CN101499337A - 线缆的制造方法 - Google Patents

线缆的制造方法 Download PDF

Info

Publication number
CN101499337A
CN101499337A CNA2009100024560A CN200910002456A CN101499337A CN 101499337 A CN101499337 A CN 101499337A CN A2009100024560 A CNA2009100024560 A CN A2009100024560A CN 200910002456 A CN200910002456 A CN 200910002456A CN 101499337 A CN101499337 A CN 101499337A
Authority
CN
China
Prior art keywords
carbon nano
nano tube
tube
cable
manufacture method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100024560A
Other languages
English (en)
Other versions
CN101499337B (zh
Inventor
姜开利
刘亮
刘锴
赵清宇
翟永超
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN2009100024560A priority Critical patent/CN101499337B/zh
Publication of CN101499337A publication Critical patent/CN101499337A/zh
Application granted granted Critical
Publication of CN101499337B publication Critical patent/CN101499337B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/016Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables
    • H01B13/0162Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables of the central conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种线缆的制造方法,包括以下步骤:提供一碳纳米管结构;形成导电材料附着于所述碳纳米管结构表面;形成一具导电性的碳纳米管线状结构;形成绝缘材料包覆所述碳纳米管线状结构;形成屏蔽材料包覆所述绝缘材料;以及形成保护材料包覆所述屏蔽材料。

