No. 2002-210444 can be suitably used.
  • the char generated by the thermal decomposition of the solid fuel 13 flows down through the vent hole of the hearth 12 and burns via the char outlet and the supply channel L 2 provided in the hearth area.
  • Furnace 2 is supplied.
  • the char combustion furnace 2 has the same structure as the pyrolysis gasification furnace 1. That is, the char-burning furnace 2 has a furnace body 20 forming a char-burning region 21 and a hearth 22 provided with a large number of ventilation holes. As the hearth 22, a ceramic fixed floor with a large number of vent holes is preferably used. Can be used.
  • the air supply path L 3 is connected to the furnace bottom of the char-burning furnace 2, and the combustion gas delivery path L 4 is connected to the furnace body upper part of the char-burning furnace 2.
  • the char supplied to the char combustion furnace 2 accumulates on the hearth 22, and the combustion air in the air supply passage L 3 flows through the vent holes in the hearth 22, into the char combustion area 21. Blow upwards.
  • the furnace temperature of the char combustion furnace 2 reaches a temperature exceeding 800 due to the combustion of the char.
  • Combustion gas having a temperature of about 600 to 800 ° C. is delivered to the flow path L41 of the combustion gas delivery path L4.
  • the purified gas in the second branch L12 or the pyrolysis gas in the branch L9 may be supplied to the char combustion zone 11 in an auxiliary manner.
  • the combustion gas passes through the high-temperature dust remover 4, and dust and the like in the combustion gas are removed.
  • the combustion gas is sent from the high-temperature dust remover 4 to the flow path L42.
  • the purified gas and / or combustion air injection section 40 is connected to the flow path L42.
  • the injection part 40 is, for example, a T-shaped connection part of the branch passages L13 and L30 to the flow passage L42, or a combustor to which the branch passages L13 and L30 are connected.
  • the combustion gas is mixed with the purified gas and / or combustion air at the injection section 40, and is re-burned or secondary-burned.
  • the branch passages L13 and L30 are provided with control valves 45 and 46 for controlling the supply of purified gas and combustion air to the injection section 40.
  • the control valves 45 and 46 control the flow rates of the purified gas and the combustion air so that the reburning or the secondary combustion of the combustion gas proceeds appropriately in the injection section 40.
  • the control valves 45 and 46 mainly feed the purified gas from the branch L13 into the injection section. Supply to 40.
  • the combustion gases contain a relatively large amount of carbon monoxide.
  • the combustion air is supplied to the injection section 40.
  • the combustion gas is generated by the re-combustion or secondary combustion at the injection section 40.
  • the temperature rises to a high temperature exceeding 0 C and is supplied to the steam heating device 3 from the flow path L43.
  • the combustion gas exchanges heat with steam to heat the steam to a high temperature, and then cools itself. After cooling, the combustion gas is released to the atmosphere via an exhaust passage.
  • the steam heating device 3 is composed of, for example, a Jungstrom type heat exchanger having high temperature efficiency, and heats the steam in the steam supply passage L7 to a high temperature of about 100 ° C. to supply high-temperature steam.
  • a regenerator type heat exchanger provided with a heat storage body such as a ceramic honeycomb structure, or a recupellar type heat exchanger provided with a heat transfer coil may be employed.
  • the steam in the steam supply passage L7 is heated by heat exchange between the combustion gas and the steam through the heat storage body or heat exchange between the steam and the combustion gas flowing through the heat transfer coil. If the amount of combustion in the combustion furnace 2 using fuel as a fuel is insufficient, part of the pyrolysis gas or purified gas is transferred from the branch furnaces L9 and L12 to the burner equipment of the combustion furnace 2 (Fig. (Not shown).
  • FIGS. 4 to 7 are a block flow diagram and a system configuration diagram schematically showing the configuration of a gasification system according to a second embodiment of the present invention.
  • the gasification system includes a char combustion furnace connected in series with the pyrolysis gasification furnace, but the gasification system of the present embodiment is arranged in parallel as shown in FIGS. 4 and 5.
  • a first furnace and a second furnace arranged in the first furnace.
  • Each of the first and second furnaces is also a pyrolysis gasifier and a char combustion furnace.
  • FIG. 5 shows the first step and the second step of the gasification system performed alternately. In the first step shown in Fig. 5 (A), the first furnace is operated for gasification, and the second furnace is operated for char combustion.
  • the first furnace operates in a char combustion mode, and the second furnace operates in a gasification mode.
  • the first step and the second step are executed alternately in units of several hours or several tens of hours.
  • high-temperature steam is supplied to the first furnace.
  • the pyrolysis gas generated by the gasification operation of the first furnace is supplied to the reforming furnace.
  • the solid fuel is charged into the first furnace in advance, or is continuously charged into the first furnace simultaneously with the supply of high-temperature steam.
  • the second step shown in Fig. 5 (B) is executed, and combustion air is supplied to the first furnace.
  • the remaining char in the hearth of the first furnace is burned by the supply of combustion air, and the first It operates as a combustion furnace and sends out combustion gases to a dust removal device.
  • the combustion gas removed by the dust removal device is subjected to secondary combustion or re-combustion by the addition of combustion air and Z or a purified gas as in the first embodiment described above, and then heated to steam and then heated as high-temperature combustion gas. Supplied to the device.
  • the steam supplied to the steam heater exchanges heat with the high-temperature combustion gas, and is heated to about 1000 ° C.
  • the heated high-temperature steam is supplied to the second furnace.
  • the second furnace pyrolyzes the solid fuel by supplying high-temperature steam and supplies pyrolysis gas to the reforming furnace.
  • the solid fuel is charged into the second furnace in advance, or is continuously charged into the second furnace simultaneously with the supply of high-temperature steam.
  • the first step shown in Fig. 5 (A) is executed.
  • the remaining char in the hearth of the second furnace is burned by the supply of combustion air, and the second It operates as a combustion furnace and sends out high-temperature combustion gas to the dust remover.
  • the combustion gas removed by the dust remover is subjected to secondary combustion or reburn by addition of combustion air and Z or purified gas, and after the temperature is increased, it is supplied to the steam heater.
  • the steam is heated to about 1000 ° C. by heat exchange with the high-temperature combustion gas and supplied to the first furnace.
  • the first furnace pyrolyzes the solid fuel by supplying high-temperature steam and supplies pyrolysis gas to the reforming furnace.
  • the first step (Fig. 5 (A)) and the second step (Fig. 5 (B)) take several hours or The first furnace and the second furnace are operated alternately as a pyrolysis gasifier or a char-fired furnace.
  • the first and second furnaces function as a pyrolysis gasifier that generates pyrolysis gas, and as a charcoal furnace that generates high-temperature combustion gas by burning the char that remains on the hearth.
  • 6 and 7 are system configuration diagrams schematically showing a heat source configuration of the gasification system.
  • Fig. 6 shows the first step of the gasification system
  • Fig. 7 shows the second step of the gasification system.
  • the first and second furnaces la and lb have substantially the same structure as the pyrolysis gasification furnace of the first embodiment described above, and a number of ventilation holes are formed in the lower part of the furnace body 10.
  • Furnace floor 1 2 is installed.
  • Solid fuel supply passages L1a and Lib, pyrolysis gas supply passages L5a and L5b, and combustion gas delivery passages L4a and L4b are connected to the upper part of the furnace body.
  • the solid fuel supply lines L la and L ib are connected to the solid fuel supply line L 1 via a switching control valve VI, and the pyrolysis gas supply lines L 5a and L 5b are connected to the switching control valve V 2.
  • the combustion gas delivery passages L4a and L4b are connected to the combustion gas delivery passage L4 via the switching control valve V3.
  • the air supply paths L3a, L3b and the high-temperature steam supply paths HSa, HSb are connected to the bottoms of the first furnace 1a and the second furnace 1b.
  • the air supply paths L3a and L3b are connected to the air supply path L3 via the switching control valve V4.
  • the high-temperature water vapor supply paths HSa and HSb are connected to the high-temperature water vapor supply path HS via a switching control valve V5.
  • the switching control valves VI to V5 are located at the first position in the first step shown in FIG. 6, and connect the solid fuel supply passage L1, the pyrolysis gas supply passage L5, and the high-temperature steam supply passage HS to the first position.
  • the furnace 1a is connected, and the air supply line L3 and the gas delivery line L4 are connected to the second furnace lb.
  • the first furnace la functions as a pyrolysis gasifier, and supplies the pyrolysis gas generated by the pyrolysis of the solid fuel 13 to the reformer 5.
  • the second furnace lb functions as a char combustion furnace, and supplies the combustion gas generated by the combustion of the char 14 in the hearth to the steam heating device 3.
  • the switching control valves VI to V5 are located at the second position in the second step shown in FIG. 7 and connect the solid fuel supply passage L1, the pyrolysis gas supply passage L5, and the high-temperature steam supply passage HS to the second position. It is connected to the furnace 1b, and the air supply path L3 and the gas delivery path L4 are connected to the first furnace 1a.
  • the second furnace 1b functions as a pyrolysis gasifier, and supplies the pyrolysis gas generated by the pyrolysis of the solid fuel 13 to the reforming furnace 5.
  • the first furnace la functions as a char combustion furnace, and supplies the combustion gas generated by the combustion of the char 14 in the hearth to the steam heating device 3.
  • a part of the purified gas in the purified gas delivery line L8 may be supplementarily supplied from the second branch line L12 to the first or second furnace during the char combustion, and Alternatively, part of the pyrolysis gas in the pyrolysis gas supply path L5 may be supplementarily supplied from the branch path L9.
  • the first furnace 1a or the second furnace 1b does not transfer the remaining char on the hearth of the first furnace 1b to the first furnace 1
  • High-temperature combustion gas for water vapor heating can be generated by combustion by the char combustion operation of 1a or the second furnace 1b.
  • FIG. 1 a block flow diagram and a system configuration diagram schematically showing the configuration of a gasification system according to a third embodiment of the present invention.
  • the gasification system includes a char combustion zone, a dust removing device, and combustion means for reheating combustion gas, but the gasification system according to the present embodiment uses purified gas and air.
  • a combustor 40 that generates high-temperature combustion gas by a combustion reaction is provided.
  • the combustor 40 has the combustion air in the air supply passage L3.
  • the purified gas of the branch LI 3 are introduced.
  • the combustion air is preheated, if desired, by an air preheater (shown in broken lines).
  • the combustion gas of the combustor 40 exceeding 100 ° C. is supplied to the steam heating device 3 via the flow path L43. As described above, the combustion gas exchanges heat with steam, cools, and is released to the atmosphere via an exhaust passage.
  • the present embodiment is preferably applied to a gasification system using a solid fuel such as biomass fuel, which hardly remains char.
  • the combustion gas Since the combustion gas is generated by a combustion reaction between the purified gas and the air, the combustion gas can be supplied to the steam heating device 3 without being purified by the purification device (therefore, without limiting the temperature). Therefore, a high-temperature combustion gas exceeding 1000 can be directly introduced into the water vapor heating device 3. It is also possible to introduce a part (L 9) of the pyrolysis gas into the combustor 40 and generate the high-temperature combustion gas by burning the pyrolysis gas. As a modified example, a first furnace and a second furnace are provided similarly to the second embodiment, and the pyrolysis gas of the first or second furnace or its purified gas is selectively supplied to the combustor 40. You may comprise.
  • the heat source of the gasification system is, for example, in the gasification system having the configuration shown in FIGS. 4 to 8, the flow paths L4a, L4b, L41, L42, the switching valve V3 and The high-temperature dust remover 4 is omitted, and the pyrolysis gas or its purified gas is alternately supplied to the combustor 40 from the first furnace or the second furnace.
  • the preferred embodiment of the present invention has been described in detail above. The present invention is not limited to the embodiments described above, and various modifications or changes can be made within the scope of the present invention described in the claims.
  • the gasification system includes the first furnace and the second furnace that alternately perform the functions of gasification and char combustion. However, three or more furnaces capable of switching operation are provided. May be incorporated into the gasification system.
  • the present invention is preferably applied to a gasification system for low-quality solid fuel such as waste.
  • the solid fuel gasification system of the present invention can produce a high calorific value synthesis gas containing hydrogen and carbon monoxide as main components and supply it to a power generation facility, a hydrogen production facility, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Industrial Gases (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本発明の固体燃料ガス化システムは、チャーリサイクル手段の省略を可能にするとともに、水素及び一酸化炭素を主成分とした高発熱量の合成ガスの製造を可能にする。固体燃料ガス化システムは、空気供給を絶たれた熱分解域と、熱分解域のチャーを燃焼させて高温燃焼ガスを生成するチャー燃焼域と、燃焼ガスを浄化する除塵装置と、除塵後の燃焼ガスの温度上昇をもたらす燃焼ガス再熱用燃焼手段と、燃焼ガスと水蒸気との熱交換により水蒸気を高温に加熱する水蒸気加熱装置とを備える。ガス化システムは、高温水蒸気によって固体燃料を熱分解し、水素及び一酸化炭素を主成分とする合成ガスを製造する。