Description

线缆的制造方法
技术领域
本发明涉及一种线缆的制造方法,尤其涉及一种基于碳纳米管的线缆的制造方法。
背景技术
线缆是电子产业里较为常用的信号传输线材,微米级尺寸的线缆更广泛应用在IT产品、医学仪器、空间设备中。传统的线缆内部设置有两个导体,内导体用以传输电信号,外导体用以屏蔽传输的电信号并且将其封闭在内部,从而使线缆具有高频损耗低、屏蔽及抗干扰能力强、使用频带宽等特性,请参见文献“Electromagnetic Shielding ofHigh-voltage Cables”(M.De Wulf,P.Wouters et.al.,Journal of Magnetism and Magnetic Materials,316,e908-e901(2007))。
一般情况下,线缆从内至外的结构依次为形成内导体的缆芯、包覆在缆芯外表面的绝缘结构、形成外导体的屏蔽结构和保护结构。其中,缆芯用来传输电信号,材料以铜、铝或铜锌合金为主。对于以金属材料形成的缆芯,最大问题在于交变电流在金属导体中传输时会产生趋肤效应(Skin Effect)。趋肤效应使金属导体中通过电流时的有效截面积减小,从而使导体的有效电阻变大,导致信号丢失。另外,以金属材料作为缆芯及屏蔽结构的线缆,其强度较小,质量及直径较大,无法满足某些特定条件,如航天领域、空间设备及超细微线缆的应用。
现有技术中,线缆的制造方法一般包括以下步骤:包覆聚合物于所述缆芯的外表面形成绝缘结构;将多股金属线直接或通过编织包覆在绝缘结构外形成屏蔽结构或用金属膜卷覆在绝缘结构外形成屏蔽结构;以及包覆一保护材料于所述屏蔽结构的外表面。
碳纳米管是一种新型一维纳米材料,其具有优异的导电性能、高的抗张强度和高热稳定性,在材料科学、化学、物理学等交叉学科领域已展现出广阔的应用前景。目前,已有将碳纳米管与金属混合形成复合材料,从而用来制造线缆的缆芯。然而,碳纳米管在金属中为无序排列,且很难分散均匀,仍无法解决上述金属导线中的趋肤效应问题。且该包含碳纳米管的缆芯的制造方法为将微量碳纳米管与金属通过真空熔融、真空烧结或真空热压的方法进行混合,制造方法较为复杂。
发明内容
有鉴于此,确有必要提供一种线缆的制造方法,该方法简单、成本较低、易于规模化生产,且所制造的线缆具有良好的导电性能。
一种线缆的制造方法,包括以下步骤:提供一碳纳米管结构;形成导电材料附着于所述碳纳米管结构表面;形成一具导电性的碳纳米管线状结构;形成绝缘材料包覆所述碳纳米管线状结构;形成屏蔽材料包覆所述绝缘材料;以及形成保护材料包覆所述屏蔽材料。
与现有技术相比较,本发明提供的碳纳米管线状结构是通过对所述碳纳米管结构进行扭转而制造,制备方法简单、成本较低、易于规模化生产。另外,由于所述线缆包括导电材料,故所述线缆具有较好的导电性能。
附图说明
图1是本发明第一实施例线缆的截面结构示意图。
图2是本发明第一实施例线缆中单根碳纳米管的结构示意图。
图3是本发明第一实施例线缆的制造方法的流程图。
图4是本发明第一实施例线缆的制造装置的结构示意图。
图5是本发明第一实施例碳纳米管膜的扫描电镜照片。
图6是本发明第一实施例沉积导电材料后的碳纳米管膜的扫描电镜照片。
图7是本发明第一实施例沉积导电材料后的碳纳米管膜中的碳纳米管的透射电镜照片。
图8是本发明第一实施例对沉积导电材料后的碳纳米管结构进行扭转后所形成的绞线结构的扫描电镜照片。
图9是本发明第一实施例绞线中沉积有导电材料的碳纳米管的扫描电镜照片。
图10是本发明第二实施例线缆的截面结构示意图。
图11是本发明第三实施例线缆的截面结构示意图。
具体实施方式
以下将结合附图详细说明本发明实施例线缆的结构及其制造方法。
本发明实施例提供一种线缆,该线缆包括至少一缆芯、包覆在缆芯外的至少一绝缘结构、至少一屏蔽结构和一保护结构。
请参阅图1,本发明第一实施例的线缆10为同轴线缆,该同轴线缆包括一个缆芯110、包覆在缆芯110外的绝缘结构120、包覆在绝缘结构120外的屏蔽结构130和包覆在屏蔽结构130外的保护结构140。其中,上述缆芯110、绝缘结构120、屏蔽结构130和保护结构140为同轴设置。
该缆芯110包括至少一碳纳米管线状结构。该碳纳米管线状结构为长径比较大的结构。具体地,该缆芯110可由一个单独的碳纳米管线状结构构成,也可由多个碳纳米管线状结构相互并排,相互扭转或相互缠绕形成。本实施例中,该缆芯110为一碳纳米管线状结构。该缆芯110的直径可以为4.5纳米~1毫米,优选地,该缆芯110的直径为10~30微米。可以理解,当将多个碳纳米管线状结构并排设置、扭转设置或缠绕设置时,该缆芯110的直径不限。所述缆芯110的直径可达20~30毫米。
该碳纳米管线状结构由碳纳米管和导电材料构成。具体地,该碳纳米管线状结构包括多个碳纳米管,并且,每个碳纳米管表面均包覆至少一层导电材料。其中,每个碳纳米管具有大致相等的长度,并且,多个碳纳米管通过范德华力首尾相连形成一碳纳米管线状结构。在该碳纳米管线状结构中,碳纳米管沿碳纳米管线状结构的轴向择优取向排列。进一步地,该碳纳米管线状结构可经过一扭转过程,形成一绞线结构。在上述具有绞线结构的碳纳米管线状结构中,碳纳米管绕碳纳米管线状结构的轴向螺旋状旋转排列。该碳纳米管线状结构的直径可以为4.5纳米~1毫米,优选地,该碳纳米管线状结构的直径为10~30微米。
请一并参阅图2,该碳纳米管线状结构中每一根碳纳米管111表面均包覆至少一层导电材料。具体地,该至少一层导电材料可包括与碳纳米管111表面直接结合的润湿层112、设置在润湿层外的过渡层113、设置在过渡层113外的导电层114以及设置在导电层114外的抗氧化层115。
由于碳纳米管111与大多数金属之间的润湿性不好,因此,上述润湿层112的作用为使导电层114与碳纳米管111更好的结合。形成该润湿层112的材料可以为铁、钴、镍、钯或钛等与碳纳米管111润湿性好的金属或它们的合金,该润湿层112的厚度为1~10纳米。本实施例中,该润湿层112的材料为镍,厚度约为2纳米。可以理解,该润湿层112为可选择结构。
上述过渡层113的作用为使润湿层112与导电层114更好的结合。形成该过渡层113的材料可以为与润湿层112材料及导电层114材料均能较好结合的材料,该过渡层113的厚度为1~10纳米。本实施例中,该过渡层113的材料为铜,厚度为2纳米。可以理解,该过渡层113为可选择结构。
上述导电层114的作用为使碳纳米管线状结构具有较好的导电性能。形成该导电层114的材料可以为铜、银或金等导电性好的金属或其合金,该导电层114的厚度为1~20纳米。本实施例中,该导电层114的材料为银,厚度约为10纳米。