Description

明 細 書
固体燃料ガス化システム
技術分野
本発明は、 固体燃料ガス化システムに関するものであり、 より詳細に は、 水素及び一酸化炭素を主成分とした合成ガスを固体燃料の熱分解に よつて製造する固体燃料ガス化システムに関するものである。
'背景技術 廃プラスチック、 汚泥、 シュレッダダスト又は都市ゴミ等の有機廃棄 物、 或いは、 石炭等の低質固形燃料をガス化し、 比較的高カロリーの合 成ガスを発電設備等に供給する燃料ガス化システムが知られている。 本 発明者は、 この種のガス化システムにおいて、 約 1 0 0 o °cの高温空気 で固体燃料をガス化溶融する燃料ガス化システムを開発し、 特開 2 0 0 2— 1 5 8 8 8 5号等において提案している。 この方式のガス化システムは、 図 1 0及び図 1 1に示す如く、 固体燃 料をガス化溶融するガス化炉を備える。 空気加熱装置が、 1 0 0 0 °C以 上の高温空気をガス化炉に供給し、 熱回収 ·ガス精製装置が、 ガス化炉 の粗ガスを冷却し且つ精製する。 ガス化炉に供給された固体燃料は、 高 温空気によりガス化溶融して約 1 0 0 0 °Cの高温粗ガスを生成し、 高温 粗ガスは、 熱回収 · ガス精製装置に供給される。 熱回収 · ガス精製装置 は、 高温粗ガスを冷却し且つ精製し、 精製ガスを発電設備等に供給する。 熱回収 · ガス精製装置で回収したチヤ一 (熱分解後の炭化物) は、 チヤ 一リサイクル手段により固体燃料供給路に導入され、 固体燃料と共にガ ス化炉に供給される。 精製ガスの一部は、 空気加熱用燃料として空気加 熱装置に供給され、 空気加熱装置は、 精製ガスの燃焼熱により空気を加 熱し、 高温空気をガス化炉に供給する。 このような方式のガス化システ ムによれば、 粗ガス温度が非常に高温 (約 1 0 0 0 °C ) であるため、 夕 ール含有量が少なく、 しかも、 比較的多量の水素を含む粗ガスが得られ る。 本発明者は又、 固体燃料の熱分解により生成した熱分解ガスを高温水 蒸気で改質し、 改質ガスを発電設備等に供給する燃料ガス化システムを 開発し、 特開 2 0 0 2— 2 1 0 4 4 4号等において提案している。 この方式のガス化システムは、 図 1 2及び図 1 3に示す如く、 固体燃 料を熱分解する熱分解炉を備えるとともに、 熱分解ガスを高温水蒸気で 改質する改質炉を備える。 熱分解炉に供給された固体燃料は、 熱分解炉 内で熱分解し、熱分解炉に発生した温度約 3 0 0 °C程度の熱分解ガスが、 改質炉に供給される。 熱分解ガスは、 改質炉において温度約 1 0 0 0 °C の高温水蒸気と混合し、 改質される。 熱分解ガス中の炭化水素の水蒸気 改質反応 (吸熱反応) により改質炉の炉内温度が降下するのを防止すベ く、 約 1 0 0 0 °Cの高温空気が改質炉に供給され、 約 8 0 0 °C程度の改 質ガスが改質炉から熱回収 ·ガス精製装置に供給される。 熱回収 ·ガス 精製装置は、 改質ガスを冷却し且つ精製し、 精製ガスを発電設備等に供 給する。 精製ガスの一部は空気 ·水蒸気加熱装置に供給され、 空気 ·水 蒸気加熱装置は、 精製ガスの燃焼熱により空気及び水蒸気を加熱し、 温 度約 1 0 0 0 °c程度の高温空気及び高温水蒸気を改質炉に供給する。 このような方式のガス化システムによれば、 固体燃料は、 熱分解炉内 に比較的長時間滞留するので、 比較的大きなサイズの廃棄物等を熱分解 処理することが可能となり、 しかも、 炭素転換率が高く、 煤分の発生が 抑制されるので、 チヤ一リサイクル手段を省略することが可能となる。 また、 この方式のガス化システムによれば、 灰溶融燃焼炉を更に組込む ことにより、 チヤ一分が混入しない溶融灰の抽出が可能となる等の利点 が得られる。 上述のガス化溶融型のガス化炉 (図 1 0及び図 1 1 ) を備えたガス化 システムにおいては、 比較的多量の煤分が燃料ガスに含まれる傾向があ り、 煤分の発生は、 特にプラスチック廃棄物等の固形燃料をガス化する 場合に顕著に観られる。 このため、 図 1 0に示す如く、 ガス化システム は、 チヤ一分を回収するチヤ一リサイクル手段を備える必要がある。 ま た、 ガス化炉における固体燃料の炉内滞留時間が比較的短時間であるこ とから、 サイズが大きい廃棄物等をガス化処理し難く、 このため、 固形 燃料の微粉碎処理等の前処理工程及び前処理設備が必要となる。加えて、 この方式のガス化システムでは、 精製ガスの発熱量は、 l O O O kca l Z Nm3 程度であり、 発熱量が低い合成ガスが得られるにすぎない。 他方、 熱分解炉及び改質炉を備えた上記ガス化システム (図 1 2及び 図 1 3 ) によれば、 このようなチヤ一リサイクル手段を省略し得るとと もに、 比較的大形の廃棄物等を微粉砕することなく熱分解処理すること ができる。 しかしながら、 熱分解ガス中のタール分を完全に改質するた めには、 改質垆の炉内温度をかなり高温 (約 1 0 0 0 °C程度) に維持す ベく、 比較的多量の高温空気を改質炉に導入する必要が生じる。 このた め、 改質 ·精製後の精製ガスの発熱量が約 1 0 0 O kca l ZNm3程度に低 下してしまうという問題が生じた。 また、 この方式では、 精製ガスは、 比較的多量のメタンを含有する。 しかし、 水素を多量に含有した合成ガ スを製造し難いことから、 水素を多量に含む合成ガスを製造すべく、 ガ ス化システムを更に改良すべき必要が生じた。 本発明は、 チヤ一リサイクル手段の省略を可能にするとともに、 水素 及び一酸化炭素を主成分とした高発熱量の合成ガスを製造することがで きる固体燃料ガス化システムを提供することを目的とする。 発明の開示 本発明者は、 上記目的を達成すべく鋭意研究を重ねた結果、 従来のガ ス化システムでは上記粗ガス又は改質ガスが比較的多量を窒素を含有す る点に着目し、 窒素含有量が少ない合成ガスを製造可能なガス化システ ムを研究した。 この結果、 本発明者は、 熱分解炉に対する空気の供給を 絶ち、 6 0 0 °C以上の高温水蒸気のみを熱分解ガス化炉に供給して固形 燃料を熱分解することにより、 比較的多量の水素を含む熱分解ガスが発 生することを見い出し、 かかる知見に基づき、 本発明を達成した。 即ち、 本発明は、 固体燃料を熱分解し、 水素及び一酸化炭素を主成分 とする合成ガスを製造する固体燃料ガス化システムにおいて、 空気供給を絶たれた熱分解域と、 熱分解域のチヤ一を燃焼用空気の存在下に燃焼して燃焼ガスを生成す るチヤ一燃焼域と、 燃焼ガスと水蒸気との熱交換により水蒸気を加熱する水蒸気加熱装置 と、 前記チヤ一燃焼域と前記水蒸気加熱装置との間でチヤ一燃焼域の燃焼 ガスを浄化する除塵装置と、 除塵装置から水蒸気加熱装置に送出される除塵後の燃焼ガスを燃焼さ せ、 燃焼ガスの温度上昇をもたらす燃焼ガス再熱用燃焼手段とを備え、 前記水蒸気加熱装置は、 前記燃焼ガスと前記水蒸気との熱交換により 水蒸気を 6 0 0 °C以上の高温水蒸気に加熱する熱交換器を備え、 高温水 蒸気は、 前記熱分解域に供給され、 熱分解域の固体燃料を熱分解し、 熱 分解域に熱分解ガスを発生させることを特徴とする固体燃料ガス化シス テムを提供する。 本発明の上記構成によれば、 固体燃料ガス化システムは、 チヤ一の燃 焼熱を熱エネルギー源として水蒸気を 6 0 0 °C以上に加熱し、 6 0 0 °C 以上の高温水蒸気で固体燃料を熱分解する。 空気供給を絶たれた熱分解 域は、 固体燃料供給部を除き、 実質的に閉鎖しており、 熱分解域に供給 される熱源流体は、 本質的に水蒸気のみからなり、 或いは、 その成分の 100 %が水蒸気である。 熱分解域には、 窒素を含まない熱分解ガスが発 生し、 煤分の発生も抑制される。 熱分解域に残留するチヤ一は、 チヤ一 燃焼域で焼却される。 チヤ一の燃焼熱は、 チヤ一燃焼により生成した燃 焼ガスを熱媒体として水蒸気加熱用の熱交換器に供給され、 水蒸気加熱 のための熱源として有効利用される。 チヤ一燃焼域の燃焼ガスは、 除塵 装置を通して熱交換器に供給されるので、 燃焼ガス温度は、 8 0 0 °C以 下の温度 (除塵装置の浄化部の高温限界) に抑制される。 しかしながら、 本発明によれば、 浄化工程を経た燃焼ガスは、 燃焼ガス再熱用燃焼手段 により二次燃焼又は再燃焼し、温度上昇する。温度上昇した燃焼ガスは、 水蒸気加熱手段において水蒸気を高温に加熱し、 高温水蒸気は、 上記の 如く、 熱分解域に供給される。 熱分解域に発生した熱分解ガスは、 上記 高温水蒸気により改質され、 水素及び一酸化炭素を主成分とした比較的 高発熱量の合成ガスが製造される。 従って、 本発明の上記構成によれば、 チヤ一はチヤ一燃焼域で焼却さ れるので、 チヤ一リサイクル手段を省略することができる。 チヤ一の燃 焼熱を熱エネルギ一源として加熱した高温水蒸気は、 空気供給を絶った 熱分解域に供給され、 固体燃料は、 高温水蒸気のみで熱分解するので、 窒素を含まない熱分解ガスが熱分解域に発生する。 熱分解ガスは更に、 高温水蒸気により改質され、 かくして、 固体燃料ガス化システムは、 水 素及び一酸化炭素を主成分とした高発熱量の合成ガスを製造し、 発電設 備、 水素製造設備等に供給することができる。 本発明は又、 熱分解後にチヤ一が残留し難い固体燃料を熱分解し、 水 素及び一酸化炭素を主成分とする合成ガスを製造する固体燃料ガス化シ ステムにおいて、 空気供給を絶たれた熱分解域と、 熱分解域における前記固体燃料の熱分解により生成した熱分解ガス、 又は該熱分解ガスを改質した精製ガスを燃焼させて 1 0 0 o °cを超える 燃焼ガスを発生させる燃焼手段と、 前記燃焼ガスと水蒸気との熱交換により前記水蒸気を加熱する水蒸気 加熱装置とを備え、 前記水蒸気加熱装置は、 前記燃焼ガスと前記水蒸気との熱交換により 水蒸気を 6 0 0 °C以上の高温水蒸気に加熱する熱交換器を備え、 該高温 水蒸気は、 前記熱分解域に供給され、 熱分解域の固体燃料を熱分解し、 該熱分解域に熱分解ガスを発生させることを特徴とする固体燃料ガス化 システムを提供する。 本発明の上記構成によれば、 熱分解域の熱分解ガス又は熱分解ガス精 製後の精製ガスは、 燃焼手段により燃焼し、 高温の燃焼ガスを発生させ る。 熱分解ガス又は精製ガスの燃焼により発生した燃焼ガスは、 浄化工 程を経ず、 直に水蒸気加熱装置の熱交換器に導入することができる。 こ のため、 燃焼ガスの温度は、 1 0 0 0 °Cを超える高温に設定することが できる。 6 0 0 °C以上の高温水蒸気のみが、 空気供給を絶たれた熱分解 域に供給される結果、 熱分解域には、 窒素を含まず、 比較的多量の水素 を含む熱分解ガスが発生し、 煤分の発生も抑制される。 熱分解域に発生 した熱分解ガスは、 高温水蒸気により改質され、 水素及び一酸化炭素を 主成分とした比較的髙発熱量の合成ガスが製造される。 このような構成 は、 燃焼後にチヤ一が残留し難い固体燃料、 例えば、 バイオマス燃料を 用いたガス化システムにおいて採用される。 従って、 本発明の固体燃料ガス化システムは、 燃焼後にチヤ一が残留 し難い固体燃料を高温水蒸気のみで熱分解し、 熱分解ガス又は精製ガス の燃焼により 1 0 0 o °cを超える高温の燃焼ガスを発生させる。 燃焼ガ スは、 水蒸気と熱交換し、 水蒸気を 6 0 0 以上の高温に加熱する。 固 体燃料は、 高温水蒸気のみで熱分解するので、 窒素を含まない熱分解ガ スが熱分解域に発生する。 熱分解ガスは更に、 高温水蒸気により改質さ れ、 かくして、 固体燃料ガス化システムは、 水素及び一酸化炭素を主成 分とした高発熱量の合成ガスを製造し、 発電設備、 水素製造設備等に供 給することができる。
図面の簡単な説明 図 1は、 本発明の第 1実施例に係る固体燃料ガス化システムの全体構 成を示すブロックフロー図である。 図 2は、 図 1に示すガス化システムの熱源構成を示すブロックフロー 図である。 図 3は、 図 1に示すガス化システムの熱源構成を概略的に示すシステ ム構成図である。 図 4は、 本発明の第 2実施例に係る固体燃料ガス化システムの全体構 成を示すブロックフロー図である。 図 5は、 図 4に示すガス化システムの熱源構成を示すブロックフロー 図である。
図 6は、 図 4に示すガス化システムの熱源構成を概略的に示すシステ ム構成図であり、第 1及び第 2炉の第 1工程の作動形態が示されている。 図 7は、 図 4に示すガス化システムの熱源構成を概略的に示すシステ ム構成図であり、第 1及び第 2炉の第 2工程の作動形態が示されている。 図 8は、 本発明の第 3実施例に係るガス化システムの構成を示すプロ ックフロー図である。 図 9は、 図 8に示すガス化システムの熱源構成を概略的に示' ム構成図である。 図 1 0は、 従来の燃料ガス化システムの全体構成を示すブロックフロ 一図であり、 固体燃料をガス化溶融炉によりガス化する方式のガス化シ ステムが例示されている。 図 1 1は、 図 1 0に示すガス化システムの熱源構成を示すブロックフ ロー図である。 図 1 2は、 従来の燃料ガス化システムの全体構成を示すブロックフロ 一図であり、 固体燃料を熱分解炉により熱分解し、 熱分解ガスを改質炉 によって改質する方式のガス化システムが例示されている。 図 1 3は、 図 1 2に示すガス化システムの熱源構成を示すブロックフ 口一図である。
発明を実施するための最良の形態 本発明の好適な実施形態において、 上記チヤ一燃焼域は、 チヤ一燃焼 炉内に形成される。 熱分解域に残留するチヤ一がチヤ一燃焼域に導入さ れ、 チヤ一焼却用の燃焼用空気が、 チヤ一燃焼域に供給される。 本発明の他の好適な実施形態では、 熱分解 ·チヤ一燃焼兼用の第 1炉 及び第 2炉が用いられる。 第 1炉及び第 2炉は夫々、 熱分解域兼チヤ一 燃焼域として働く炉内領域を備える。 第 1炉及び第 2炉の運転を切換え る切換手段が設けられ、 切換手段は、 高温水蒸気を第 1炉に供給し且つ 燃焼用空気を第 2炉に供給する第 1位置と、 燃焼用空気を第 1炉に供給 し且つ高温水蒸気を第 2炉に供給する第 2位置とに交互に切換えられる。 切換手段の第 1位置では、 第 1炉の炉内領域は熱分解域として機能し、 第 2炉の炉内領域はチヤ一燃焼域として機能する。 切換手段の第 2位置 では、 第 1炉の炉内領域はチヤ一燃焼域として機能し、 第 2炉の炉内領 域は熱分解域として機能する。 このような構成によれば、 固体燃料の熱 分解後に炉床部分に残留したチヤ一は、 引き続く燃焼用空気の炉内導入 により燃焼し、 高温燃焼ガスを生成する。 従って、 チヤ一燃焼専用にチ ヤー燃焼炉を設ける必要がなく、 チヤ一を第 1及び第 2炉から取出して チヤ一燃焼炉に移送するチヤ一供給路の設置も、省略することができる。 なお、 第 1炉又は第 2炉は、 高温水蒸気を炉内に供給する前に固体燃料 を予め炉内に投入するバッチ式のものであっても、 第 1炉又は第 2炉へ の高温水蒸気の供給と同時に固体燃料を炉内に供給する連続供給式のも のであっても良い。 好ましくは、 燃焼ガス再熱用燃焼手段は、 合成ガスの一部及び Z又は 燃焼用空気を浄化後の燃焼ガスに添加する注入部を有し、 注入部は、 例 えば、 燃焼ガス配管又はダクトと、 合成ガス又は燃焼用空気の配管又は ダクトとの T形接続部、 あるいは、 燃焼ガスと合成ガス又は燃焼用空気 とを混合可能な燃焼器からなる。合成ガス又は燃焼用空気の注入により、 燃焼ガスは再燃焼又は二次燃焼し、 燃焼ガスは温度上昇する。 合成ガス の注入は、 チヤ一燃焼域に十分な燃焼用空気を供給する場合 (即ち、 チ ヤーがチヤ一燃焼域で実質的に完全燃焼し、 燃焼ガスが比較的多量の酸 素を含む場合) に好ましく採用され、 燃焼ガスは、 合成ガスの添加によ り再燃焼する。 チヤ一燃焼域に対する燃焼用空気の供給量を制限する場 合 (即ち、 チヤ一がチヤ一燃焼域で不完全燃焼し、 燃焼ガスが比較的多 量の一酸化炭素等を含む場合) には、 燃焼用空気が注入部に供給され、 燃焼ガスに添加される。 燃焼用空気の注入により、 燃焼ガスは二次燃焼 し、 燃焼ガスは温度上昇し、 燃焼ガス中の未燃分の完全燃焼が促される。 所望により、 合成ガス及び燃焼用空気の双方を燃焼ガスに添加しても良 い。 本発明の好適な実施形態において、 ガス化システムは、 上記熱分解域 の熱分解ガス及び高温水蒸気が導入される改質炉を有し、 6 0 0で以上、 好ましくは、 9 0 0 °C以上の高温空気又は酸素が熱分解ガス給送路又は 改質炉に注入される。 酸素を熱分解ガス給送路又は改質炉に注入する場 合には、 常温 (大気相当温度) の酸素を熱分解ガス給送路又は改質炉に 注入しても良い。 熱分解ガス、 高温水蒸気及び高温空気 (又は酸素) は、 改質炉内で混合し、 熱分解ガス中の炭化水素 (主にタール分) は、 水蒸 気改質反応により、 水素及び一酸化炭素を主成分とした改質ガス (合成 ガス) に改質される。 好適には、 改質ガスは、 後続の精製工程で精製さ れ、 精製ガスとして発電設備、 水素製造装置等に供給される。 好まし < は、 改質ガスを精製前に冷却する熱回収装置が設けられ、 熱回収装置に 供給された給水は、 改質ガスの顕熱により水蒸気に気化する。 この水蒸 気は、 上記水蒸気加熱装置に供給され、 上述の如く高温水蒸気に加熱さ れる。 更に好ましくは、 精製ガスの一部が、 空気加熱装置に供給され、 常温空気が精製ガスの燃焼熱により上記高温空気に加熱される。 本発明の他の実施形態によれば、 上記高温水蒸気は、 9 0 0 °C以上の 温度を有し、 熱分解域におけるタール分の発生は、 最小限に抑制され、 上記改質工程は、 省略される。 好適には、 精製ガス又は熱分解ガスの一部が、 補助燃料としてチヤ一 燃焼域に供給され、 チヤ一燃焼熱の不足は、 精製ガス又は熱分解ガスの 燃焼熱で補われる。 これにより、 チヤ一燃焼域の燃焼ガスの温度及び/ 又は流量が調節され、 熱分解域に供給される高温水蒸気の温度及び Z又 は流量が制御される。 