上述抗氧化层115的作用为防止在线缆10的制造过程中所述导电层114在空气中被氧化,从而使缆芯110的导电性能下降。形成该抗氧化层115的材料可以为金或铂等在空气中不易氧化的稳定金属或它们的合金,该抗氧化层115的厚度为1~10纳米。本实施例中,该抗氧化层115的材料为铂,厚度为2纳米。可以理解,该抗氧化层115为可选择结构。
进一步地,为提高线缆10的强度,可在该抗氧化层115外进一步设置一强化层116。形成该强化层116的材料可以为聚乙烯醇(PVA)、聚苯撑苯并二恶唑(PBO)、聚乙烯(PE)或聚氯乙烯(PVC)等强度较高的聚合物,该强化层116的厚度为0.1~1微米。本实施例中,该强化层116的材料为聚乙烯醇(PVA),厚度为0.5微米。可以理解,该强化层116均为可选择结构。
所述绝缘结构120用于电气绝缘,可以选用聚四氟乙烯、聚乙烯、聚丙烯、聚苯乙烯、泡沫聚乙烯组合物或纳米粘土-高分子复合材料。纳米粘土-高分子复合材料中纳米粘土是纳米级层状结构的硅酸盐矿物,是由多种水合硅酸盐和一定量的氧化铝、碱金属氧化物及碱土金属氧化物组成,具耐火阻燃等优良特性,如纳米高岭土或纳米蒙脱土。高分子材料可以选用硅树脂、聚酰胺、聚烯烃如聚乙烯或聚丙烯等,但并不以此为限。本实施例优选泡沫聚乙烯组合物。
所述屏蔽结构130由一导电材料形成,用以屏蔽电磁干扰或无用外部信号干扰。具体地,所述屏蔽结构130可由多股金属线编织或用金属膜卷覆在绝缘结构120外形成,也可由多个碳纳米管线、单层有序碳纳米管膜、多层有序碳纳米管膜或无序碳纳米管膜缠绕或卷覆在绝缘结构120外形成,或可由含有碳纳米管的复合材料直接包覆在绝缘结构120表面。
其中,该金属膜或金属线的材料可以选择为铜、金或银等导电性好的金属或它们的合金。所述单层有序碳纳米管膜包括多个碳纳米管片段,每个碳纳米管片段具有大致相等的长度且每个碳纳米管片段由多个相互平行的碳纳米管构成,碳纳米管片段两端通过范德华力相互连接,从而形成连续的碳纳米管膜。所述碳纳米管线可通过对碳纳米管膜进行处理获得。所述碳纳米管线可包括多个绕碳纳米管线轴向螺旋排列的碳纳米管或包括多个沿碳纳米管线长度方向排列并首尾相连的碳纳米管。
所述含有碳纳米管的复合材料可以为金属与碳纳米管的复合或聚合物与碳纳米管的复合。该聚合物材料可以选择为聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)、聚碳酸酯(Polycarbonate,PC)、丙烯腈—丁二烯丙烯—苯乙烯共聚物(Acrylonitrile-Butadiene Styrene Terpolymer,ABS)、聚碳酸酯/丙烯腈—丁二烯—苯乙烯共聚物(PC/ABS)等高分子材料。将碳纳米管均匀分散于上述聚合物材料的溶液中,并将该混合溶液均匀涂覆于绝缘结构120表面,待冷却后形成一含碳纳米管的聚合物层。可以理解,该屏蔽结构130还可由碳纳米管复合膜或碳纳米管复合线状结构包裹或缠绕在所述绝缘结构120外形成。具体地,所述碳纳米管复合膜或碳纳米管金属复合线状结构中的碳纳米管有序排列,并且,该碳纳米管表面包覆至少一层导电材料。进一步地,该屏蔽结构130还可由上述多种材料在绝缘结构120外叠加构成。
所述保护结构140由绝缘材料制成,可以选用纳米粘土-高分子材料的复合材料,其中纳米粘土可以为纳米高岭土或纳米蒙脱土,高分子材料可以为硅树脂、聚酰胺、聚烯烃如聚乙烯或聚丙烯等,但并不以此为限。本实施例优选纳米蒙脱土-聚乙烯复合材料,其具有良好的机械性能、耐火阻燃性能、低烟无卤性能,不仅可以为线缆10提供保护,有效抵御机械、物理或化学等外来损伤,同时还能满足环境保护的要求。
请参阅图3及图4,本发明实施例中线缆10的制造方法主要包括以下步骤:
步骤一:提供一碳纳米管结构214。
该碳纳米管结构214可以为一碳纳米管膜或多层重叠设置的碳纳米管膜。所述碳纳米管膜包括多个碳纳米管,相邻的碳纳米管之间有间隙,且该碳纳米管平行于所述碳纳米管膜的表面。所述相邻的碳纳米管之间的距离可大于碳纳米管的直径。所述碳纳米管膜可具有自支撑结构。所谓“自支撑”即该碳纳米管膜无需通过一支撑体支撑,也能保持自身特定的形状。该自支撑的碳纳米管膜包括多个碳纳米管,该多个碳纳米管通过范德华力相互吸引并首尾相连,从而使碳纳米管膜具有特定的形状。
所述碳纳米管膜的制备方法可包括以下步骤:
首先,提供一碳纳米管阵列216,优选地,该阵列为超顺排碳纳米管阵列。
本发明实施例提供的碳纳米管阵列216为单壁碳纳米管阵列,双壁碳纳米管阵列,及多壁碳纳米管阵列中的一种或多种。本实施例中,该超顺排碳纳米管阵列的制备方法采用化学气相沉积法,其具体步骤包括:(a)提供一平整基底,该基底可选用P型或N型硅基底,或选用形成有氧化层的硅基底,本实施例优选为采用4英寸的硅基底;(b)在基底表面均匀形成一催化剂层,该催化剂层材料可选用铁(Fe)、钴(Co)、镍(Ni)或其任意组合的合金之一;(c)将上述形成有催化剂层的基底在700~900℃的空气中退火约30分钟~90分钟;(d)将处理过的基底置于反应炉中,在保护气体环境下加热到500~740℃,然后通入碳源气体反应约5~30分钟,生长得到超顺排碳纳米管阵列,其高度为200~400微米。该超顺排碳纳米管阵列为多个彼此平行且垂直于基底生长的碳纳米管形成的纯碳纳米管阵列。通过上述控制生长条件,该超顺排碳纳米管阵列中基本不含有杂质,如无定型碳或残留的催化剂金属颗粒等。该超顺排碳纳米管阵列中的碳纳米管彼此通过范德华力紧密接触形成阵列。该超顺排碳纳米管阵列与上述基底面积基本相同。
本实施例中碳源气可选用乙炔、乙烯、甲烷等化学性质较活泼的碳氢化合物,本实施例优选的碳源气为乙炔;保护气体为氮气或惰性气体,本实施例优选的保护气体为氩气。
其次,采用一拉伸工具从所述碳纳米管阵列216中拉取获得一碳纳米管膜。
所述碳纳米管膜的制备方法包括以下步骤:采用一拉伸工具从碳纳米管阵列216中拉取获得一碳纳米管膜。其具体包括以下步骤:(a)从一碳纳米管阵列中选定一个或具有一定宽度的多个碳纳米管,本实施例优选为采用具有一定宽度的胶带、镊子或夹子接触碳纳米管阵列216以选定一个或具有一定宽度的多个碳纳米管;(b)以一定速度拉伸该选定的碳纳米管,从而形成首尾相连的多个碳纳米管片段,进而形成一连续的碳纳米管膜214。该拉取方向沿基本垂直于碳纳米管阵列216的生长方向。