変形例として、 チヤ一燃焼域を高温化し、 チヤ一 焼却灰を灰溶融しても良い。 以下、 添付図面を参照して、 本発明の好適な実施例について詳細に説 明する。 図 1は、 本発明の第 1実施例に係る固体燃料ガス化システムを示すブ ロックフロー図である。 固体燃料ガス化システムは、 産業廃棄物等の固体燃料を熱分解する熱 分解ガス化炉と、 温度約 1 0 0 o °cの高温水蒸気を熱分解ガス化炉に供 給する水蒸気加熱装置と、 熱分解ガス化炉から排出されたチヤ一を燃焼 させるチヤ一燃焼炉とを備える。 水蒸気加熱装置は、 高温水蒸気供給路 H Sによって熱分解ガス化炉に接続される。 熱分解ガス化炉には、 固体 燃料を熱分解ガス化炉に供給する固体燃料供給路 L 1が接続されるとと もに、 熱分解ガス化炉のチヤ一をチヤ一燃焼炉に供給するチヤ一供給路 L 2が接続される。 空気供給路 L 3が、 チヤ一燃焼炉に接続され、 燃焼 ガス送出路 L 4が、高温除塵装置を介して水蒸気加熱装置に接続される。 燃焼ガス送出路 L 4に介装された高温除塵装置は、 例えば、 燃焼ガスを 浄化可能な高温セラミックフィルターからなる。 空気供給路 L 3の分岐 路 L 3 0が、 高温除塵装置及び水蒸気加熱装置の間で燃焼ガス送出路 L 4に接続される。 熱分解ガス化炉は、熱分解ガス給送路 L 5によって改質炉に接続され、 改質炉は、 改質ガス給送路 L 6によって熱回収 · ガス精製装置に接続さ れる。 熱分解ガス化炉の炉内領域は、 初期的に炉内に存在する空気及び 酸素や、 固体燃料供給時に固体燃料と一緒に炉内に流入し得る少量の空 気の他は、 空気及び酸素の供給を絶たれており、 熱分解ガス化炉の炉内 領域には、 実質的に高温水蒸気のみが供給される。 熱分解ガス化炉の熱 分解ガスは、 熱分解ガス給送路 L 5を介して改質炉に供給され、 改質炉 の改質ガスは、 改質ガス給送路 L 6を介して熱回収 · ガス精製装置に供 給される。 所望により、 熱分解ガスの一部が、 分岐路 L 9 (破線で示す) を介してチヤ一燃焼炉に供給される。 熱回収 · ガス精製装置には、 給水管路 S Wが接続されるとともに、 水 蒸気供給路 L 7の上流端が接続される。 水蒸気供給路 L 7の下流端は、 水蒸気加熱装置に連結される。 熱分解ガスの回収熱により生成した水蒸 気が、水蒸気供給路 L 7を介して水蒸気加熱装置に供給される。熱回収 · ガス精製装置は、 精製ガス送出路 L 8によって発電設備又は水素製造設 備に接続される。 熱回収 · ガス精製装置の精製ガスは、 発電設備又は水 素製造設備に燃料ガス又は原料ガスとして供給される。 精製ガス供給路 L 8の第 1分岐路 L 1 1が、 空気加熱装置に接続され、 精製ガスの一部 が、 空気加熱装置に空気加熱用燃料として供給される。 空気加熱装置の 高温空気供給路 L 1 0が、 熱分解ガス給送路 L 5に接続され、 約 1 0 0 0 °Cの高温空気が熱分解ガス給送路 L 5に注入される。 精製ガス供給路 L 8の第 2分岐路 L 1 2が、 チヤ一燃焼炉に接続される。 所望により、 精製ガスの一部が、 補助燃料としてチヤ一燃焼炉に供給される。 第 3分 岐路 L 1 3が精製ガス供給路 L 8から更に分岐し、 第 3分岐路 L 1 3の 下流端が、 高温除塵装置と水蒸気加熱装置との間で燃焼ガス送出路 L 4 に接続される。
産業廃棄物等の固体燃料が熱分解ガス化炉に供給され、 熱分解ガス化 炉の炉内領域に投入される。 系外の補助燃料供給設備 (図示せず) が初 期燃焼用燃料をチヤ一燃焼炉のパーナ設備に供給し、 空気供給路 L 3に 介装した給気ファンが燃焼用空気をチヤ一燃焼炉に供給する。 所望によ り、 燃焼用空気を予熱する空気予熱装置 (図示せず) が、 空気供給路 L 3に介装される。 チヤ一燃焼炉の燃焼作動により、 温度約 8 0 0 °C程度 の燃焼ガスがチヤ一燃焼炉から燃焼ガス送出路 L 4に送出される。 燃焼 ガスは、 高温除塵装置及び燃焼ガス再熱用燃焼手段を介して水蒸気加熱 装置に供給される。 燃焼ガス再熱用燃焼手段には、 系外の補助燃料供給 設備 (図示せず) から初期燃焼用燃料が供給される。 比較的低温の水蒸気 (温度約 1 5 0〜3 0 0 °C程度) が、 系外のプロ セス蒸気発生器(図示せず) 等から水蒸気加熱装置に初期的に供給され、 チヤ一燃焼炉の燃焼ガスと熱交換し、 約 1 0 0 0 °C程度の高温に加熱さ れる。 高温水蒸気は、 高温水蒸気供給路 H Sを介して熱分解ガス化炉に 供給される。 熱分解ガス化炉の炉内領域 (熱分解域) は、 空気の供給を絶たれてお り、 水蒸気加熱装置の高温水蒸気のみが熱分解ガス化炉に供給される。 高温水蒸気供給路 H Sから熱分解ガス化炉に供給される高温水蒸気の温 度 (供給路 H Sの出口温度) は、 例えば、 1 0 0 0 °Cに設定される。 熱 分解ガス化;!:戸の炉内圧力は、 大気圧 (常圧) 、 或いは、 1〜 2気圧に設 定される。 熱分解域の固体燃料は、 熱分解ガス化炉の炉内に導入された 高温水蒸気の熱で熱分解し、 温度約 6 0 0 °C程度の熱分解ガスが固体燃 料の熱分解により発生する。 実質的に高温水蒸気のみに依存した固体燃 料の熱分解によって熱分解域に発生した熱分解ガスは、 窒素を含まず、 水素及び一酸化炭素を主成分としており、 しかも、 約 6 0 0 °C程度の温 度を有する熱分解ガスは、 比較的少量のタール分を含むにすぎない。 熱 分解ガスは、 熱分解ガス化炉内の高温水蒸気と一緒に熱分解ガス給送路 L 5に送出される。 系外の補助燃料供給設備 (図示せず) が初期燃焼用燃料を空気加熱装 置に供給する。 空気加熱装置は、 燃料の燃焼熱により大気相当温度の空 気を約 1 0 0 0 °Cの高温に加熱し、 高温空気を高温空気供給路 L 1 0か ら熱分解ガス給送路 L 5に注入する。 高温空気の添加は、 次工程 (改質 工程) の改質反応に要する熱を補うためのものであり、 高温空気の添加 量は、 熱補給に要する最小限の空気量に制限することが望ましい。 改質炉は、 中空且つ無触媒の反応容器からなる。 熱分解ガス給送路 L 5の熱分解ガス、 高温水蒸気及び高温空気は、 改質炉の炉内領域に流入 し、 改質炉の改質域で混合し、 熱分解ガス中の炭化水素 (主にタール分) の水蒸気改質反応 (吸熱反応) が、 この混合過程で生じる。 熱分解ガス は、 このような改質工程により、 比較的多量の水素及び一酸化炭素を含 む高カロリーガスに改質される。 改質域では、 高温空気及び熱分解ガス の発熱反応が同時進行するので、 温度約 8 0 0 °Cの改質ガス (合成ガス) が改質ガス給送路 L 6に送出される。 改質ガスは、 少量の水蒸気の他、 高温空気の添加により系内に供給さ れた少量の窒素を含む。 本実施例の変形例として、 このような窒素の混 入をも防止すべく、 上述の空気加熱装置に換えて酸素加熱装置を使用し ても良い。 この場合、 酸素加熱装置により予熱した酸素が、 供給路 L 1 0から熱分解ガスに添加される。変形例として、大気相当温度の酸素(常 温酸素) を供給路 L 1 4 (破線で示す)から熱分解ガスに直に添加しても 良い。
改質ガス給送路 L 6の改質ガス (合成ガス) は、 熱回収 ·ガス精製装 置に導入される。 熱回収 · ガス精製装置は、 改質ガスと給水との熱交換 により水蒸気を生成する熱回収部を備えるとともに、 熱回収後の改質ガ スを浄化する浄化部 (スクラバ一等) を備える。 約 8 0 0 °C程度の温度 を保有する高温の改質ガスは、 給水と熱交換して冷却し、 給水は、 水蒸 気に気化し、 水蒸気供給路 L 7に送出される。 改質ガスは更に、 浄化部 を通過し、 浄化部は、 改質ガス中の水蒸気及び固形分等を除去する。 熱 回収 · ガス精製装置の精製ガスは、 精製ガス供給路 L 8を介して発電設 備のガスタービンエンジン等に燃料ガスとして供給され、 あるいは、 水 素製造設備に原料ガスとして供給される。
精製ガスの一部が、第 1分岐路 L 1 1から空気加熱装置に供給される。 空気加熱装置は、 例えば、 特開 2 0 0 2— 1 5 8 8 8 5号公報に記載さ れた構成の空気加熱装置からなる。 空気加熱装置は、 概ね大気温度の空 気を精製ガスの燃焼熱により約 1 0 0 0 に加熱し、 高温空気供給路 L 1 0に送出する。 所望により、 精製ガスの一部が、 チヤ一燃焼炉の補助 燃料として第 2分岐路 L 1 2に送出され、 チヤ一燃焼炉に供給される。 精製ガスの一部、 あるいは、 空気供給路 L 3の燃焼用空気の一部が、 高温除塵装置と水蒸気加熱装置との間において、 分岐路 L 1 3又は分岐 路 L 3 0から燃焼ガス送出路 L 4に注入される。 精製ガス又は燃焼用空 気の双方を燃焼ガス送出路 L 4に注入しても良い。 精製ガス又は燃焼用 空気の注入部は、 配管又はダクトの T形接続部、 あるいは、 燃焼ガス送 出路 L 4に介装した燃焼器によって形成される。 高温除塵装置に供給すべき燃焼ガス温度は、 チヤ一燃焼炉の燃焼制御 により概ね 6 0 0〜8 0 0 °C程度の温度に規制されるが、 燃焼ガスは、 精製ガス (L 1 3 ) 及びノ又は燃焼用空気 (L 3 0 ) の添加により再燃 焼又は二次燃焼するので、 燃焼ガス温度は上昇する。 従って、 水蒸気加 熱装置に導入される燃焼ガスは、 1 0 0 0 °Cを超える温度、 例えば、 1 2 0 0 °Cの温度を保有する。 図 2及び図 3は、 本実施例におけるガス化システムの熱源構成を示す ブロックフロー図及び概略構造図である。 熱分解ガス化炉における熱分解ガス化反応が安定した段階では、 系外 の設備からの補助燃料供給及び水蒸気供給は停止される。 ガス化システ ムは、 図 2に示す如く、 熱分解ガス化炉のチヤ一を水蒸気加熱用の熱ェ ネルギ一源とした定常運転に切換えられる。 図 1に示す如く、 定常運転 時には、 熱分解ガスの改質に用いられる空気 (又は酸素) は、 精製ガス の燃焼熱により加熱され、 給水は、 改質ガスと熱交換し、 水蒸気加熱装 置に供給すべき水蒸気を生成する。 従って、 定常運転時には、 水蒸気の 加熱、 空気 (又は酸素) の加熱および水蒸気生成のための熱エネルギー は、 熱分解ガス化炉 1で発生するチヤ一及び熱分解ガスによって与えら れる。 即ち、 ガス化システムは、 熱分解ガス化炉 1のチヤ一及び熱分解 ガスをエネルギー源として運転される。 図 3に示す如く、 熱分解ガス化炉 1は、 熱分解域 1 1 を形成する炉体 1 0を備える。 炉体 1 0の下部には、 多数の通気孔を備えた炉床 1 2が 形成される。 炉床 1 2として、 多数の通気孔を穿孔したセラミック製固 定床を好適に使用し得る。 高温水蒸気供給路 H S及びチヤ一供給路 L 2 が、 炉底部に接続される。 固体燃料が固体燃料供給路 L 1から熱分解域 1 1に投入され、 炉床 1 2上に堆積する。 熱分解ガス化炉 1は、 炉底部 から高温水蒸気が供給される固定床形式の炉であり、 熱分解域 1 1は、 炉体上部に配置された固体燃料供給路 L 1及び熱分解ガス給送路 L 5の 開口部を除き、 閉鎖している。 従って、 熱分解域 1 1への外界空気の進 入は、 実質的に完全に絶たれる。 水蒸気加熱装置 3の高温水蒸気は、炉底部から上向きに炉内に吹込み、 炉床 1 2の通気孔を通過して固体燃料 1 3に接触し、 固体燃料 1 3を加 熱する。 空気供給を絶った状態の熱分解域 1 1では、 固体燃料 1 3は、 高温水蒸気の供給のみによって熱分解し、 熱分解ガスが発生する。 好ま しくは、 熱分解の反応速度を速めるために、 水蒸気の温度を 1 0 0 0 °C 以上に設定することが望ましい。 熱分解域 1 1の熱分解ガス及び高温水 蒸気は、 炉体上部に接続した熱分解ガス給送路 L 5に流出し、 改質炉 5 に供給される。熱分解ガス給送路 L 5の熱分解ガス及び高温水蒸気には、 高温空気供給路 L 1 0の高温空気 (又は酸素) が添加される。 破線で示 すように、 概ね大気温度の酸素を供給路 L 1 4から熱分解ガス給送路 L 5に添加しても良い。 熱分解ガス、 水蒸気及び空気 (又は酸素) は、 改質炉 5に導入され、 改質炉 5内で混合し、 熱分解ガス中の炭化水素 (主にタール分) は、 改 質される。従って、比較的多量の水素及び一酸化炭素を含む改質ガス(合 成ガス) が、 改質ガス給送路 L 6に送出され、 熱回収 ·ガス精製装置 (図 1 ) に供給される。 改質炉 5として、 例えば、 特開 2 0 0 2— 2 1 0 4 4 4号に開示された構造の改質炉を好適に使用し得る。 固体燃料 1 3の熱分解により生成したチヤ一は、 炉床 1 2の通気孔を 流下し、 炉底領域に設けられたチヤ一排出口及びチヤ一供給路 L 2を介 してチヤ一燃焼炉 2に供給される。 チヤ一燃焼炉 2は、 熱分解ガス化炉 1と同様の構造を備える。 即ち、 チヤ一燃焼炉 2は、 チヤ一燃焼域 2 1 を形成する炉体 2 0と、 多数の通気孔を備えた炉床 2 2とを有する。 炉 床 2 2として、 多数の通気孔を穿孔したセラミック製固定床を好適に使 用し得る。 空気供給路 L 3は、 チヤ一燃焼炉 2の炉底部に接続され、 焼ガス送出路 L 4は、 チヤ一燃焼炉 2の炉体上部に接続される。 チヤ一燃焼炉 2に供給されたチヤ一は、 炉床 2 2上に堆積し、 空気供 給路 L 3の燃焼用空気が炉床 2 2の通気孔を介してチヤ一燃焼域 2 1内 に上向きに吹込む。 チヤ一燃焼炉 2の炉温は、 チヤ一の燃焼により 8 0 0 を超える温度に達する。温度約 6 0 0〜8 0 0 °C程度の燃焼ガスが、 燃焼ガス送出路 L 4の流路 L 4 1に送出される。 所望により、 第 2分岐 路 L 1 2の精製ガス又は分岐路 L 9 (破線で示す)の熱分解ガスを補助的 にチヤ一燃焼域 1 1に供給しても良い。 燃焼ガスは、 高温除塵装置 4を通過し、 燃焼ガス中のダスト等は、 除 去される。 燃焼ガスは、 高温除塵装置 4から流路 L 4 2に送出される。 精製ガス及び/又は燃焼用空気の注入部 4 0が、 流路 L 4 2に接続され る。 注入部 4 0は、 例えば、 流路 L 4 2に対する分岐路 L 1 3、 L 3 0 の T形接続部、 あるいは、 分岐路 L 1 3、 L 3 0を接続した燃焼器から なる。 燃焼ガスは、 注入部 4 0において精製ガス及び/又は燃焼用空気 と混合し、 再燃焼又は二次燃焼する。
分岐路 L 1 3、 L 3 0には、 注入部 4 0に対する精製ガス及び燃焼用 空気の供給を制御する制御弁 4 5.、 4 6が設けられる。 制御弁 4 5、 4 6は、 燃焼ガスの再燃焼又は二次燃焼が注入部 4 0において適切に進行 するように精製ガス及び燃焼用空気の流量を制御する。 例えば、 チヤ一 燃焼域 2 1のチヤ一が完全燃焼する場合、 燃焼ガスは比較的多量の酸素 を含むので、 制御弁 4 5、 4 6は、 主として分岐路 L 1 3の精製ガスを 注入部 4 0に供給する。 他方、 チヤ一燃焼域 2 1のチヤ一が不完全燃焼 する場合には、 燃焼ガスは比較的多量の一酸化炭素を含むので、 制御弁 4 5、 4 6は、 主として分岐路 L 3 0の燃焼用空気を注入部 4 0に供給 する。
燃焼ガスは、 注入部 4 0における再燃焼又は二次燃焼により 1 0 0 0 Cを超える高温に温度上昇し、 流路 L 4 3から水蒸気加熱装置 3に供 給される。 燃焼ガスは、 前述の如く、 水蒸気と熱交換して水蒸気を高温 に加熱し、 自らは冷却する。 冷却後の燃焼ガスは、 排気路を介して大気 に放出される。 水蒸気加熱装置 3は、 例えば、 高い温度効率を有するユングストロー ム式の熱交換器からなり、 水蒸気供給路 L 7の水蒸気を約 1 0 0 0 °C程 度の高温に加熱して高温水蒸気供給路 H Sに送出する。 水蒸気加熱装置 3として、 セラミックハ二カム構造等の蓄熱体を備えたリジェネレータ 型熱交換器、 あるいは、 伝熱コイルを備えたレキュペレ一夕型熱交換器 を採用しても良い。 この場合、 水蒸気供給路 L 7の水蒸気は、 蓄熱体を 介してなされる燃焼ガスと水蒸気との熱交換、 あるいは、 伝熱コイルを 流通する水蒸気と燃焼ガスとの熱交換によって加熱される。 なお、 チヤ一を燃料とする燃焼炉 2の燃焼量が不足する場合、 熱分解 ガス又は精製ガスの一部が分岐炉 L 9、 L 1 2からチヤ一燃焼炉 2のバ ーナ設備 (図示せず) に補助的に供給される。 図 4〜図 7は、 本発明の第 2実施例に係るガス化システムの構成を概 略的に示すブロックフロー図及びシステム構成図である。 上記第 1実施例では、 ガス化システムは、 熱分解ガス化炉と直列に連 結したチヤ一燃焼炉を備えるが、 本実施例のガス化システムは、 図 4及 び図 5に示す如く並列に配置された第 1炉及び第 2炉を備える。 第 1及 び第 2炉は各々、 熱分解ガス化炉及びチヤ一燃焼炉を兼ねる。 図 5には、 交互に実行されるガス化システムの第 1工程及び第 2工程 が示されている。 図 5 (A) に示す第 1工程では、 第 1炉はガス化運転し、 第 2炉はチヤ一燃焼運転する。 図 5 (B) に示す第 2工程では、 第 1炉は チヤ一燃焼運転し、 第 2炉はガス化運転する。第 1工程及び第 2工程は、 数時間又は十数時間の時間単位で交互に実行される。 図 5 (A) に示す第 1工程では、 高温水蒸気が、 第 1炉に供給される。 第 1炉のガス化運転により発生した熱分解ガスが、改質炉に供給される。 固体燃料は、 第 1炉に予め投入され、 あるいは、 高温水蒸気の供給と同 時に第 1炉に連続投入される。 第 1炉がガス化運転 (図 5 (A) ) を終了すると、 図 5 (B) に示す第 2 工程が実行され、 燃焼用空気が第 1炉に供給される。 第 2工程では、 第 1炉のガス化運転中 (図 5 (A) ) に第 1炉の炉床部分に残留したチヤ一 が燃焼用空気の供給により燃焼し、 第 1炉は、 チヤ一燃焼炉として作動 し、 燃焼ガスを除塵装置に送出する。 