在上述拉伸过程中,该多个碳纳米管片段在拉力作用下沿拉伸方向逐渐脱离基底的同时,由于范德华力作用,该选定的多个碳纳米管片段分别与其它碳纳米管片段首尾相连地连续地被拉出,从而形成一连续、均匀且具有一定宽度的碳纳米管膜。该碳纳米管膜包括多个首尾相连的碳纳米管,该碳纳米管基本沿拉伸方向排列。请参阅图5,该碳纳米管膜包括多个择优取向排列的碳纳米管。进一步地,所述碳纳米管膜包括多个首尾相连且定向排列的碳纳米管片段,碳纳米管片段两端通过范德华力相互连接。该碳纳米管片段包括多个相互平行排列的碳纳米管。所述碳纳米管膜的长度及宽度与该碳纳米管阵列216的尺寸及步骤(a)中选定的多个碳纳米管的宽度有关,所述碳纳米管膜的宽度最大不超过该碳纳米管阵列216的直径,所述碳纳米管膜的长度可达100米以上。
该直接拉伸获得的择优取向排列的碳纳米管结构214比无序的碳纳米管结构具有更好的均匀性。同时该直接拉伸获得碳纳米管结构214的方法简单快速,适宜进行工业化应用。
步骤二:形成导电材料附着于所述碳纳米管结构214表面。
所述形成导电材料附着于所述碳纳米管结构214表面的方法可采用物理方法,如物理气相沉积法(PVD)包括真空蒸镀或离子溅射等,也可采用其他成膜方法,如化学方法,包括电镀或化学镀等。优选地,本实施例采用物理方法中的真空蒸镀法形成所述导电材料附着于所述碳纳米管结构214表面。
所述采用真空蒸镀法形成导电材料的方法包括以下步骤:首先,提供一真空容器210,该真空容器210具有一沉积区间,该沉积区间的底部和顶部分别放置至少一个蒸发源212,该至少一个蒸发源212按形成导电材料的先后顺序依次沿碳纳米管结构的拉伸方向设置,且每个蒸发源212均可通过一个加热装置(图未示)加热。上述碳纳米管结构214设置于上下蒸发源212中间并间隔一定距离,其中碳纳米管结构214正对上下蒸发源212设置。该真空容器210可通过外接一真空泵(图未示)抽气达到预定的真空度。所述蒸发源212材料为待沉积的导电材料。其次,通过加热所述蒸发源212,使其熔融后蒸发或升华形成导电材料蒸汽,该导电材料蒸汽遇到冷的碳纳米管结构214后,在碳纳米管结构214上下表面凝聚,形成导电材料附着于所述碳纳米管结构214表面。由于碳纳米管结构214中的碳纳米管之间存在间隙,并且碳纳米管结构214厚度较薄,导电材料可以渗透进入碳纳米管结构214之中,从而沉积在每根碳纳米管表面。沉积导电材料后的碳纳米管结构214的微观结构照片请参阅图6和图7。
可以理解,通过调节碳纳米管结构214和每个蒸发源212的距离以及蒸发源212之间的距离,可使每个蒸发源212具有一个沉积区。当需要沉积多层导电材料时,可将多个蒸发源212同时加热,使碳纳米管结构214连续通过多个蒸发源的沉积区,从而实现沉积多层导电材料。
为提高导电材料蒸汽密度并且防止导电材料被氧化,真空容器210内真空度应达到1帕(Pa)以上。本发明实施例中,所述真空容器210中的真空度为4×10-4Pa。
可以理解,也可将步骤一中的碳纳米管阵列216直接放入上述真空容器210中。首先,在真空容器210中采用一拉伸工具从所述碳纳米管阵列中拉取获得一碳纳米管结构214。然后,加热上述至少一个蒸发源212,沉积至少一层导电材料于所述碳纳米管结构214表面。以一定速度不断地从所述碳纳米管阵列216中拉取碳纳米管结构214,且使所述碳纳米管结构214连续地通过上述蒸发源212的沉积区,进而形成所述导电材料附着于所述碳纳米管结构214表面。故该真空容器210可实现具有导电材料的碳纳米管结构214的连续生产。
本发明实施例中,所述采用真空蒸镀法形成导电材料的方法具体包括以下步骤:形成一层润湿层于所述碳纳米管结构214表面;形成一层过渡层于所述润湿层的外表面;形成一层导电层于所述过渡层的外表面;形成一层抗氧化层于所述导电层的外表面。其中,上述形成润湿层、过渡层及抗氧化层的步骤均为可选择的步骤。具体地,可将上述碳纳米管结构214连续地通过上述各层材料所形成的蒸发源212的沉积区。
另外,在所述形成导电材料于所述碳纳米管结构214表面之后,可进一步包括在所述碳纳米管结构214表面形成强化层的步骤。所述形成强化层的步骤具体包括以下步骤:将形成有导电材料的碳纳米管结构214通过一装有聚合物溶液的装置220,使聚合物溶液浸润整个碳纳米管结构214,该聚合物溶液通过分子间作用力粘附于所述导电材料的外表面;以及固化聚合物溶液,形成一强化层。
步骤三、形成一具导电性的碳纳米管线状结构222。
当所述碳纳米管结构214的宽度较小时,如为0.5纳米~100微米,所述形成有至少一层导电材料的碳纳米管结构214即可为一碳纳米管线状结构222,可不需要做后续处理。
当所述碳纳米管结构214的宽度较大时,所述形成碳纳米管线状结构222的步骤可进一步包括对所述碳纳米管结构214进行机械处理的步骤。该对所述碳纳米管结构214进行机械处理的步骤可通过以下两种方式实现:对所述形成有至少一层导电材料的碳纳米管结构214进行扭转,形成碳纳米管线状结构222或切割所述形成有至少一层导电材料的碳纳米管结构214,形成碳纳米管线状结构222。
对所述碳纳米管结构214进行扭转,形成碳纳米管线状结构222的步骤可通过多种方式实现。本实施例可采用下述两种方式形成所述碳纳米管线状结构222:其一,通过将粘附于上述碳纳米管结构214一端的拉伸工具固定于一旋转电机上,扭转该碳纳米管结构214,从而形成一碳纳米管线状结构222。其二,提供一个尾部可以粘住碳纳米管结构214的纺纱轴,将该纺纱轴的尾部与碳纳米管结构214结合后,将该纺纱轴以旋转的方式扭转该碳纳米管结构214,形成一碳纳米管线状结构222。可以理解,上述纺纱轴的旋转方式不限,可以正转,可以反转,或者正转和反转相结合。优选地,所述扭转该碳纳米管结构的步骤为将所述碳纳米管结构214沿碳纳米管结构214的拉伸方向以螺旋方式扭转。扭转后所形成的碳纳米管线状结构222为一绞线结构,其扫描电镜照片请参见图8及图9。
所述切割碳纳米管结构214,形成碳纳米管线状结构222的步骤为:沿碳纳米管结构214的拉伸方向切割所述形成有至少一层导电材料的碳纳米管结构214,形成多个碳纳米管线状结构。上述多个碳纳米管线状结构222可进一步进行重叠、扭转,以形成一较大直径的碳纳米管线状结构222。
可以理解,当所述碳纳米管结构214的宽度较小时,所述碳纳米管结构214也可进一步进行扭转,形成所述碳纳米管线状结构22。
进一步地,多个碳纳米管线状结构222可平行设置组成一束状结构的碳纳米管线状结构222或相互扭转形成一绞线结构的碳纳米管线状结构222。该束状结构或绞线结构的碳纳米管线状结构222相比单个碳纳米管线状结构222具有较大的直径。另外,也可将沉积有导电材料的碳纳米管结构214重叠设置并扭转形成一碳纳米管线状结构222。所制备的碳纳米管线状结构222的直径不受拉取获得的碳纳米管膜的尺寸的限制,并可根据需要制备具有任意大小的直径的碳纳米管线状结构222。本实施例中,大约500层沉积有导电材料的碳纳米管结构214重叠设置并扭转形成一碳纳米管线状结构222,该碳纳米管线状结构222的直径可达到3-5毫米。