除塵装置で除塵した燃焼ガスは、 上述の第 1実施例と同じく、 燃焼用空気及び Z又は精製ガスの添加によ り二次燃焼又は再燃焼し、 昇温した後、 高温燃焼ガスとして水蒸気加熱 装置に供給される。 水蒸気加熱装置に供給された水蒸気が、 高温燃焼ガ スと熱交換し、 約 1 0 0 0 °Cに加熱される。 加熱後の高温水蒸気は、 第 2炉に供給される。 第 2炉は、 高温水蒸気の供給により固体燃料を熱分 解し、 熱分解ガスを改質炉に供給する。 なお、 固体燃料は、 第 2炉に予 め投入され、 あるいは、 高温水蒸気の供給と同時に第 2炉に連続投入さ れる。 第 2炉がガス化運転を終了すると、 図 5 (A) に示す第 1工程が実行さ れる。 第 1工程では、 第 2炉のガス化運転中 (図 5 (B) ) に第 2炉の炉 床部分に残留したチヤ一が燃焼用空気の供給により燃焼し、 第 2炉は、 チヤ一燃焼炉として作動し、 高温の燃焼ガスを除塵装置に送出する。 除 塵装置で除塵した燃焼ガスは、 燃焼用空気及び Z又は精製ガスの添加に より二次燃焼又は再燃焼し、 昇温した後、 水蒸気加熱装置に供給される。 水蒸気は、 高温燃焼ガスとの熱交換により約 1 0 0 0 °Cに加熱され、 第 1炉に供給される。 第 1炉は、 高温水蒸気の供給により固体燃料を熱分 解し、 熱分解ガスを改質炉に供給する。 第 1工程 (図 5 (A) ) 及び第 2工程 (図 5 (B) ) は数時間又は十数時 間の時間間隔で交互に切換えられ、 第 1炉及び第 2炉は、 熱分解ガス化 炉又はチヤ一燃焼炉として交互に運転される。 即ち、 第 1炉及び第 2炉 は、 熱分解ガスを発生する熱分解ガス化炉としての作用と、 炉床部分に 残留したチヤ一の燃焼により高温燃焼ガスを生成するチヤ一燃焼炉とし ての作用とを交互に発揮する。 図 6及び図 7は、 ガス化システムの熱源構成を概略的に示すシステム 構成図である。 図 6には、 ガス化システムの第 1工程が示され、 図 7に は、 ガス化システムの第 2工程が示されている。 第 1及び第 2炉 l a、 l bは、 上記第 1実施例の熱分解ガス化炉と実 質的に同一の構造を有し、 炉体 1 0の下部には、 多数の通気孔を穿設し た炉床 1 2が配設される。 固体燃料供給路 L 1 a、 L i b, 熱分解ガス 給送路 L 5 a、 L 5 b及び燃焼ガス送出路 L 4 a、 L 4 bが、 炉体上部 に接続される。 固体燃料供給路 L l a、 L i bは、 切換制御弁 V Iを介 して固体燃料供給路 L 1に接続され、 熱分解ガス給送路 L 5 a、 L 5 b は、 切換制御弁 V 2を介して熱分解ガス給送路 L 5に接続され、 燃焼ガ ス送出路 L 4 a、 L 4 bは、 切換制御弁 V 3を介して燃焼ガス送出路 L 4に接続される。 空気供給路 L 3 a、 L 3 b及び高温水蒸気供給路 HS a、 H S bが第 1炉 1 a及び第 2炉 1 bの炉底部に接続される。 空気供給路 L 3 a、 L 3 bは、 切換制御弁 V 4を介して空気供給路 L 3に接続される。 高温水 蒸気供給路 HS a、 HS bは、 切換制御弁 V 5を介して高温水蒸気供給 路 H Sに接続される。 切換制御弁 V I〜V 5は、 図 6に示す第 1工程において、 第 1位置に 位置し、 固体燃料供給路 L l、 熱分解ガス給送路 L 5及び高温水蒸気供 給路 HSを第 1炉 1 aに接続し、 空気供給路 L 3及びガス送出路 L 4を 第 2炉 l bに接続する。 第 1炉 l aは、 熱分解ガス化炉として機能し、 固体燃料 1 3の熱分解により発生した熱分解ガスを改質炉 5に供給する。 第 2炉 l bは、 チヤ一燃焼炉として機能し、 炉床部分のチヤ一 1 4の燃 焼により生成した燃焼ガスを水蒸気加熱装置 3に供給する。 切換制御弁 V I〜V 5は、 図 7に示す第 2工程において、 第 2位置に 位置し、 固体燃料供給路 L l、 熱分解ガス給送路 L 5及び高温水蒸気供 給路 H Sを第 2炉 1 bに接続し、 空気供給路 L 3及びガス送出路 L 4を 第 1炉 1 aに接続する。 第 2炉 1 bは、 熱分解ガス化炉として機能し、 固体燃料 1 3の熱分解により発生した熱分解ガスを改質炉 5に供給する。 第 1炉 l aは、 チヤ一燃焼炉として機能し、 炉床部分のチヤ一 1 4の燃 焼により生成した燃焼ガスを水蒸気加熱装置 3に供給する。 所望により、 チヤ一燃焼中の第 1又は第 2炉に対して、 精製ガス送出 路 L 8の精製ガスの一部を第 2分岐路 L 1 2から補助的に供給しても良 く、 また、 熱分解ガス給送路 L 5の熱分解ガスの一部を分岐路 L 9から 補助的に供給しても良い。 このような実施例によれば、 ガス化運転によって第 1炉 1 a又は第 2 炉 1 bの炉床部に残留したチヤ一を炉外のチヤ一燃焼炉に移送すること なく、 第 1炉 1 a又は第 2炉 1 bのチヤ一燃焼運転により燃焼させ、 水 蒸気加熱用の高温燃焼ガスを生成することができる。 このため、 チヤ一 燃焼専用にチヤ一燃焼炉を設ける必要がなく、 チヤーを炉 1から取出し てチヤ一燃焼炉に移送するチヤ一供給路 L 2 (図 1 ) についても、 その 設置を省略することができる。 図 8及び図 9は、 本発明の第 3実施例に係るガス化システムの構成を 概略的に示すブロックフロー図及びシステム構成図である。 上記第 1及び第 2実施例では、 ガス化システムは、 チヤ一燃焼域、 除 塵装置及び燃焼ガス再熱用燃焼手段を備えるが、 本実施例のガス化シス テムは、 精製ガス及び空気の燃焼反応によって高温の燃焼ガスを発生さ せる燃焼器 4 0を備える。 燃焼器 4 0には、 空気供給路 L 3の燃焼用空 気と、 分岐路 L I 3の精製ガスとが導入される。 燃焼用空気は、 所望に より、 空気予熱器 (破線で示す) で予熱される。 1 0 0 0 °Cを超える燃 焼器 4 0の燃焼ガスは、 流路 L 4 3を介して水蒸気加熱装置 3に供給さ れる。 燃焼ガスは、 前述の如く、 水蒸気と熱交換して、 冷却し、 排気路 を介して大気に放出される。 高温の燃焼ガスとの熱交換によって約 1 0 0 0 に加熱された水蒸気は、 熱分解ガス化炉 1に供給される。 ガス化 炉 1に供給された高温水蒸気は、 固体燃料を熱分解し、 ガス化炉 1は、 熱分解ガスを改質炉 5に供給する。 なお、 熱分解ガス給送路 L 5の熱分 解ガスの一部を分岐路 L 9 (図 9 ) から燃焼器 4 0に供給しても良い。 その他の構成は、前述の第 1及び第 2実施例と実質的に同一であるので、 更なる詳細な説明は、 省略する。 本実施例は、 バイオマス燃料の如くチヤ一が残留し難い固体燃料を用 いたガス化システムに好ましく適用される。 燃焼ガスは、 精製ガス及び 空気の燃焼反応によって発生するので、 浄化装置によって浄化すること なく (従って、 温度を制限することなく)、 水蒸気加熱装置 3に供給する ことができる。 このため、 1 0 0 0 を超える高温の燃焼ガスを直に水 蒸気加熱装置 3に導入することができる。 なお、 熱分解ガスの一部 (L 9 ) を燃焼器 4 0に導入し、 熱分解ガスの燃焼により上記高温燃焼ガス を発生させることも可能である。 変形例として、 上記第 2実施例と同様に第 1炉及び第 2炉を設け、 第 1又は第 2炉の熱分解ガス又はその精製ガスを燃焼器 4 0に選択的に供 給するように構成しても良い。 この場合、 ガス化システムの熱源は、 例 えば、 図 4〜図 8に示す構成のガス化システムにおいて、 流路 L 4 a、 L 4 b、 L 4 1、 L 4 2、 切換弁 V 3及び高温除塵装置 4を省略し、 熱 分解ガス又はその精製ガスを第 1炉又は第 2炉から交互に燃焼器 4 0に 供給するように構成される。 以上、 本発明の好適な実施例について詳細に説明したが、 本発明は上 記実施例に限定されるものではなく、 特許請求の範囲に記載された本発 明の範囲内で種々の変形又は変更が可能である。 例えば、 温度 1 0 0 o °c以上の高温水蒸気を熱分解ガス化炉に供給し てタールの発生を最小限に抑制することにより、 改質炉の改質工程を省 略することも可能である。 また、 熱分解域投入前の固体燃料を微粉砕処 理等の前処理工程で微粉砕しても良い。 更に、 上記第 1実施例では、 チ ャ一燃焼後の焼却灰は、 チヤ一燃焼炉から排出されるが、 チヤ一燃焼炉 の炉温を高温化することにより、焼却灰を灰溶融することも可能である。 また、 上記第 2実施例では、 ガス化システムは、 ガス化及びチヤ一燃焼 の各機能を交互に発揮する第 1炉及び第 2炉を備えているが、 切換運転 可能な 3体以上の炉をガス化システムに組み込んでも良い。
産業上の利用可能性 以上説明した如く、 本発明は、 廃棄物等の低質固体燃料のガス化シス テムに好ましく適用される。 本発明の固体燃料ガス化システムは、 水素 及び一酸化炭素を主成分とした高発熱量の合成ガスを製造し、発電設備、 水素製造設備等に供給することができる。

Claims

請求の範囲
1. 固体燃料を熱分解し、 水素及び一酸化炭素を主成分とする合成ガス を製造する固体燃料ガス化システムにおいて、 空気供給を絶たれた熱分解域と、 該熱分解域のチヤ一を燃焼用空気の存在下に燃焼して燃焼ガスを生成 するチヤ一燃焼域と、 前記燃焼ガスと水蒸気との熱交換により水蒸気を加熱する水蒸気加熱 装置と、 前記チヤ一燃焼域と前記水蒸気加熱装置との間で前記チヤ一燃焼域の 燃焼ガスを浄化する除塵装置と、 該除塵装置から水蒸気加熱装置に送出される除塵後の燃焼ガスを燃焼 させ、燃焼ガスの温度上昇をもたらす燃焼ガス再熱用燃焼手段とを備え、 前記水蒸気加熱装置は、 前記燃焼ガスと前記水蒸気との熱交換により 該水蒸気を 6 0 0 °C以上の高温水蒸気に加熱する熱交換器を備え、 該高 温水蒸気は、 前記熱分解域に供給され、 熱分解域の固体燃料を熱分解し、 該熱分解域に熱分解ガスを発生させることを特徴とする固体燃料ガス化 システム。
2 . 熱分解後にチヤ一が残留し難い固体燃料を熱分解し、 水素及び一酸 化炭素を主成分とする合成ガスを製造する固体燃料ガス化システムにお いて、 空気供給を絶たれた熱分解域と、 該熱分解域における前記固体燃料の熱分解により生成した熱分解ガス、 又は該熱分解ガスを改質した精製ガスを燃焼させて 1 0 0 o °cを超える 燃焼ガスを発生させる燃焼手段と、 前記燃焼ガスと水蒸気との熱交換により前記水蒸気を加熱する水蒸気 加熱装置とを備え、 前記水蒸気加熱装置は、 前記燃焼ガスと前記水蒸気との熱交換により 該水蒸気を 6 0 0 °C以上の高温水蒸気に加熱する熱交換器を備え、 該高 温水蒸気は、 前記熱分解域に供給され、 熱分解域の固体燃料を熱分解し、 該熱分解域に熱分解ガスを発生させることを特徴とする固体燃料ガス化 システム。
3. 前記燃焼ガス再熱用燃焼手段は、 前記合成ガスの一部及び/又は燃 焼用空気を浄化後の燃焼ガスに添加する注入部を有し、前記燃焼ガスは、 前記注入部における合成ガス及び Z又は燃焼用空気の注入により、 再燃 焼又は二次燃焼し、 温度上昇することを特徴とする請求項 1に記載の固 体燃料ガス化システム。
4. 前記チヤ一燃焼域は、 前記熱分解域のチヤ一が導入されるチヤ一燃焼 炉内に形成され、 チヤ一焼却用の燃焼用空気が、 チヤ一燃焼域に供給さ れることを特徴とする請求項 1又は 3に記載の固体燃料ガス化システム。
5. 熱分解域兼チヤ一燃焼域として働く炉内領域を備えた熱分解 ·チヤ一 燃焼兼用の第 1炉及び第 2炉と、 該第 1炉及び第 2炉の運転を切換える 切換手段とを有し、 該切換手段は、 前記高温水蒸気を第 1炉に供給し且 つ燃焼用空気を第 2炉に供給する第 1位置と、 燃焼用空気を第 1炉に供 給し且つ前記高温水蒸気を第 2炉に供給する第 2位置とに交互に切換え られることを特徴とする請求項 1又は 3に記載の固体燃料ガス化システ ム。
6. 前記熱分解ガスの一部又は熱分解ガスを精製した精製ガスの一部が、 前記チヤ一燃焼域の燃焼熱を補うための補助燃料として前記チヤ一燃焼 域に供給されることを特徴とする請求項 1、 3、 4又は 5のいずれか 1 項に記載の固体燃料ガス化システム。
7. 前記熱分解域に供給すべき高温水蒸気の温度及び Z又は流量を制御 するために、 前記チヤ一燃焼域の燃焼ガスの温度及び Z又は流量を調節 する制御手段を更に有することを特徴とする請求項 6に記載の固体燃料 ガス化システム。
8. 熱分解ガス給送路を介して前記熱分解域と連通する改質炉と、 前記合 成ガスの燃焼熱により空気を 6 0 0 °C以上の高温空気に加熱する空気加 熱装置とを更に有し、 前記高温空気は、 前記熱分解ガス給送路又は改質 炉に注入されることを特徴とする請求項 1乃至 7のいずれか 1項に記載 の固体燃料ガス化システム。
9. 熱分解ガス給送路を介して前記熱分解域と連通する改質炉を更に有し、 酸素が、 前記熱分解ガス給送路又は改質炉に注入されることを特徴とす る請求項 1乃至 7のいずれか 1項に記載の固体燃料ガス化システム。
1 0. 前記熱分解域と連通する熱回収 · ガス精製装置が設けられ、 前記熱 交換器は、 前記水蒸気を 9 0 0 °C以上の温度に加熱し、 熱分解域の熱分 解ガスは、 熱分解域から直に前記熱回収 · ガス精製装置に供給されるこ とを特徴とする請求項 1乃至 7のいずれか 1項に記載の固体燃料ガス化 システム。
1 1 . 前記熱分解域を形成する熱分解炉が設けられ、 熱分解炉は、 炉床に 堆積した固体燃料に対して前記高温水蒸気を炉底部から上向きに吹込み、 炉床に堆積した固体燃料を加熱し、 空気供給を絶った状態の前記熱分解 域に熱分解ガスを生成するように構成されることを特徴とする請求項 1 乃至 4のいずれか 1項に記載の固体燃料ガス化システム。
1 2. 前記炉床は、 多数の通気孔を備えた固定床であり、 前記固体燃料の 供給手段が、 前記熱分解域の上部に配置され、 前記高温水蒸気の供給路 が、 前記炉床の下側の炉底部に接続され、 高温水蒸気は、 炉床の通気孔 を通過して固体燃料に接触し、 固体燃料を加熱し、 熱分解ガスを発生さ せることを特徴とする請求項 1 1に記載の固体燃料ガス化システム。
1 3. 前記熱分解域を形成する熱分解炉が設けられ、 熱分解炉は、 炉床に 堆積した固体燃料に対して前記高温水蒸気を炉底部から上向きに吹込み、 炉床に堆積した固体燃料を加熱し、 空気供給を絶った状態の前記熱分解 域に熱分解ガスを生成するように構成され、 前記チヤ一燃焼域にチヤ一を供給するチヤ一供給路が前記炉底部に 接続されることを特徴とする請求項 1又は 3に記載の固体燃料ガス化シ ステム。
14. 前記炉床は、 多数の通気孔を備えた固定床であり、 前記固体燃料の 供給手段が、 前記熱分解域の上部に配置され、 前記高温水蒸気の供給路 が、 前記炉床の下側の炉底部に接続され、 高温水蒸気は、 炉床の通気孔 を通過して固体燃料に接触し、 固体燃料を加熱することを特徴とする請 求項 1 3に記載の固体燃料ガス化システム。
PCT/JP2004/007888 2004-06-01 2004-06-01 固体燃料ガス化システム WO2005118750A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2004/007888 WO2005118750A1 (ja) 2004-06-01 2004-06-01 固体燃料ガス化システム
CN2004800432211A CN1961062B (zh) 2004-06-01 2004-06-01 固体燃料气化系统
CA002569009A CA2569009A1 (en) 2004-06-01 2004-06-01 Solid-fuel gasification system
EP04735663A EP1772511A1 (en) 2004-06-01 2004-06-01 Solid-fuel gasification system
US11/628,002 US20070214719A1 (en) 2004-06-01 2004-06-01 Solid-Fuel Gasification System
AU2004320347A AU2004320347B2 (en) 2004-06-01 2004-06-01 Solid-fuel gasification system
KR1020067027965A KR20070034543A (ko) 2004-06-01 2006-12-29 고체연료 가스화 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/007888 WO2005118750A1 (ja) 2004-06-01 2004-06-01 固体燃料ガス化システム

Publications (1)

Publication Number Publication Date
WO2005118750A1 true WO2005118750A1 (ja) 2005-12-15

Family

ID=35462895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007888 WO2005118750A1 (ja) 2004-06-01 2004-06-01 固体燃料ガス化システム

Country Status (7)

Country Link
US (1) US20070214719A1 (ja)
EP (1) EP1772511A1 (ja)
KR (1) KR20070034543A (ja)
CN (1) CN1961062B (ja)
AU (1) AU2004320347B2 (ja)
CA (1) CA2569009A1 (ja)
WO (1) WO2005118750A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104058A1 (en) * 2007-02-27 2008-09-04 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
CN1935950B (zh) * 2006-09-21 2010-10-20 武汉凯迪工程技术研究总院有限公司 一种固体含碳原料的高温气化方法
CN1935951B (zh) * 2006-09-21 2010-12-08 武汉凯迪工程技术研究总院有限公司 一种固体含碳原料的高温气化装置
US8128728B2 (en) 2006-05-05 2012-03-06 Plasco Energy Group, Inc. Gas homogenization system
US8306665B2 (en) 2006-05-05 2012-11-06 Plasco Energy Group Inc. Control system for the conversion of carbonaceous feedstock into gas
US8372169B2 (en) 2006-05-05 2013-02-12 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
US8435315B2 (en) 2006-05-05 2013-05-07 Plasco Energy Group Inc. Horizontally-oriented gasifier with lateral transfer system
AU2008221197B2 (en) * 2008-02-27 2013-12-05 Omni Conversion Technologies Inc. Gasification system with processed feedstock/char conversion and gas reformulation
US9321640B2 (en) 2010-10-29 2016-04-26 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
JP2017109862A (ja) * 2015-12-18 2017-06-22 三菱日立パワーシステムズ株式会社 粉体搬送装置、チャー回収装置、粉体搬送方法、及びガス化複合発電設備

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4139338B2 (ja) * 2004-02-12 2008-08-27 本田技研工業株式会社 燃料ガス製造装置
SE531101C2 (sv) * 2006-12-14 2008-12-16 Rolf Ljunggren Förfarande och anläggning för framställning av syntesgas från biomassa
CN101932677A (zh) * 2008-01-14 2010-12-29 波思能源有限公司 用于生产富氢含量的合成气的生物质气化方法和装置
US8845772B2 (en) * 2008-01-23 2014-09-30 Peter J. Schubert Process and system for syngas production from biomass materials
JP5256807B2 (ja) * 2008-03-21 2013-08-07 株式会社Ihi ガス化設備の運転方法
SE533049C2 (sv) * 2008-06-12 2010-06-15 Cortus Ab Förfarande och anläggning för framställning av vätgas från biomassa
US8465562B2 (en) * 2009-04-14 2013-06-18 Indiana University Research And Technology Corporation Scalable biomass reactor and method
US20100275823A1 (en) * 2009-05-04 2010-11-04 I Power Energy Systems, Llc Special Pyrogen Waste treatment and electrical generation combination of systems
US8377154B2 (en) * 2010-05-18 2013-02-19 Kellogg Brown & Root Llc Gasification system and process for maximizing production of syngas and syngas-derived products
JP5461299B2 (ja) * 2010-05-20 2014-04-02 三菱重工業株式会社 ガス化発電プラント
IT1403189B1 (it) * 2011-01-05 2013-10-15 High Tech En Sro Sistema e metodo per la produzione di syngas da materiale a base carbonica
ITMI20112011A1 (it) * 2011-11-04 2013-05-05 Ansaldo Energia Spa Impianto e metodo per il recupero di energia da biomasse, in particolare da biomasse vegetali
CN102748772B (zh) * 2012-07-25 2014-10-15 上海工业锅炉研究所 一种高水分酒糟燃料直燃锅炉系统
FI124206B (fi) * 2012-09-13 2014-05-15 Valmet Power Oy Menetelmä tuhkan käsittelemiseksi ja tuhkan käsittelylaitos
CN108097703B (zh) * 2017-12-22 2021-05-28 江苏天楹环保能源成套设备有限公司 一种固体废物集中处理的等离子体气化熔融系统
US11142714B2 (en) * 2019-01-06 2021-10-12 Helge Carl Nestler Highly efficient and compact syngas generation system
CN110030558A (zh) * 2019-03-29 2019-07-19 西安交通大学 有机固体燃料热解、气化及焚烧一体化装置及处理方法
JP7352386B2 (ja) * 2019-06-17 2023-09-28 藤森工業株式会社 原料処理装置
KR20220109788A (ko) * 2021-01-29 2022-08-05 주식회사 엘지화학 합성가스의 제조방법
KR102608852B1 (ko) * 2021-10-06 2023-12-05 두산에너빌리티 주식회사 열분해가스 개질시스템

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298561A (ja) * 1997-04-30 1998-11-10 Babcock Hitachi Kk 石炭ガス化複合発電装置及び方法
JP2000296378A (ja) * 1999-04-13 2000-10-24 Mitsubishi Heavy Ind Ltd 廃棄物の処理方法
JP2001062437A (ja) * 1999-08-27 2001-03-13 Kunio Yoshikawa 廃棄物焼却システム及び廃棄物焼却方法
JP2001158885A (ja) * 1999-09-20 2001-06-12 Japan Science & Technology Corp 有形燃料のガス化装置及びガス化方法
JP2002038165A (ja) * 2000-07-21 2002-02-06 Japan Science & Technology Corp 湿潤燃料ガス化システム及びガス化方法
JP2002155289A (ja) * 2000-11-21 2002-05-28 Nippon Steel Corp 石炭の気流床型ガス化方法
JP2003238973A (ja) * 2001-09-28 2003-08-27 Ebara Corp 可燃ガス改質方法、可燃ガス改質装置及びガス化装置
JP2004210942A (ja) * 2002-12-27 2004-07-29 Japan Science & Technology Agency 固体燃料ガス化システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032161A1 (fr) * 1996-02-29 1997-09-04 Mitsubishi Heavy Industries, Ltd. Procede et appareil de production de vapeur surchauffee utilisant la chaleur generee par l'incineration de dechets
TWI241392B (en) * 1999-09-20 2005-10-11 Japan Science & Tech Agency Apparatus and method for gasifying solid or liquid fuel
JP3973840B2 (ja) * 2001-01-18 2007-09-12 独立行政法人科学技術振興機構 固形燃料ガス化装置
CA2461716A1 (en) * 2001-09-28 2003-04-10 Ebara Corporation Combustible gas reforming method and combustible gas reforming apparatus and gasification apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298561A (ja) * 1997-04-30 1998-11-10 Babcock Hitachi Kk 石炭ガス化複合発電装置及び方法
JP2000296378A (ja) * 1999-04-13 2000-10-24 Mitsubishi Heavy Ind Ltd 廃棄物の処理方法
JP2001062437A (ja) * 1999-08-27 2001-03-13 Kunio Yoshikawa 廃棄物焼却システム及び廃棄物焼却方法
JP2001158885A (ja) * 1999-09-20 2001-06-12 Japan Science & Technology Corp 有形燃料のガス化装置及びガス化方法
JP2002038165A (ja) * 2000-07-21 2002-02-06 Japan Science & Technology Corp 湿潤燃料ガス化システム及びガス化方法
JP2002155289A (ja) * 2000-11-21 2002-05-28 Nippon Steel Corp 石炭の気流床型ガス化方法
JP2003238973A (ja) * 2001-09-28 2003-08-27 Ebara Corp 可燃ガス改質方法、可燃ガス改質装置及びガス化装置
JP2004210942A (ja) * 2002-12-27 2004-07-29 Japan Science & Technology Agency 固体燃料ガス化システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435315B2 (en) 2006-05-05 2013-05-07 Plasco Energy Group Inc. Horizontally-oriented gasifier with lateral transfer system
US9109172B2 (en) 2006-05-05 2015-08-18 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
US8128728B2 (en) 2006-05-05 2012-03-06 Plasco Energy Group, Inc. Gas homogenization system
US8306665B2 (en) 2006-05-05 2012-11-06 Plasco Energy Group Inc. Control system for the conversion of carbonaceous feedstock into gas
US8372169B2 (en) 2006-05-05 2013-02-12 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
CN1935950B (zh) * 2006-09-21 2010-10-20 武汉凯迪工程技术研究总院有限公司 一种固体含碳原料的高温气化方法
CN1935951B (zh) * 2006-09-21 2010-12-08 武汉凯迪工程技术研究总院有限公司 一种固体含碳原料的高温气化装置
JP2011513516A (ja) * 2007-02-27 2011-04-28 プラスコエナジー アイピー ホールディングス、エス.エル.、ビルバオ、シャフハウゼン ブランチ 加工原料/チャー変換とガス改質を伴うガス化方式
US8690975B2 (en) 2007-02-27 2014-04-08 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
WO2008104058A1 (en) * 2007-02-27 2008-09-04 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
AU2008221197B2 (en) * 2008-02-27 2013-12-05 Omni Conversion Technologies Inc. Gasification system with processed feedstock/char conversion and gas reformulation
US9321640B2 (en) 2010-10-29 2016-04-26 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
JP2017109862A (ja) * 2015-12-18 2017-06-22 三菱日立パワーシステムズ株式会社 粉体搬送装置、チャー回収装置、粉体搬送方法、及びガス化複合発電設備

Also Published As

Publication number Publication date
AU2004320347B2 (en) 2009-08-13
CN1961062B (zh) 2010-08-18
EP1772511A1 (en) 2007-04-11
KR20070034543A (ko) 2007-03-28
US20070214719A1 (en) 2007-09-20
CA2569009A1 (en) 2005-12-15
CN1961062A (zh) 2007-05-09
AU2004320347A1 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
WO2005118750A1 (ja) 固体燃料ガス化システム
US6837910B1 (en) Apparatus and method for gasifying liquid or solid fuel
JP3973840B2 (ja) 固形燃料ガス化装置
US8936886B2 (en) Method for generating syngas from biomass including transfer of heat from thermal cracking to upstream syngas
CA2501841A1 (en) Carbonization and gasification of biomass and power generation system
JP4255279B2 (ja) 固体燃料ガス化システム
ES2132638T3 (es) Procedimiento para la generacion de un gas combustible.
JP5933072B2 (ja) 合成ガスを製造するための方法および装置
JP4753744B2 (ja) 有機性廃棄物の処理方法
JP2003336079A (ja) 熱分解ガスの改質方法
JP4037599B2 (ja) 固体又は液体燃料のガス化装置及びガス化方法
JP4033610B2 (ja) 湿潤燃料ガス化システム及びガス化方法
JP4930732B2 (ja) 循環流動層式ガス化方法及び装置
JP2004051745A (ja) バイオマスのガス化システム
JP5700270B2 (ja) 固体燃料ガス化装置
JP3984535B2 (ja) ガス化された固形燃料の改質装置及びその改質方法
TW200540372A (en) Solid fuel gasifying system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480043221.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11628002

Country of ref document: US

Ref document number: 2007214719

Country of ref document: US

Ref document number: 2569009

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004735663

Country of ref document: EP

Ref document number: 2004320347

Country of ref document: AU

Ref document number: 1020067027965

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2004320347

Country of ref document: AU

Date of ref document: 20040601

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004735663

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWP Wipo information: published in national office

Ref document number: 11628002

Country of ref document: US