可以理解,本发明并不限于上述方法获得碳纳米管线状结构222,只要能使所述碳纳米管膜214形成碳纳米管线状结构222的方法都在本发明的保护范围之内。
经实验测试可知,采用上述方法得到的碳纳米管线状结构222的电阻率比直接将未包覆导电材料的碳纳米管结构214扭转获得的纯碳纳米管线的电阻率有所降低。该碳纳米管线状结构222的电阻率可为10×10-8Ω·m~500×10-8Ω·m,而纯碳纳米管线的电阻率则为1×10-5Ω·m~2×10-5Ω·m。本实施例中,纯碳纳米管线电阻率为1.91×10-5Ω·m,碳纳米管线状结构222的电阻率为360×10-8Ω·m。
所制得的碳纳米管线状结构222可进一步收集在一第一卷筒224上。收集方式可为将碳纳米管线状结构222缠绕在所述第一卷筒224上。所述碳纳米管线状结构222用作线缆的缆芯110。
可选择地,上述碳纳米管结构214的形成步骤、形成至少一层导电材料的步骤、强化层的形成步骤、碳纳米管结构214的扭转步骤及碳纳米管线状结构222的收集步骤均可在上述真空容器中进行,进而实现碳纳米管线状结构222的连续生产。
步骤四:形成绝缘材料包覆所述碳纳米管线状结构222。
所述绝缘材料可通过一第一挤压装置230包覆在所述碳纳米管线状结构222的外表面,该挤压装置将熔融态的绝缘材料涂覆在所述碳纳米管线状结构222的表面。本发明实施例中,所述绝缘材料优选为泡沫聚乙烯组合物。一旦碳纳米管线状结构222离开所述第一挤压装置230,泡沫聚乙烯组合物就会发生膨胀,以形成所述绝缘材料,进而形成所述绝缘结构120。
当所述绝缘材料为两层或两层以上时,可重复上述步骤。
步骤五:形成屏蔽材料包覆所述绝缘材料。
所述屏蔽材料232包括金属、碳纳米管或其结合。具体地,可将由所述屏蔽材料232组成的膜或线通过粘结剂粘结或直接缠绕在所述绝缘材料的外表面。该由所述屏蔽材料232组成的膜可为金属膜、碳纳米管膜或碳纳米管与金属的复合膜等膜状结构,其可由一第二卷筒234提供,并围绕所述绝缘材料卷覆,以便形成所述屏蔽结构130。优选地,所述膜状结构可沿纵向边缘进行重叠,以便完全屏蔽所述碳纳米管线状结构222。所述由所述屏蔽材料232组成的线可为碳纳米管线、金属线或碳纳米管与金属的复合线等线状结构,该线状结构可直接或编织成网状缠绕在所述绝缘材料的外表面。具体地,所述多根碳纳米管线、金属线或碳纳米管与金属的复合线可通过多个绕线架236沿不同的螺旋方向卷绕在所述绝缘材料的外表面。另外,所述屏蔽结构130也可由上述多种材料形成的编织层共同组成,并通过粘结剂粘结或直接缠绕在所述绝缘材料外表面。
本发明实施例中,可将多个碳纳米管线直接或编织成网状缠绕在所述绝缘材料外表面,以形成所述屏蔽结构130。每个碳纳米管线包括一扭转的碳纳米管线或非扭转的碳纳米管线。所述非扭转的碳纳米管线可为将从碳纳米管阵列中直接拉取获得的碳纳米管膜通过有机溶剂处理得到,该非扭转的碳纳米管线包括多个沿碳纳米管线长度方向排列并首尾相连的碳纳米管。所述扭转的碳纳米管线可为采用一机械力将所述碳纳米管膜两端沿相反方向扭转获得。该扭转的碳纳米管线包括多个绕碳纳米管线轴向螺旋排列的碳纳米管。
可以理解,当所述屏蔽结构130为两层或两层以上结构时,可重复上述步骤。
步骤六:形成保护材料包覆所述屏蔽材料。
所述保护材料可通过一第二挤压装置240施用到所述屏蔽材料外表面。所述聚合物熔体围绕在所述屏蔽材料的外表面被挤压,冷却后形成所述保护材料,进而形成所述保护结构140。
进一步地,可将所制造的的线缆收集在一第三卷筒260上,以便于储存和装运。
请参阅图10,本发明第二实施例提供一种线缆30,其包括多个缆芯310(图9中共显示七个缆芯)、每一缆芯310外覆盖一个绝缘介质层320、包覆在多个缆芯310外的一个屏蔽层330和一个包覆在屏蔽层330外表面的外护套340。屏蔽层330和绝缘介质层320的间隙内可填充绝缘材料。其中,每个缆芯310及绝缘介质层320、屏蔽层330和外护套340的结构、材料及制备方法与第一实施例中的缆芯110、绝缘介质层120、屏蔽层130和外护套140的结构、材料及制备方法基本相同。
请参阅图11,本发明第三实施例提供一种线缆40,其包括多个缆芯410(图10中共显示五个缆芯)、每一缆芯410外覆盖一个绝缘介质层420和一个屏蔽层430、以及包覆在多个缆芯410外表面的外护套440。屏蔽层430的作用在于对各个缆芯410进行单独的屏蔽,这样不仅可以防止外来因素对缆芯410内部传输的电信号造成干扰而且可以防止各缆芯410内传输的不同电信号间相互发生干扰。其中,每个缆芯410、绝缘介质层420、屏蔽层430和外护套440的结构、材料及制备方法与第一实施例中的缆芯110、绝缘介质层120、屏蔽层130和外护套140的结构、材料及制备方法基本相同。
本发明实施例提供的采用碳纳米管线状结构作为缆芯的线缆及其制备方法具有以下优点:其一,碳纳米管线状结构中包含多个通过范德华力首尾相连的碳纳米管,且每根碳纳米管表面均形成有导电材料,其中,碳纳米管起导电及支撑作用,在碳纳米管上沉积导电材料后,形成的碳纳米管线状结构比采用现有技术中的金属拉丝方法得到的金属导电丝更细,适合制作超细微线缆。其二,由于碳纳米管为中空的管状结构,且形成于碳纳米管外表面的导电材料厚度只有几个纳米,因此,电流在通过金属导电层时基本不会产生趋肤效应,从而避免了信号在线缆中传输过程中的衰减。其三,由于碳纳米管具有优异的力学性能,且具有中空的管状结构,因此,该含有碳纳米管的线缆具有比采用纯金属缆芯的线缆更高的机械强度及更轻的质量,适合特殊领域,如航天领域及空间设备的应用。其四,采用金属包覆的碳纳米管形成的碳纳米管线状结构作为缆芯比采用纯碳纳米管线作为缆芯具有更好的导电性。其五,由于碳纳米管线是通过对碳纳米管膜进行旋转或直接从碳纳米管阵列中拉取而制造,该方法简单、成本较低。其六,所述从碳纳米管阵列中拉取获得碳纳米管结构的步骤及形成导电材料的步骤均可在一真空容器中进行,有利于缆芯的规模化生产,从而有利于线缆的规模化生产。其七,由于该缆芯可由多个碳纳米管结构共同构成,该缆芯的直径不限,故该线缆可用于电力传输领域,且由于碳纳米管质量较轻,则该电力线缆质量较轻。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

Claims (23)

1.一种线缆的制造方法,包括以下步骤:
提供一碳纳米管结构;
形成导电材料附着于所述碳纳米管结构表面;
形成一具导电性的碳纳米管线状结构;
形成绝缘材料包覆所述碳纳米管线状结构;
形成屏蔽材料包覆所述绝缘材料;以及
形成保护材料包覆所述屏蔽材料。
2.如权利要求1所述的线缆的制造方法,其特征在于,所述碳纳米管结构包括一碳纳米管膜,该碳纳米管膜包括多个碳纳米管,相邻的碳纳米管之间有间隙,且该碳纳米管具有自支撑结构。
3.如权利要求1所述的线缆的制备方法,其特征在于,所述碳纳米管结构包括一碳纳米管膜,该碳纳米管膜包括多个碳纳米管,相邻的碳纳米管之间有间隙,且该碳纳米管平行于所述碳纳米管膜的表面。
4.如权利要求2或3所述的线缆的制备方法,其特征在于,所述碳纳米管膜通过直接拉取一碳纳米管阵列获得,该碳纳米管膜包括多个首尾相连的碳纳米管。
5.如权利要求4所述的线缆的制造方法,其特征在于,所述形成一具导电性的碳纳米管线状结构的步骤包括对附着有导电材料的碳纳米管结构进行机械处理的步骤。
6.如权利要求5所述的线缆的制造方法,其特征在于,所述机械处理的步骤包括:对所述碳纳米管结构进行扭转,形成碳纳米管线状结构或切割所述碳纳米管结构,形成碳纳米管线状结构。
7.如权利要求6所述的线缆的制造方法,其特征在于,所述对碳纳米管结构进行扭转,形成碳纳米管线状结构的步骤具体包括以下步骤:将上述碳纳米管结构一端固定于一旋转电机上;以及扭转该碳纳米管结构,从而形成一碳纳米管线状结构。
8.如权利要求6所述的线缆的制造方法,其特征在于,所述对碳纳米管结构进行扭转,形成碳纳米管线状结构的步骤具体包括以下步骤:提供一个尾部可以粘住碳纳米管结构的纺纱轴,将该纺纱轴的尾部与碳纳米管结构的一端结合;以及将该纺纱轴以旋转的方式扭转该碳纳米管结构,形成一碳纳米管线状结构。
9.如权利要求7或8所述的线缆的制造方法,其特征在于,所述扭转碳纳米管结构的过程包括沿碳纳米管结构的拉伸方向扭转该碳纳米管结构的步骤。
10.如权利要求6所述的线缆的制造方法,其特征在于,所述切割碳纳米管结构,形成碳纳米管线状结构的步骤包括以下步骤:沿碳纳米管结构的拉伸方向切割所述碳纳米管结构,形成碳纳米管线状结构。
11.如权利要求1所述的线缆的制造方法,其特征在于,所述形成导电材料的方法包括物理气相沉积法、化学镀及电镀中的一种。
12.如权利要求11所述的线缆的制造方法,其特征在于,所述形成导电材料的方法包括真空蒸镀法或溅射法。
13.如权利要求12所述的线缆的制造方法,其特征在于,所述形成导电材料的方法为真空蒸镀法,其包括以下步骤:
提供一真空容器,该真空容器具有一沉积区间,该沉积区间底部和顶部分别放置至少一个蒸发源,所述蒸发源的材料为待沉积的导电材料;
设置上述碳纳米管结构于上下蒸发源中间并间隔一定距离,碳纳米管结构正对上下蒸发源设置;以及
加热所述蒸发源,使其熔融后蒸发或升华形成导电材料蒸汽,该导电材料蒸汽遇到冷的碳纳米管结构后,在碳纳米管结构上下表面凝聚,形成导电材料附着于所述碳纳米管结构表面。
14.如权利要求13所述的线缆的制造方法,其特征在于,所述形成导电材料的过程包括形成一导电层于所述碳纳米管结构的外表面的步骤。
15.如权利要求14所述的线缆的制造方法,其特征在于,所述导电层的材料为金、银、铜或上述材料的合金,该导电层的厚度为1~20纳米。
16.如权利要求14所述的线缆的制造方法,其特征在于,在所述形成导电层的步骤之前进一步包括形成一层润湿层于所述碳纳米管结构表面的步骤,上述导电层形成在所述润湿层的外表面。
17.如权利要求16所述的线缆的制造方法,其特征在于,在所述形成导电层的步骤之前,形成润湿层的步骤之后进一步包括形成一层过渡层于所述润湿层的外表面,上述导电层形成在所述过渡层的外表面。
18.如权利要求14所述的线缆的制造方法,其特征在于,在所述形成导电层的步骤之后进一步包括形成一层抗氧化层于所述导电层的外表面。
19.如权利要求14所述的线缆的制造方法,其特征在于,在所述形成导电材料于所述碳纳米管结构表面之后,进一步包括在所述碳纳米管结构外表面形成强化层的步骤。
20.如权利要求19所述的线缆的制造方法,其特征在于,所述形成强化层的步骤具体包括以下步骤:将形成有导电材料的碳纳米管结构通过一装有聚合物溶液的装置,使聚合物溶液浸润整个碳纳米管结构,该聚合物溶液通过分子间作用力粘附于所述导电材料的外表面;以及固化聚合物溶液,形成一强化层。
21.如权利要求1所述的线缆的制造方法,其特征在于,所述绝缘材料为聚对苯二甲酸乙二醇酯、聚碳酸酯、丙烯腈一丁二烯丙烯一苯乙烯共聚物或聚碳酸酯/丙烯腈—丁二烯—苯乙烯共聚物。
22.如权利要求1所述的线缆的制造方法,其特征在于,所述屏蔽材料为金属、碳纳米管或其结合。
23.如权利要求22所述的线缆的制造方法,其特征在于,所述形成屏蔽材料的步骤包括将由金属、碳纳米管或其结合组成的膜或线通过粘结剂粘结或直接缠绕在所述绝缘材料的外表面的步骤。
CN2009100024560A 2008-02-01 2009-01-16 线缆的制造方法 Active CN101499337B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100024560A CN101499337B (zh) 2008-02-01 2009-01-16 线缆的制造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200810066044 2008-02-01
CN200810066044.9 2008-02-01
CN2009100024560A CN101499337B (zh) 2008-02-01 2009-01-16 线缆的制造方法

Publications (2)

Publication Number Publication Date
CN101499337A true CN101499337A (zh) 2009-08-05
CN101499337B CN101499337B (zh) 2013-01-09

Family

ID=40931936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100024560A Active CN101499337B (zh) 2008-02-01 2009-01-16 线缆的制造方法

Country Status (3)

Country Link
US (1) US8247036B2 (zh)
JP (1) JP5015971B2 (zh)
CN (1) CN101499337B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989136B (zh) * 2009-08-07 2012-12-19 清华大学 触摸屏及显示装置
CN109473232A (zh) * 2018-11-06 2019-03-15 深圳烯湾科技有限公司 碳纳米管导线的制备方法
CN113922212A (zh) * 2017-03-15 2022-01-11 天纳克有限责任公司 电晕点火器组件及其制造方法
TWI785100B (zh) * 2017-08-28 2022-12-01 美商美國琳得科股份有限公司 經絕緣化之奈米纖維紗

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499338B (zh) * 2008-02-01 2011-07-27 清华大学 绞线的制备方法
US8957312B2 (en) 2009-07-16 2015-02-17 3M Innovative Properties Company Submersible composite cable and methods
CN101996706B (zh) * 2009-08-25 2015-08-26 清华大学 一种耳机线及具有该耳机线的耳机
CN101998200A (zh) * 2009-08-25 2011-03-30 鸿富锦精密工业(深圳)有限公司 一种耳机线及具有该耳机线的耳机
US8673416B2 (en) * 2009-10-28 2014-03-18 Xerox Corporation Multilayer electrical component, coating composition, and method of making electrical component
CN101880035A (zh) 2010-06-29 2010-11-10 清华大学 碳纳米管结构
US9086523B2 (en) 2012-05-29 2015-07-21 The Boeing Company Nanotube signal transmission system
US9086522B1 (en) 2012-05-29 2015-07-21 The Boeing Company Devices for communicating optical signals and electrical signals over nanotubes
US9685258B2 (en) * 2012-11-09 2017-06-20 Northrop Grumman Systems Corporation Hybrid carbon nanotube shielding for lightweight electrical cables
DE102014005339B4 (de) * 2014-01-28 2022-06-09 Wolfgang B. Thörner Verfahren zur Herstellung eines Kontaktelements
CN104944408B (zh) 2014-03-31 2017-06-06 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN104944407B (zh) 2014-03-31 2017-06-06 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN104944409B (zh) 2014-03-31 2018-03-02 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN104944406B (zh) 2014-03-31 2018-02-27 清华大学 碳纳米管结构的制备方法
CN104973585B (zh) 2014-04-14 2017-04-05 清华大学 碳纳米管膜的制备方法
CN104973586B (zh) 2014-04-14 2017-06-06 清华大学 碳纳米管膜的制备方法
CN104973583B (zh) 2014-04-14 2017-04-05 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN104973584B (zh) 2014-04-14 2018-03-02 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN104973587B (zh) 2014-04-14 2017-05-17 清华大学 碳纳米管膜的制备方法
CN105097065B (zh) * 2014-04-23 2018-03-02 北京富纳特创新科技有限公司 碳纳米管复合导线
CN105399044B (zh) 2014-06-13 2017-07-07 清华大学 碳纳米管膜的制备方法
CN105271105B (zh) 2014-06-13 2017-01-25 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN105329872B (zh) 2014-06-16 2017-04-12 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN105329842B (zh) 2014-06-18 2017-06-06 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN105197875B (zh) 2014-06-19 2017-02-15 清华大学 图案化碳纳米管阵列的制备方法及碳纳米管器件
US10384050B2 (en) 2014-06-25 2019-08-20 Medtronic, Inc. Implantable medical lead conductor having carbon nanotube wire
CN105338460B (zh) 2014-07-21 2018-05-01 清华大学 热致发声装置及其制备方法
CN105712314B (zh) 2014-12-05 2017-12-01 清华大学 碳纳米管阵列的制备方法和碳纳米管膜的制备方法
KR101782035B1 (ko) * 2015-05-18 2017-09-28 태양쓰리시 주식회사 초극세 케이블 및 이의 제조 방법
US10395791B2 (en) 2015-08-28 2019-08-27 President And Fellows Of Harvard College Electrically conductive nanowire Litz braids
KR101728110B1 (ko) 2015-09-25 2017-05-02 재단법인 한국탄소융합기술원 전자파 차폐용 유연 박막 테이프 및 그 제조방법
US20170169932A1 (en) * 2015-12-15 2017-06-15 William J. Lambert Magnetic material coated wire inductor
FR3068029B1 (fr) * 2017-06-26 2022-12-16 Nawatechnologies Procede de fabrication de cables en nanotubes de carbone alignes
US11424048B2 (en) 2018-06-28 2022-08-23 Carlisle Interconnect Technologies, Inc. Coaxial cable utilizing plated carbon nanotube elements and method of manufacturing same
KR102483080B1 (ko) * 2022-01-07 2022-12-30 주식회사 이너턴스 인공지능을 활용한 항공기 소음 분류 및 추출 방법

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589822B2 (ja) * 1976-11-26 1983-02-23 東邦ベスロン株式会社 炭素繊維強化金属複合材料プリプレグ
US4461923A (en) * 1981-03-23 1984-07-24 Virginia Patent Development Corporation Round shielded cable and modular connector therefor
JPH07169340A (ja) * 1993-12-17 1995-07-04 Showa Electric Wire & Cable Co Ltd 同軸ケーブル
SE0001123L (sv) * 2000-03-30 2001-10-01 Abb Ab Kraftkabel
EP1313900A4 (en) * 2000-08-24 2011-12-07 Univ Rice William M UNIQUE CARBON NANOTUBES WRAPPED WITH POLYMERS
AU2002332422C1 (en) * 2001-07-27 2008-03-13 Eikos, Inc. Conformal coatings comprising carbon nanotubes
WO2003093169A2 (en) * 2002-04-29 2003-11-13 The Trustees Of Boston College Density controlled carbon nanotube array electrodes
CN100411979C (zh) * 2002-09-16 2008-08-20 清华大学 一种碳纳米管绳及其制造方法
CN1282216C (zh) 2002-09-16 2006-10-25 清华大学 一种灯丝及其制备方法
US20050208304A1 (en) * 2003-02-21 2005-09-22 California Institute Of Technology Coatings for carbon nanotubes
JP4134809B2 (ja) * 2003-05-16 2008-08-20 日立電線株式会社 極細同軸ケーブルの端末加工方法
EP1673489B1 (en) * 2003-07-11 2013-10-09 Cambridge Enterprise Limited Production of agglomerates from gas phase
JP4729751B2 (ja) * 2004-04-06 2011-07-20 株式会社潤工社 同軸ケーブル
WO2005102924A1 (ja) * 2004-04-19 2005-11-03 Japan Science And Technology Agency 炭素系微細構造物群、炭素系微細構造物の集合体、その利用およびその製造方法
KR101458846B1 (ko) * 2004-11-09 2014-11-07 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 나노섬유 리본과 시트 및 트위스팅 및 논-트위스팅 나노섬유 방적사의 제조 및 애플리케이션
TWI317143B (en) 2005-09-30 2009-11-11 Hon Hai Prec Ind Co Ltd A field meission device and method for making the same
CN100543905C (zh) * 2005-09-30 2009-09-23 北京富纳特创新科技有限公司 一种场发射装置及其制备方法
CN100500556C (zh) 2005-12-16 2009-06-17 清华大学 碳纳米管丝及其制作方法
TWI312337B (en) 2005-12-16 2009-07-21 Hon Hai Prec Ind Co Ltd Method for making the carbon nanotubes silk
CN1992099B (zh) * 2005-12-30 2010-11-10 鸿富锦精密工业(深圳)有限公司 导电复合材料及含有该导电复合材料的电缆
US7390963B2 (en) * 2006-06-08 2008-06-24 3M Innovative Properties Company Metal/ceramic composite conductor and cable including same
CN101086939B (zh) * 2006-06-09 2010-05-12 清华大学 场发射元件及其制备方法
CN101090011B (zh) * 2006-06-14 2010-09-22 北京富纳特创新科技有限公司 电磁屏蔽电缆
TWI330375B (en) 2006-06-30 2010-09-11 Hon Hai Prec Ind Co Ltd Electro magnetic interference suppressing cable
TWI320026B (en) 2006-06-30 2010-02-01 Field emission componet and method for making same
CN101003909A (zh) 2006-12-21 2007-07-25 上海交通大学 电化学组合沉积制备碳纳米管-金属复合膜结构的方法
US8709372B2 (en) * 2007-10-02 2014-04-29 Los Alamos National Security, Llc Carbon nanotube fiber spun from wetted ribbon
CN101497437B (zh) * 2008-02-01 2012-11-21 清华大学 碳纳米管复合膜的制备方法
CN101499331A (zh) * 2008-02-01 2009-08-05 北京富纳特创新科技有限公司 线缆
CN101499338B (zh) * 2008-02-01 2011-07-27 清华大学 绞线的制备方法
TWI345792B (en) 2008-03-07 2011-07-21 Hon Hai Prec Ind Co Ltd Cable

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989136B (zh) * 2009-08-07 2012-12-19 清华大学 触摸屏及显示装置
US8766927B2 (en) 2009-08-07 2014-07-01 Tsinghua University Touch panel and display device using the same
CN113922212A (zh) * 2017-03-15 2022-01-11 天纳克有限责任公司 电晕点火器组件及其制造方法
CN113922212B (zh) * 2017-03-15 2022-05-17 天纳克有限责任公司 电晕点火器组件及其制造方法
TWI785100B (zh) * 2017-08-28 2022-12-01 美商美國琳得科股份有限公司 經絕緣化之奈米纖維紗
CN109473232A (zh) * 2018-11-06 2019-03-15 深圳烯湾科技有限公司 碳纳米管导线的制备方法
CN109473232B (zh) * 2018-11-06 2020-01-21 深圳烯湾科技有限公司 碳纳米管导线的制备方法

Also Published As

Publication number Publication date
US8247036B2 (en) 2012-08-21
JP2009187944A (ja) 2009-08-20
JP5015971B2 (ja) 2012-09-05
US20090196982A1 (en) 2009-08-06
CN101499337B (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
CN101499337B (zh) 线缆的制造方法
CN101556839B (zh) 线缆
CN105244071B (zh) 线缆
CN101499328B (zh) 绞线
CN101499338B (zh) 绞线的制备方法
TWI345792B (en) Cable
TWI345793B (en) Cable
CN102063959B (zh) 线缆
CN101286384B (zh) 电磁屏蔽线缆
CN101286383A (zh) 电磁屏蔽线缆
CN101286385A (zh) 电磁屏蔽线缆
KR101189858B1 (ko) 케이블 및 그 제조방법
TWI380949B (zh) 奈米碳管長線結構
CN102110501B (zh) 线缆及其缆芯的制备方法
KR101276898B1 (ko) 탄소 나노튜브 복합재료 및 그 제조방법
TWI345794B (en) Method for making cable
TW201222563A (en) Cable
TWI329324B (en) Electro magnetic shielding cable
TWI329325B (en) Electro magnetic shielding cable
TWI335036B (en) Electro magnetic shielding cable

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant