TWI345792B - Cable - Google Patents

Cable Download PDF

Info

Publication number
TWI345792B
TWI345792B TW97108081A TW97108081A TWI345792B TW I345792 B TWI345792 B TW I345792B TW 97108081 A TW97108081 A TW 97108081A TW 97108081 A TW97108081 A TW 97108081A TW I345792 B TWI345792 B TW I345792B
Authority
TW
Taiwan
Prior art keywords
layer
carbon nanotube
cable
core
long
Prior art date
Application number
TW97108081A
Other languages
Chinese (zh)
Other versions
TW200939252A (en
Inventor
Kai-Li Jiang
Liang Liu
Kai Liu
Qing-Yu Zhao
Yong-Chao Zhai
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97108081A priority Critical patent/TWI345792B/en
Publication of TW200939252A publication Critical patent/TW200939252A/en
Application granted granted Critical
Publication of TWI345792B publication Critical patent/TWI345792B/en

Links

Landscapes

  • Insulated Conductors (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

100年05月13日修正替换頁 1345792 • t 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種線纜,尤其涉及一種基於奈米碳管的線 纜。 【先前技術】 [0002] 線纜係電子産業裏較爲常用的信號傳輸線材,微米級尺 寸的線纜更廣泛應用於IT産品、醫學儀器、空間設備中 。傳統的線缓内部設置有兩個導體*内導體用以傳輸電 信號,外導體用以屏蔽傳輸的電信號並且將其封閉於内 部,從而使線纜具有高頻損耗低、屏蔽及抗干擾能力强 、使用頻帶寬等特性,請參見文獻“ElectromagneticCorrective replacement page of May 13, 100 1345792 • t. Description of the invention: [Technical Field of the Invention] [0001] The present invention relates to a cable, and more particularly to a cable based on a carbon nanotube. [Prior Art] [0002] Cable is a commonly used signal transmission wire in the electronics industry. Micron-sized cables are more widely used in IT products, medical instruments, and space equipment. The conventional wire is internally provided with two conductors* inner conductors for transmitting electrical signals, and the outer conductors for shielding the transmitted electrical signals and enclosing them inside, so that the cables have low frequency loss, shielding and anti-interference ability. Strong, use frequency bandwidth and other characteristics, please refer to the literature "Electromagnetic

Shielding of High-Voltage Cables'* (M. De Wulf, P. Wouters et. a 1., Journal of Magnetism and Magnetic Materials, 316, e908-e901 (2007))。 [0003] 一般情况下,線纜從内至外的結構依次爲形成内導體的 纜芯、包覆於纜芯外表面的絕緣介質層、形成外導體的 屏蔽層和外護套。其中,纜芯用來傳輸電信號,材料以 銅、鋁或銅鋅合金爲主。屏蔽層通常由多股余屬線編織 或用金屬薄膜卷覆於絕緣介質層外形成,用以屏蔽電磁 干擾或無用外部信號干擾。對於以金屬材料形成的纜芯 ,最大問題在於交變電流於金屬導體中傳輸時會産生趨 膚效應(Skin Effect)。趨膚效應使金屬導體中通過電 流時的有效截面積减小,從而使導體的有效電阻變大, 導致線纜的傳輸效率降低或傳輸信號丟失。另外,以金 097108081 表單編號A0101 第3頁/共35頁 1003166897-0 1345792 __Shielding of High-Voltage Cables'* (M. De Wulf, P. Wouters et. a 1., Journal of Magnetism and Magnetic Materials, 316, e908-e901 (2007)). [0003] In general, the structure of the cable from the inside to the outside is, in order, a core forming an inner conductor, an insulating dielectric layer covering the outer surface of the core, a shield forming an outer conductor, and an outer sheath. Among them, the core is used to transmit electrical signals, and the material is mainly copper, aluminum or copper-zinc alloy. The shielding layer is usually formed by braiding a plurality of residual wires or wrapping it with a metal film over the insulating dielectric layer to shield electromagnetic interference or unwanted external signal interference. For a core formed of a metallic material, the biggest problem is that an alternating current causes a skin effect when transmitted in a metallic conductor. The skin effect reduces the effective cross-sectional area when passing current through the metal conductor, thereby increasing the effective resistance of the conductor, resulting in a decrease in the transmission efficiency of the cable or a loss of the transmission signal. In addition, in gold 097108081 Form No. A0101 Page 3 of 35 1003166897-0 1345792 __

100年05月13日-修正替换W 屬材料作爲纜芯及屏蔽層的線纜,其强度較小,質量及 直徑較大,無法滿足某些特定條件,如航天領域、空間 設備及超細微線纜的應用。 [0004] 奈米碳管係一種新型一維奈米材料,其具有優異的導電 性能、高的抗張强度和高熱穩定性,於材料科學、化學 、物理學等交叉學科領域已展現出廣闊的應用前景。目 前,已有將奈米碳管與金屬混合形成複合材料,從而用 來製造線纜的纜芯。然而,奈米碳管於金屬中爲無序分 散,仍無法解决上述金屬纜芯中的趨膚效應問題。 [0005] 有鑒於此,提供一種具有良好的導電性能、較强的機械 性能、較輕的質量及較小的直徑,並且易於製造,適於 低成本大量生産的線纜實為必要。 【發明内容】 [0006] 一種線纜,包括至少一個纜芯、包覆於纜芯外的至少一 個絕緣介質層、包覆於絕緣介質層外的至少一個屏蔽層 和包覆於屏蔽層外的一個外護套,該纜芯包括導電材料 及多個奈米碳管,其中,該纜芯中的奈米碳管沿纜芯軸 向有序排列,該導電材料包覆於奈米碳管表面。 [0007] 相較於先前技術,本技術方案採用含有有序排列的奈米 碳管的纜芯的線纜具有以下優點:其一,由於奈米碳管 於纜芯中沿纜芯軸向有序排列,故,該含有奈米碳管的 纜芯具有較好的導電性能。其二,由於奈米碳管具有優 異的力學性能,及較輕的質量,故,該含有奈米碳管的 線纜具有比採用純金屬纜芯的線纜更高的機械强度及更 輕的質量,適合特殊領域,如航天領域及空間設備的應 097108081 表單編號 A0101 第 4 頁/共 35 頁 1003166897-0May 13, 100 - Corrected the replacement of W-based materials as cable cores and shielded cables, which have low strength, large mass and large diameter, and cannot meet certain specific conditions, such as aerospace, space equipment and ultra-fine lines. Cable application. [0004] Nano carbon tube is a new type of one-dimensional nano-material, which has excellent electrical conductivity, high tensile strength and high thermal stability, and has been widely displayed in the interdisciplinary fields such as materials science, chemistry and physics. Application prospects. At present, a carbon nanotube has been mixed with a metal to form a composite material, thereby manufacturing a cable core. However, the carbon nanotubes are disorderly dispersed in the metal and still cannot solve the skin effect problem in the above metal core. In view of the above, it is necessary to provide a cable having good electrical conductivity, strong mechanical properties, lighter weight, and smaller diameter, and which is easy to manufacture and suitable for low-cost mass production. SUMMARY OF THE INVENTION [0006] A cable includes at least one cable core, at least one insulating dielectric layer covering the outside of the cable core, at least one shielding layer covering the outside of the insulating dielectric layer, and covering the shielding layer An outer sheath comprising a conductive material and a plurality of carbon nanotubes, wherein the carbon nanotubes in the core are arranged in an axial direction along the core of the core, and the conductive material is coated on the surface of the carbon nanotube . [0007] Compared with the prior art, the present technical solution adopts a cable containing a core of an ordered arrangement of carbon nanotubes, which has the following advantages: First, since the carbon nanotubes are axially along the core of the core in the core The arrangement is such that the core containing the carbon nanotubes has good electrical conductivity. Second, because of the excellent mechanical properties and light weight of the carbon nanotubes, the cable containing carbon nanotubes has higher mechanical strength and lighter weight than cables with pure metal cores. Quality, suitable for special fields, such as aerospace and space equipment should be 097108081 Form No. A0101 Page 4 / Total 35 Page 1003166897-0

1345792 ' I 100年05月13日梭正替換頁 用。 【實施方式】 [0008] 以下將結合附圖詳細說明本技術方案實施例線纜的結構 及其製備方法。 [0009] 本技術方案實施例提供一種線纜,該線纜包括至少一纜 芯、包覆於纜芯外的至少一絕緣介質層、至少一屏蔽層 和一外護套。 [0010] 請參閱圖1,本技術方案第一實施例的線纜10爲同軸線纜 ,該同軸線纜包括一個纜芯110、包覆於纜芯110外的絕 緣介質層120、包覆於絕緣介質層120外的屏蔽層130和 包覆於屏蔽層130外的外護套140。其中,上述纜芯110 、絕緣介質層120、屏蔽層130和外護套140爲同轴設置 〇 [0011] 該纜芯110包括至少一奈米碳管長線結構。具體地,該纜 芯110可由一個單獨的奈米碳管長線結構構成,也可由多 個奈米碳管長線結構相互纏繞形成。本實施例中,該纜 芯110爲一奈米碳管長線結構。該纜芯110的直徑可以爲 4. 5奈米〜1毫米,優選地,該纜芯的直徑爲,10~30微米。 [0012] 該奈米碳管長線結構由奈米碳管和導電材料構成。具體 地,該奈米碳管長線結構包括多個奈米碳管,並且,每 個奈米碳管表面均包覆至少一導電材料層。其中,每個 奈米碳管具有大致相等的長度,並且,多個奈米碳管通 過凡德瓦爾力首尾相連形成一奈米碳管長線結構。於該 奈米碳管長線結構中,奈米碳管沿奈米碳管長線結構的 097108081 表單編號A0101 第5頁/共35頁 1003166897-0 1345792 100年05,g 13日梭正 轴向擇優取向排列。進一步地,該奈米碳管長線結構可 經過一扭轉過程,形成一絞線結構。於上述絞線結構申 ’奈米碳管繞絞線結構的轴向螺旋狀旋轉排列。該奈米 兔管長線結構的直徑可以爲4. 5奈米〜1〇〇微米,優選地, 該奈米碳管長線結構的直徑爲1〇〜30微米。 [0013] 請參見圖2,該奈米碳管長線結構中每一根奈米碳管ln 表面均包覆至少一導電材料層。具體地,該導電材料層 包括與奈米碳管111表面直接結合的潤濕層丨丨2 '設置於 潤濕層外的過渡層丨13、設置於過渡層113外的導電層 114及設置於導電層114外的抗氧化層丨15。 [0014] 由於奈米碳管111與大多數金屬之間的潤濕性不好,故, 上述潤濕層112的作用爲使導電層i丨4與奈米碳管丨1丄更 好的結合。形成該潤濕層112的材料可以爲鎳、鈀或鈦等 與奈米碳管111濁祕好的金屬或它們的合金,該潤濕層 112的厚度爲卜1〇奈米。本實施例中,該潤濕層ιΐ2的材 料爲錄’厚度約爲2奈米。可以理解,該潤濕層爲可選擇 結構。 [0015] 上述過渡層113的作用爲使潤濕層112與導電層114更好 的結合。形成該過渡層113的材料可以爲與潤濕層ιΐ2材 料及導電層114材料均能較好結合的材料,該過渡層 的厚度爲卜ίο奈米。本實施例中,該過渡層113的材料爲 銅’厚度爲2奈米。可以理解,該過渡層113爲可選擇结 構。 、。 [0016] 上述導電層114的作用爲使奈米碳管長線結構具有較好的 097108081 表單編號A0101 第6頁/共35頁 1003166897-0 1345792 [ΪΟΟ 年 05 月 13j~ V電性能。形成該導電層114的材料可以爲銅銀或金等 導电性好的金屬或它們的合金,該導電層〗14的厚度爲 卜20奈米。本實施例中,該導電層114的材料爲銀,厚度 約爲5奈米。 [0017] 上述抗氧化層115的作用爲防止於線纜1〇的製造過程中導 電層114於空氣_被氧化,從而使纜芯〗1〇的導電性能下 降。形成該抗氧化層115的材料可以爲金或鉑等於空氣_ 不易氧化的穩定金屬或它們的合金,該抗氧化層115的厚 度爲卜10奈米。本實施例中,該抗氧化層115的材料爲鉑 ,厚度爲2奈米。可以理解,該抗氧化層115爲可選擇結 構。 [0018] 進一步地,爲提高線纜10的强度,可於該抗氧化層115外 進一步設置一强化層116 ^形成該强化層116的材料可以 爲聚乙烯醇(PVA)、聚苯撑笨並二噁唑(pB〇)、聚乙 烯(PE)或聚氯乙烯(PVC)等强度較高的聚合物,該强 化層116的厚度爲〇. 微米。本實施例中,該强化層 11 6的材料爲聚乙烯醇,厚度爲〇. 5微米。可以理解,該 强化層11 6均爲可選擇結構β [0019] 絕緣介質層12G用於電氣絕緣,可以選用聚四氟乙稀、聚 乙稀、聚輯、聚苯乙稀、祕聚乙軸合物或奈米黏 土一高分子複合材料。奈米黏土一高分子複合材料中奈 米黏土係奈米級層狀結構的矽酸鹽礦物,係由多種水合 矽酸鹽和一定量的氧化鋁、鹼金屬氧化物及鹼土金屬氧 化物組成,具耐火阻燃等優良特性,如奈米高嶺土或奈 米蒙脫土。.高分子材料可以選用矽樹脂、聚醯胺、聚烯 097108081 表單編號Α0101 第7頁/共35頁 1003166897-0 1345792 100年05月13日修正替 烴如聚乙稀或聚⑽等,但並不以此爲限。本實施例優 選泡沫聚乙稀組合物。 [0020] 屏敗層130由-導電材料形成,用以屏蔽電磁干擾或無用 外孔號干擾。具體地,屏蔽層13〇可由多股金屬線編織 或用金屬薄膜卷覆於絕緣介質層120外形成,也可由多個 奈米碳管長線、單層有序奈米碳管薄膜、多層有序奈米 碳管薄膜或無序奈米碳管薄膜纏繞或卷覆於絕緣介質層 120外形成’或可由含有奈米碳管的複合材料直接包覆於 絕緣介質層120表面。 [0021] 其中,該金屬薄膜或金屬線的材料可以選擇爲銅、金或 銀等導電性好的金屬或它們的合金。該奈米碳管長線、 單層有序奈米碳管薄膜或多層有序奈米碳管薄膜包括多 個奈米碳管束諸’每個奈米碳管束片段具有大致相等 的長度且每個奈米碳管朿片段由多個相互平行的奈米碳 管構成,奈米碳管束片段兩端通過凡德瓦爾力相互連接 ,從而形成連續的奈米碳管薄膜或奈米碳管長線。該複 合材料可以爲金屬與奈米碳管的複合或聚合物與奈米碳 官的複合·>該聚合物材料可以選擇爲聚對苯二甲酸乙二 醇酯(Polyethylene Terephthalate,PET)、聚碳 酸酯(Polycarbonate, PC)、丙烯腈一丁二烯丙烯— 苯乙烯共聚物(Acrylonitrile-Butadiene Styrene1345792 ' I was on May 13th, 2015. [Embodiment] The structure of the cable of the embodiment of the present technical solution and the preparation method thereof will be described in detail below with reference to the accompanying drawings. [0009] Embodiments of the present disclosure provide a cable including at least one cable core, at least one insulating dielectric layer covering the cable core, at least one shielding layer, and an outer sheath. [0010] Referring to FIG. 1 , the cable 10 of the first embodiment of the present invention is a coaxial cable, and the coaxial cable includes a cable core 110 , an insulating dielectric layer 120 covering the outer core 110 , and The shielding layer 130 outside the insulating dielectric layer 120 and the outer sheath 140 covering the shielding layer 130. Wherein, the cable core 110, the insulating dielectric layer 120, the shielding layer 130 and the outer sheath 140 are coaxially disposed. [0011] The cable core 110 includes at least one carbon nanotube long-line structure. Specifically, the core 110 may be formed of a single carbon nanotube long-line structure or may be formed by winding a plurality of carbon nanotube long-length structures. In this embodiment, the core 110 is a long carbon nanotube structure. The core 110 may have a diameter of from 4. 5 nm to 1 mm. Preferably, the core has a diameter of 10 to 30 μm. [0012] The nano carbon tube long-line structure is composed of a carbon nanotube and a conductive material. Specifically, the carbon nanotube long-line structure includes a plurality of carbon nanotubes, and each of the carbon nanotube surfaces is coated with at least one layer of a conductive material. Wherein each of the carbon nanotubes has substantially the same length, and a plurality of carbon nanotubes are connected end to end by a van der Waals force to form a long carbon nanotube structure. In the long-line structure of the carbon nanotubes, the carbon nanotubes along the long-line structure of the carbon nanotubes are 097108081. Form No. A0101 Page 5 of 35 pages 1003166897-0 1345792 100 years 05, g 13-day shuttle positive orientation arrangement. Further, the long carbon nanotube structure can undergo a twisting process to form a stranded structure. In the above-mentioned twisted wire structure, the carbon nanotubes are arranged in an axial spiral shape. The nanotube tubular long-line structure may have a diameter of 4.5 nm to 1 μm. Preferably, the nanotube long-length structure has a diameter of 1 〇 30 μm. [0013] Referring to FIG. 2, the surface of each of the carbon nanotubes ln in the long carbon nanotube structure is coated with at least one layer of conductive material. Specifically, the conductive material layer includes a wetting layer 2' directly bonded to the surface of the carbon nanotube 111, a transition layer 13 disposed outside the wetting layer, a conductive layer 114 disposed outside the transition layer 113, and a layer An anti-oxidation layer 15 outside the conductive layer 114. [0014] Since the wettability between the carbon nanotubes 111 and most of the metals is not good, the above-mentioned wetting layer 112 functions to better combine the conductive layer i丨4 with the carbon nanotubes. . The material for forming the wetting layer 112 may be a metal such as nickel, palladium or titanium which is turbid with the carbon nanotubes 111 or an alloy thereof, and the thickness of the wetting layer 112 is a nanometer. In this embodiment, the material of the wetting layer ι 2 is recorded to have a thickness of about 2 nm. It will be appreciated that the wetting layer is of an alternative construction. [0015] The transition layer 113 functions to better bond the wetting layer 112 to the conductive layer 114. The material for forming the transition layer 113 may be a material which can be well combined with the material of the wetting layer ι2 and the material of the conductive layer 114, and the thickness of the transition layer is 卜 ο ο. In this embodiment, the transition layer 113 is made of copper having a thickness of 2 nm. It will be appreciated that the transition layer 113 is a selectable structure. ,. [0016] The above conductive layer 114 functions to make the carbon nanotube long-line structure have a good 097108081 Form No. A0101 Page 6 / Total 35 Page 1003166897-0 1345792 [ΪΟΟ年月月13j~V Electrical Performance. The material for forming the conductive layer 114 may be a metal having good conductivity such as copper silver or gold or an alloy thereof, and the thickness of the conductive layer 14 is 20 nm. In this embodiment, the conductive layer 114 is made of silver and has a thickness of about 5 nm. [0017] The above-mentioned anti-oxidation layer 115 functions to prevent the conductive layer 114 from being oxidized in the air during the manufacturing process of the cable 1〇, thereby lowering the electrical conductivity of the core. The material for forming the oxidation resistant layer 115 may be gold or platinum equal to a stable metal which is not easily oxidized or an alloy thereof, and the thickness of the oxidation resistant layer 115 is 10 nm. In this embodiment, the material of the oxidation resistant layer 115 is platinum and has a thickness of 2 nm. It will be appreciated that the oxidation resistant layer 115 is a selectable structure. [0018] Further, in order to improve the strength of the cable 10, a reinforcing layer 116 may be further disposed outside the oxidation resistant layer 115. The material forming the strengthening layer 116 may be polyvinyl alcohol (PVA) or polyphenylene. A higher strength polymer such as dioxazole (pB), polyethylene (PE) or polyvinyl chloride (PVC), the reinforcing layer 116 having a thickness of 〇. 5微米。 In this embodiment, the material of the reinforcing layer 116 is polyvinyl alcohol, the thickness of 〇. 5 microns. It can be understood that the strengthening layer 116 is an optional structure β [0019] The insulating dielectric layer 12G is used for electrical insulation, and may be selected from the group consisting of polytetrafluoroethylene, polyethylene, poly, polystyrene, and polyethylene Compound or nano-clay a polymer composite. Nano-clay-polymer composites of nano-layered silicate minerals of nano-clay, composed of a variety of hydrated silicates and a certain amount of alumina, alkali metal oxides and alkaline earth metal oxides. It has excellent properties such as fire retardant and flame retardant, such as nano kaolin or nano montmorillonite. . Polymer materials can be selected from enamel resin, polyamine, polyene 097108081 Form No. 1010101 Page 7 / Total 35 pages 1003166897-0 1345792 Modified on May 13, 100 for hydrocarbons such as polyethylene or poly (10), etc. Not limited to this. This embodiment is preferably a foamed polyethylene composition. [0020] The screen layer 130 is formed of a conductive material for shielding electromagnetic interference or unwanted external hole number interference. Specifically, the shielding layer 13 can be formed by braiding a plurality of metal wires or wrapping the metal film on the outside of the insulating dielectric layer 120, or by using a plurality of carbon nanotube long wires, a single-layer ordered carbon nanotube film, and a multi-layered order. The carbon nanotube film or the disordered carbon nanotube film is wound or rolled over the insulating dielectric layer 120 to form 'or may be directly coated on the surface of the insulating dielectric layer 120 by a composite material containing a carbon nanotube. [0021] wherein the material of the metal thin film or the metal wire may be selected from a conductive metal such as copper, gold or silver or an alloy thereof. The carbon nanotube long-line, single-layer ordered carbon nanotube film or multi-layer ordered carbon nanotube film comprises a plurality of carbon nanotube bundles, each of which has substantially the same length and each nanometer The carbon nanotube segment is composed of a plurality of mutually parallel carbon nanotubes, and the carbon nanotube bundle segments are connected to each other by van der Waals force to form a continuous carbon nanotube film or a long carbon nanotube tube. The composite material may be a composite of a metal and a carbon nanotube or a composite of a polymer and a nanocarbon. · The polymer material may be selected from a polyethylene terephthalate (PET), a poly Polycarbonate (PC), acrylonitrile-butadiene propylene-styrene copolymer (Acrylonitrile-Butadiene Styrene)

Terpolymer, ABS)、聚碳酸酯/丙稀腈—丁二稀—笨 乙烯共聚物(PC/ABS)等高分子材料。將奈米碳管均勻 刀放於上述聚合物材料的溶液中,並將該混合溶液均勻 塗覆於絕緣介質層120表面,待冷却後形成一含奈米碳管 097108081 表單編號A0101 第8頁/共35頁 1003166897-0 1345792 100年05月13日梭正替換頁 的聚合物層。可以理解,該屏蔽層130還可由奈米碳管複 合薄膜或奈米碳管複合長線結構包裹或纏繞於絕緣介質 層120外形成。具體地,所述奈米碳管金屬複合薄膜或奈 米碳管金屬複合長線結構中的奈米碳管有序排列,並且 ,該奈米碳管表面包覆至少一導電材料層。進一步地, 該屏蔽層130還可由上述多種材料於絕緣介質層120外組 合構成。 [0022] 外護套140由絕緣材料製成,可以選用奈米黏土一高分子 材料的複合材料,其中奈米黏土可以爲奈米高嶺土或奈 米蒙脫土,高分子材料可以爲矽樹脂、聚醯胺、聚烯烴 如聚乙烯或聚丙烯等,但並不以此爲限。本實施例優選 奈米蒙脫土一聚乙烯複合材料,其具有良好的機械性能 、耐火阻燃性能、低烟無鹵性能,不僅可以爲線纜10提 供保護,有效抵禦機械、物理或化學等外來損傷,同時 還能滿足環境保護的要求。 [0023] 請參閱圖3及圖4,本技術方案實施例中線纜10的製備方 法主要包括以下步驟: [0024] 步驟一:提供一奈米碳管陣列216,優選地,該陣列爲超 順排奈米碳管陣列。 [0025] 本技術方案實施例提供的奈米碳管陣列2 1 6爲單壁奈米碳 管陣列,雙壁奈米碳管陣列,及多壁奈米碳管陣列中的 一種或多種。本實施例中,該超順排奈米碳管陣列的製 備方法採用化學氣相沈積法,其具體步驟包括:(a)提 供一平整基底,該基底可選用P型或N型矽基底,或選用 097108081 表單編號A0101 第9頁/共35頁 1003166897-0 1345792 100年05月13日梭正替换苜 形成有氧化層的矽基底,本實施例優選爲採用4英寸的矽 基底;(b)於基底表面均勻形成一催化劑層,該催化劑 層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意 組合的合金之一;(c)將上述形成有催化劑層的基底於 700〜900 °C的空氣中退火約30分鐘-90分鐘;(d)將處 理過的基底置於反應爐中,於保護氣體環境下加熱到 500〜740 °C,然後通入碳源氣體反應約5〜30分鐘,生長 得到超順排奈米碳管陣列,其高度爲200〜400微米。該超 順排奈米碳管陣列爲多個彼此平行且垂直於基底生長的 奈米碳管形成的純奈米碳管陣列。通過上述控製生長條 件,該超順排奈米碳管陣列中基本不含有雜質,如無定 型碳或殘留的催化劑金屬顆粒等。該超順排奈米碳管陣 列中的奈米碳管彼此通過凡德瓦爾力緊密接觸形成陣列 。該超順排奈米碳管陣列與上述基底面積基本相同。 [0026] 本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質 較活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔; 保護氣體爲氮氣或惰性氣體,本實施例優選的保護氣體 爲氬氣。 [0027] 步驟二:採用一拉伸工具從所述奈米碳管陣列216中拉取 獲得一奈米碳管結構214。 [0028] 所述奈米碳管結構214的製備方法包括以下步驟:(a) 從上述奈米碳管陣列216中選定一定寬度的多個奈米碳管 束片段,本實施例優選爲採用具有一定寬度的膠帶或一 針尖接觸奈米碳管陣列21 6以選定一定寬度的多個奈米碳 管束片段;(b)以一定速度沿基本垂直於奈米碳管陣列 097108081 表單編號A0101 第10頁/共35頁 1003166897-0Terpolymer, ABS), polycarbonate / acrylonitrile - butyl diene - stupid ethylene copolymer (PC / ABS) and other polymer materials. The carbon nanotube is evenly placed in the solution of the above polymer material, and the mixed solution is uniformly applied to the surface of the insulating dielectric layer 120 to form a carbon nanotube-containing tube 097108081 after cooling. Form No. A0101 Page 8 / Total 35 pages 1003166897-0 1345792 On May 13, 100, the shuttle was replacing the polymer layer of the page. It can be understood that the shielding layer 130 can also be formed by wrapping or wrapping the carbon nanotube composite film or the carbon nanotube composite long-line structure outside the insulating dielectric layer 120. Specifically, the carbon nanotubes in the carbon nanotube metal composite film or the carbon nanotube metal composite long-line structure are arranged in an order, and the surface of the carbon nanotube is coated with at least one conductive material layer. Further, the shielding layer 130 may also be composed of a plurality of materials described above which are combined outside the insulating dielectric layer 120. [0022] The outer sheath 140 is made of an insulating material, and a nano-clay-polymer composite material may be selected, wherein the nano-clay may be nano-kaolin or nano-montmorillonite, and the polymer material may be an anthracene resin. Polyamide, polyolefin such as polyethylene or polypropylene, etc., but not limited to this. The present embodiment is preferably a nano montmorillonite-polyethylene composite material, which has good mechanical properties, fire-retardant properties, low smoke and halogen-free properties, and can not only provide protection for the cable 10, but also effectively resist mechanical, physical or chemical. External damage can also meet the requirements of environmental protection. [0023] Referring to FIG. 3 and FIG. 4, the method for preparing the cable 10 in the embodiment of the present technical solution mainly includes the following steps: [0024] Step 1: providing a carbon nanotube array 216, preferably, the array is super Align the array of carbon nanotubes. [0025] The carbon nanotube array 2 16 provided in the embodiment of the present technical solution is one or more of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or Use 097108081 Form No. A0101 Page 9 / Total 35 Page 1003166897-0 1345792 On May 13th, 100th, the shuttle is replacing the crucible base with the oxide layer formed. This embodiment is preferably a 4-inch crucible base; (b) A catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be one selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof; (c) the substrate on which the catalyst layer is formed is 700 Annealing in air at ~900 °C for about 30 minutes - 90 minutes; (d) placing the treated substrate in a reaction furnace, heating to 500~740 °C under a protective gas atmosphere, and then passing a carbon source gas to react After 5 to 30 minutes, a super-aligned carbon nanotube array is grown to a height of 200 to 400 μm. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed of a plurality of carbon nanotubes that are parallel to each other and grown perpendicular to the substrate. By controlling the growth conditions as described above, the super-aligned carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles. The carbon nanotubes in the super-sequential carbon nanotube array are in close contact with each other to form an array by van der Waals force. The super-sequential carbon nanotube array is substantially the same area as the above substrate. [0026] In this embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, which is preferred in this embodiment. The shielding gas is argon. [0027] Step 2: Pulling a carbon nanotube structure 214 from the carbon nanotube array 216 using a stretching tool. [0028] The preparation method of the carbon nanotube structure 214 includes the following steps: (a) selecting a plurality of carbon nanotube bundle segments of a certain width from the carbon nanotube array 216, and the embodiment preferably has a certain Width of the tape or a tip of the needle contacts the carbon nanotube array 21 6 to select a plurality of carbon nanotube bundle segments of a certain width; (b) at a certain speed along a substantially perpendicular to the carbon nanotube array 097108081 Form No. A0101 Page 10 / Total 35 pages 1003166897-0

1345792 • I1345792 • I

[0029] [0030] [0031] [0032] 100年05月13日梭正替換頁 216生長方向拉伸該多個奈米碳管束片段,以形成一連續 的奈米碳管結構214。 於上述拉伸過程中,該多個奈米碳管束片段於拉力作用 下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 用,該選定的多個奈米碳管束片段分別與其它奈米碳管 束片段首尾相連地連續地被拉出,從而形成一奈米碳管 結構。該奈米碳管結構214包括多個首尾相連且定向排列 的奈米碳管束。該奈米碳管結構214中奈米碳管的排列方 向基本平行於奈米碳管結構214的拉伸方向。 該奈米碳管結構214爲一奈米碳管薄膜或一奈米碳管線。 具體地,當所選定的多個奈米碳管束片段的寬度較大時 ,所獲得的奈米碳管結構214爲一奈米碳管薄膜,其微觀 結構請參閱圖5 ;當所選定的多個奈米碳管束片段的寬度 較小時,所獲得的奈米碳管結構214可近似爲一奈米碳管 線。 該直接拉伸獲得的擇優取向排列的奈米碳管結構214比無 序的奈米碳管結構具有更好的均勻性。同時該直接拉伸 獲得奈米碳管結構214的方法簡單快速,適宜進行工業化 應用。 步驟三:形成至少一導電材料層於所述奈米碳管結構214 表面,形成一奈米碳管長線結構222。 本實施例採用物理氣相沈積法(PVD)如真空蒸鍍或離子 濺射等沈積導電材料層。優選地,本實施例採用真空蒸 鍍法形成至少一層導電材料層。 097108081 表單編號A0101 第11頁/共35頁 1003166897-0 [0033] 1345792 100年05月13日核正替換w [0034] 所述採用真空蒸鍍法形成至少一層導電材料層的方法包 括以下步驟:首先,提供一真空容器210,該真空容器 210具有一沈積區間,該沈積區間底部和頂部分別放置至 少一個蒸發源212,該至少一個蒸發源212按形成至少一 層導電材料層的先後順序依次沿奈米碳管結構的拉伸方 向設置,且每個蒸發源21 2均可通過一個加熱裝置(圖未 示)加熱。上述奈米碳管結構214設置於上下蒸發源212 中間並間隔一定距離,其中奈米碳管結構214正對上下蒸 發源212設置。該真空容器210可通過外接一真空泵(圖 未示)抽氣達到預定的真空度。所述蒸發源212材料爲待 沈積的導電材料。其次,通過加熱所述蒸發源212,使其 熔融後蒸發或升華形成導電材料蒸汽,該導電材料蒸汽 遇到冷的奈米碳管結構214後,於奈米碳管結構214上下 表面凝聚,形成導電材料層。由於奈米碳管結構214中的 奈米碳管之間存在間隙,並且奈米碳管結構214厚度較薄 ,導電材料可以滲透進入奈米碳管結構214之中,從而沈 積於每根奈米破管表面。沈積導電材料層後的奈米碳管 結構214的微觀結構照片請參閱圖6和圖7。 [0035] 可以理解,通過調節奈米碳管結構214和每個蒸發源212 的距離及蒸發源212之間的距離,可使每個蒸發源212具 有一個沈積區。當需要沈積多層導電材料層時,可將多 個蒸發源212同時加熱,使奈米碳管結構214連續通過多 個蒸發源的沈積區,從而實現沈積多層導電材料層。 [0036] 爲提高導電材料蒸汽密度並且防止導電材料被氧化,真 空容器210内真空度應達到1帕(Pa)以上。本技術方案 097108081 表單編號A0101 第12頁/共35頁 1003166897-0 1345792 [0037] [0038] [0039] 100年05月13日修正替換頁 實施例中,真空容器中的真空度爲4xl(T4Pa。 可以理解,也可將步驟一中的奈米碳管陣列216直接放入 上述真空容器210中。首先,於真空容器210中採用一拉 伸工具從所述奈米碳管陣列中拉取獲得一奈米碳管結構 214。然後,加熱上述至少一個蒸發源212,沈積至少一 層導電材料於所述奈米碳管結構214表面。以一定速度不 斷地從所述奈米碳管陣列21 6中拉取奈米碳管結構214, 且使所述奈米碳管結構214連續地通過上述蒸發源212的 沈積區,進而形成奈米碳管長線結構222。故該真空容器 210可實現奈米碳管長線結構222的連續生産。 本技術方案實施例中,所述採用真空蒸鍍法形成至少一 層導電材料層的方法具體包括以下步驟:形成一層潤濕 層於所述奈米碳管結構214表面;形成一層過渡層於所述 潤濕層的外表面;形成一層導電層於所述過渡層的外表 面;形成一層抗氧化層於所述導電層的外表面。其中, 上述形成潤濕層、過渡層及抗氧化層的步驟均爲可選擇 的步驟。具體地,可將上述奈米碳管結構214連續地通過 上述各層材料所形成的蒸發源212的沈積區。 另外,於所述形成至少一層導電材料層於所述奈米碳管 結構214表面之後,可進一步包括於所述奈米碳管結構 214表面形成强化層的步驟。所述形成强化層的步驟具體 包括以下步驟:將形成有至少一個導電材料層的奈米碳 管結構214通過一裝有聚合物溶液的裝置220,使聚合物 溶液浸潤整個奈米碳管結構214,該聚合物溶液通過分子 間作用力黏附於所述至少一個導電材料層的外表面;及 097108081 表單編號A0101 第13頁/共35頁 1003166897-0 1345792 __ 100年05月13日梭正替换苜 凝固聚合物,形成一强化層。 [0040] 當所述奈米碳管結構214爲一奈米碳管線時,所述形成有 至少一個導電材料層的奈米碳管線即爲一奈米碳管長線 結構,不需要做後續處理。 [0041] 當所述奈米碳管結構214爲一奈米碳管薄膜時,所述形成 奈米碳管長線結構222的步驟可進一步包括對所述奈米碳 管結構214進行機械處理的步驟。該機械處理步驟可通過 以下兩種方式實現:對所述形成有至少一個導電材料層 的奈米碳管結構214進行扭轉,形成奈米碳管長線結構 222或切割所述形成有至少一個導電材料層的奈米碳管結 構214,形成奈米碳管長線結構222。 [0042] 對所述奈米碳管結構214進行扭轉,形成奈米碳管長線結 構222的步驟可通過以下兩種方式實現:其一,通過將黏 附於上述奈米碳管結構214 —端的拉伸工具固定於一旋轉 電機上,扭轉該奈米碳管結構214,從而形成一奈米碳管 長線結構222。其二,提供一個尾部可以黏住奈米碳管結 構214的紡紗軸,將該紡紗軸的尾部與奈米碳管結構214 結合後,將該紡紗軸以旋轉的方式扭轉該奈米碳管結構 214,形成一奈米碳管長線結構222 »可以理解,上述紡 紗軸的旋轉方式不限,可以正轉,可以反轉,或者正轉 和反轉相結合。優選地,所述扭轉該奈米礙管結構的步 驟爲將所述奈米碳管結構214沿奈米碳管結構214的拉伸 方向以螺旋方式扭轉。扭轉後所形成的奈米碳管長線結 構222爲一絞線結構,其掃描電鏡照片請參見圖8。 097108081 表單編號A0101 第14頁/共35頁 1003166897-0 1345792 [0043] [0044] [0045] [0046] [0047] [0048] 100年05月13日修正替換頁 所述切割奈米碳管結構214,形成奈米碳管長線結構222 的步驟爲:沿奈米碳管結構的拉伸方向切割所述奈米碳 管結構214,形成多個奈米碳管長線結構。上述多個奈米 碳管長線結構222可進一步進行重叠、扭轉,以形成一較 大直徑的奈米碳管長線結構222。 可以理解,本技術方案並不限於上述方法獲得奈米碳管 長線結構222,只要能使所述奈米碳管薄膜214形成奈米 碳管長線結構222的方法都於本技術方案的保護範圍之内 〇 所製得的奈米碳管長線結構222可進一步收集於一第一捲 筒224上。收集方式爲將奈米碳管長線結構222纏繞於所 述第一捲筒224上。所述奈米碳管長線結構222用作線纜 的纜芯。 可選擇地,上述奈米碳管結構214的形成步驟、形成至少 一層導電層的步驟、强化層的形成步驟、奈米碳管結構 21 4的扭轉步驟及奈米碳管長線結構222的收集步驟均可 於上述真空容器中進行,進而實現奈米碳管長線結構222 的連續生產。 步驟四:形成至少一絕緣介質層於所述所述奈米碳管長 線結構2 22的外表面。 所述絕緣介質層可通過一第一擠壓裝置230包覆於所述奈 米碳管長線結構222的外表面,該擠壓裝置將聚合物熔體 組合物塗覆於所述奈米碳管長線結構222的表面。本技術 方案實施例中,所述聚合物熔體組合物優選爲泡沫聚乙 097108081 表單編號A0101 第15頁/共35頁 1003166897-0 1345792 100年05月13日修正替換亩 烯組合物。一旦奈米碳管長線結構222離開所述第一擠壓 裝置230,聚合物熔體組合物就會發生膨脹,以形成絕緣 介質層。 [0049] 當所述絕緣介質層爲兩層或兩層以上時,可重複上述步 驟。 [0050] 步驟五:形成至少一屏蔽層於所述絕緣介質層的外表面 〇 [0051] 提供一屏蔽帶232,該屏蔽帶232由一第二捲筒234提供 。將該屏蔽帶232圍繞絕緣介質層卷覆,以便形成屏蔽層 。屏蔽帶232可選用一金屬薄膜、奈米碳管薄膜或奈米碳 管複合薄膜等帶狀膜結構或奈米碳管長線、奈米碳管複 合長線結構或金屬線等線狀結構。另外,所述屏蔽帶232 也可由上述多種材料形成的編織層共同組成,並通過黏 結劑黏結或直接纏繞於所述絕緣介質層外表面。 [0052] 本技術方案實施例中,所述屏蔽層由多個奈米碳管長線 組成,該奈米碳管長線直接或編織成網狀纏繞於所述絕 緣介質層外。每個奈米碳管長線包括多個從奈米碳管束 陣列長出的奈米碳管束片段,每個奈米碳管束片段具有 大致相等的長度且每個奈米碳管束片段由多個相互平行 的奈米碳管束構成,其中,奈米碳管束片段兩端通過凡 德瓦爾力相互連接。 [0053] 優選地,所述帶狀膜結構的屏蔽帶232沿縱向邊緣進行重 叠,以便完全屏蔽纜芯。所述奈米碳管長線、奈米碳管 複合長線結構或金屬線等線狀結構的屏蔽帶232可直接或 097108081 表單編號A0101 第16頁/共35頁 1003166897-0 1345792 [0054] [0055] [0056] [0057] [0058] 100年05月13日修正替換頁 編織成網狀纏繞於絕緣介質層的外表面。具體地,所述 多根奈米碳管長線或金屬線可通過多個繞線架236沿不同 的螺旋方向捲繞於絕緣介質層的外表面。 可以理解,當所述屏蔽層爲兩層或兩層以上結構時,可 重複上層步驟。步驟六:形成一外護套於所述屏蔽層的 外表面。 所述外護套可通過一第二擠壓裝置240施用到所述屏蔽層 外表面。所述聚合物熔體圍繞於所述屏蔽層的外表面被 擠壓,冷却後形成外護套。 進一步地,可將所製造的的線纜收集於一第三捲筒260上 ,以利於儲存和裝運。 請參閱圖9,本技術方案第二實施例提供一種線纜30包括 多個纜迖310 (圖9中共顯示七個纜芯)、每一纜芯310外 覆蓋一個絕緣介質層320、包覆於多個纜芯310外的一個 屏蔽層330和一個包覆於屏蔽層330外表面的外護套340 。屏蔽層330和絕緣介質層320的間隙内可填充絕緣材料 。其中,每個纜芯310及絕緣介質層320、屏蔽層330和 外護套340的結構、材料及製備方法與第一實施例中的纜 芯110、絕緣介質層120、屏蔽層130和外護套140的結構 、材料及製備方法基本相同。 請參閱圖10,本技術方案第三實施例提供一種線纜40包 括多個纜芯410 (圖10中共顯示五個纜芯)、每一纜芯 410外覆蓋一個絕緣介質層420和一個屏蔽層430、及包 覆於多個纜芯410外表面的外護套440。屏蔽層430的作 097108081 表單編號A0101 第17頁/共35頁 1003166897-0 1345792 100年05月13日按正替换苜 用於於對各個纜芯410進行單獨的屏蔽,這樣不僅可以防 止外來因素對纜芯410内部傳輸的電信號造成干擾而且可 以防止各纜芯410内傳輸的不同電信號間相互發生干擾。 其中,每個纜芯410、絕緣介質層420、屏蔽層430和外 護套440的結構、材料及製備方法與第一實施例中的纜芯 110、絕緣介質層120、屏蔽層130和外護套140的結構、 材料及製備方法基本相同。 [0059] 本技術方案實施例提供的採用奈米碳管長線結構作爲纜 芯的線纜及其製備方法具有以下優點:其一,奈米碳管 長線結構中包含多個通過凡德瓦爾力首尾相連的奈米碳 管束片段,且每根奈米碳管表面均形成有導電材料層, 其中,奈米碳管束片段起導電及支撑作用,於奈米碳管 上沈積金屬導電層後,形成的奈米碳管長線結構比採用 先前技術中的金屬拉絲方法得到的金屬導電絲更細,適 合製作超細微線纜。其二,由於奈米碳管爲中空的管狀 結構,且形成於奈米碳管外表面的金屬導電層厚度只有 幾個奈米,故,電流於通過金屬導電層時基本不會産生 趨膚效應,從而避免了信號於線纜中傳輸過程中的衰减 。其三,由於奈米碳管具有優異的力學性能,且具有中 空的管狀結構,故,該含有奈米碳管的線纜具有比採用 純金屬纜芯的線纜更高的機械强度及更輕的質量,適合 特殊領域,如航天領域及空間設備的應用。其四,採用 金屬包覆的奈米碳管形成的奈米碳管長線結構作爲纜芯 比採用純奈米碳管繩作爲纜芯具有更好的導電性。其五 ,由於奈米碳管長線結構係通過對奈米碳管薄膜進行旋 097108081 表單编號A0101 第18頁/共35頁 1003166897-0 100年05月13日核正替換頁 1345792 轉或直接從奈米碳管陣列中拉取而製造,該方法簡單、 成本較低。其六,所述從奈米碳管陣列_拉取獲得奈米 碳管結構的步驟及形成至少一層導電材料層的步驟均可 於一真空容器中進行,有利於纜芯的規模化生產,從而 有利於線纜的規模化生産。 [0060] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0061] 圖1係本技術方案第一實施例的線纜的截面結構示意圖。 [0062] 圖2係本技術方案第一實施例的線纜中單根奈米碳管的結 構示意圖。 [0063] 圖3係本技術方案第一實施例線纜的製造方法的流程圖。 [0064] 圖4係本技術方案第一實施例線纜的製造裝置的結構示意 圖。 [0065] 圖5係本技術方案第一實施例的奈米碳管薄膜掃描電鏡照 片。 [0066] 圖6係本技術方案第一實施例沈積導電材料層後的奈米碳 管薄膜的掃描電鏡照片。 [0067] 圖7係本技術方案第一實施例沈積導電材料層後的奈米碳 管薄膜中的奈米碳管的透射電鏡照片。 097108081 表單編號A0101 第19頁/共35頁 1003166897-0 1345792 _ 100年05月13日修正替換亩 [0068] 圊8係本技術方案第一實施例對奈米碳管結構進行扭轉後 所形成的纟父線結構的掃描電鏡照片。 [0069] 圖9係本技術方案第二實施例線纜的截面結構示意圖。 [0070] 圖10係本技術方案第三實施例線纜的截面結構示意圖。 【主要元件符號說明】 [0071] 線纜:10,30,40 [0072] 纜芯:110,310,410 [0073] 奈米碳管:111 [0074] 潤濕層:112 [0075] 過渡層:113 [0076] 導電層:114 [0077] 抗氧化層:115 [0078] 强化層:116 [0079] 絕緣介質層:120,320,420 [0080] 屏蔽層:130,330,430 [0081] 外護套:140,340,440 [0082] 真空容器:21 0 [0083] 蒸發源:212 [0084] 奈米碳管結構214 [0085] 奈米碳管陣列:216 097108081 表單編號A0101 第20頁/共35頁 1003166897-0 100年05月13日梭正替换頁 1345792 [0086] 裝置:220 [0087] 奈米碳管長線結構:222 [0088] 第一捲筒:224 [0089] 第一擠壓裝置:230 [0090] 屏蔽帶:232 [0091] 第二捲筒:234 [0092] 繞線架:236 [0093] 第二擠壓裝置:240 [0094] 第三捲筒:260 097108081 表單編號A0101 第21頁/共35頁 1003166897-0[0032] [0032] The shuttle positive replacement page 216 stretches the plurality of carbon nanotube bundle segments in a growth direction to form a continuous carbon nanotube structure 214. In the above stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction under the action of the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively associated with the other naphthalenes due to the van der Waals force. The carbon nanotube bundle segments are continuously pulled out end to end to form a carbon nanotube structure. The carbon nanotube structure 214 includes a plurality of bundles of carbon nanotubes that are connected end to end and oriented. The arrangement of the carbon nanotubes in the carbon nanotube structure 214 is substantially parallel to the direction of stretching of the carbon nanotube structure 214. The carbon nanotube structure 214 is a carbon nanotube film or a nano carbon line. Specifically, when the width of the selected plurality of carbon nanotube bundle segments is larger, the obtained carbon nanotube structure 214 is a carbon nanotube film, and the microstructure thereof is shown in FIG. 5; When the width of the carbon nanotube bundle segments is small, the obtained carbon nanotube structure 214 can be approximated as a nanocarbon line. The preferentially oriented aligned carbon nanotube structure 214 obtained by direct stretching has better uniformity than the disordered carbon nanotube structure. At the same time, the direct stretching method for obtaining the carbon nanotube structure 214 is simple and rapid, and is suitable for industrial application. Step 3: forming at least one conductive material layer on the surface of the carbon nanotube structure 214 to form a carbon nanotube long-line structure 222. This embodiment deposits a layer of a conductive material by physical vapor deposition (PVD) such as vacuum evaporation or ion sputtering. Preferably, this embodiment forms at least one layer of a conductive material by vacuum evaporation. 097108081 Form No. A0101 Page 11 of 35 1003166897-0 [0033] 1345792 May 13th, 100th Nuclear Replacement w [0034] The method of forming at least one layer of conductive material by vacuum evaporation comprises the following steps: First, a vacuum container 210 is provided. The vacuum container 210 has a deposition interval. At the bottom and the top of the deposition interval, at least one evaporation source 212 is respectively disposed, and the at least one evaporation source 212 is sequentially arranged in the order of forming at least one layer of conductive material. The stretching direction of the carbon nanotube structure is set, and each evaporation source 21 2 can be heated by a heating device (not shown). The carbon nanotube structure 214 is disposed between the upper and lower evaporation sources 212 at a distance, wherein the carbon nanotube structure 214 is disposed adjacent to the upper and lower evaporation sources 212. The vacuum vessel 210 can be evacuated to a predetermined degree of vacuum by an external vacuum pump (not shown). The evaporation source 212 material is a conductive material to be deposited. Next, by heating the evaporation source 212, melting and evaporating or sublimating to form a conductive material vapor, the conductive material vapor is condensed on the upper and lower surfaces of the carbon nanotube structure 214 after encountering the cold carbon nanotube structure 214. A layer of conductive material. Since there is a gap between the carbon nanotubes in the carbon nanotube structure 214, and the thickness of the carbon nanotube structure 214 is thin, the conductive material can penetrate into the carbon nanotube structure 214 and deposit on each nanometer. Break the surface of the tube. See Figure 6 and Figure 7 for a photomicrograph of the carbon nanotube structure 214 after deposition of a layer of conductive material. [0035] It will be appreciated that each evaporation source 212 can have a deposition zone by adjusting the distance between the carbon nanotube structure 214 and each evaporation source 212 and the distance between the evaporation sources 212. When it is desired to deposit a plurality of layers of the conductive material, the plurality of evaporation sources 212 may be simultaneously heated to continuously pass the carbon nanotube structure 214 through the deposition regions of the plurality of evaporation sources, thereby realizing deposition of the plurality of layers of the conductive material. [0036] In order to increase the vapor density of the conductive material and prevent the conductive material from being oxidized, the vacuum in the vacuum container 210 should be at least 1 Pa (Pa). Present Technical Solution 097108081 Form No. A0101 Page 12/35 Page 1003166897-0 1345792 [0037] [0039] In the embodiment of the modified replacement page of May 13, 100, the vacuum degree in the vacuum container is 4xl (T4Pa) It can be understood that the carbon nanotube array 216 in the first step can also be directly placed into the vacuum container 210. First, a drawing tool is used to extract from the carbon nanotube array in the vacuum container 210. a carbon nanotube structure 214. Then, the at least one evaporation source 212 is heated to deposit at least one layer of conductive material on the surface of the carbon nanotube structure 214. continuously from the carbon nanotube array 21 6 at a constant speed The carbon nanotube structure 214 is pulled, and the carbon nanotube structure 214 is continuously passed through the deposition zone of the evaporation source 212 to form a carbon nanotube long-line structure 222. Therefore, the vacuum vessel 210 can realize nanocarbon. Continuous production of the tube long-line structure 222. In the embodiment of the present invention, the method for forming at least one layer of a conductive material by vacuum evaporation comprises the following steps: forming a layer of a wetting layer on the carbon nanotube structure a surface of 214; forming a transition layer on an outer surface of the wetting layer; forming a conductive layer on an outer surface of the transition layer; forming an anti-oxidation layer on an outer surface of the conductive layer. The steps of the layer, the transition layer and the oxidation resistant layer are all optional steps. Specifically, the carbon nanotube structure 214 may be continuously passed through the deposition zone of the evaporation source 212 formed by the respective layers of materials. After forming at least one layer of conductive material on the surface of the carbon nanotube structure 214, a step of forming a strengthening layer on the surface of the carbon nanotube structure 214 may be further included. The step of forming the strengthening layer specifically includes the following steps: The carbon nanotube structure 214 formed with at least one layer of conductive material is passed through a device 220 containing a polymer solution to infiltrate the entire carbon nanotube structure 214 by a polymer solution which adheres to the chamber by intermolecular forces. The outer surface of at least one layer of conductive material; and 097108081 Form No. A0101 Page 13 of 35 Page 1003166897-0 1345792 __ May 13th, 2014 Solidifying the polymer to form a strengthening layer. [0040] When the carbon nanotube structure 214 is a nano carbon line, the nano carbon line formed with at least one conductive material layer is a carbon nanotube The wire structure does not require subsequent processing. [0041] When the carbon nanotube structure 214 is a carbon nanotube film, the step of forming the carbon nanotube long-line structure 222 may further include the nano-bar The carbon tube structure 214 is subjected to a mechanical treatment step. The mechanical treatment step can be achieved by twisting the carbon nanotube structure 214 formed with at least one conductive material layer to form a carbon nanotube long-line structure 222. Or cutting the carbon nanotube structure 214 formed with at least one layer of conductive material to form a carbon nanotube long-line structure 222. [0042] The step of twisting the carbon nanotube structure 214 to form the carbon nanotube long-line structure 222 can be achieved by the following two methods: First, by sticking to the end of the carbon nanotube structure 214 The extension tool is fixed to a rotating electrical machine to twist the carbon nanotube structure 214 to form a carbon nanotube long-line structure 222. Secondly, a spinning shaft is provided which can adhere to the carbon nanotube structure 214, and the tail of the spinning shaft is combined with the carbon nanotube structure 214, and the spinning shaft is twisted to rotate the nanometer. The carbon tube structure 214 forms a long carbon nanotube structure 222. » It can be understood that the spinning shaft is not limited in rotation, and can be rotated forward, reversed, or combined with forward rotation and reverse rotation. Preferably, the step of twisting the nano-tube structure is to twist the carbon nanotube structure 214 in a helical manner along the direction of stretching of the carbon nanotube structure 214. The long carbon nanotube structure 222 formed after the twisting is a twisted wire structure, and the scanning electron micrograph is shown in Fig. 8. 097108081 Form No. A0101 Page 14 / Total 35 Page 1003166897-0 1345792 [0044] [0048] [0048] [0048] The replacement of the cut carbon nanotube structure described on the revised page of May 13, 100 214. The step of forming the carbon nanotube long-line structure 222 is: cutting the carbon nanotube structure 214 along the tensile direction of the carbon nanotube structure to form a plurality of carbon nanotube long-line structures. The plurality of carbon nanotube long-line structures 222 may be further overlapped and twisted to form a larger diameter carbon nanotube long-line structure 222. It can be understood that the technical solution is not limited to the above method to obtain the carbon nanotube long-line structure 222, as long as the carbon nanotube film 214 can be formed into the nano-carbon tube long-line structure 222, which is within the protection scope of the technical solution. The carbon nanotube long-line structure 222 produced by the inner crucible can be further collected on a first reel 224. The collection is by winding a carbon nanotube long wire structure 222 onto the first reel 224. The carbon nanotube long wire structure 222 is used as the core of the cable. Optionally, the forming step of the carbon nanotube structure 214, the step of forming at least one conductive layer, the step of forming the reinforcing layer, the twisting step of the carbon nanotube structure 21 4, and the collecting step of the long carbon nanotube structure 222 of the carbon nanotube Both can be carried out in the above vacuum vessel, thereby achieving continuous production of the carbon nanotube long-line structure 222. Step 4: forming at least one insulating dielectric layer on the outer surface of the carbon nanotube long-line structure 2 22 . The insulating dielectric layer may be coated on the outer surface of the carbon nanotube long-line structure 222 by a first pressing device 230, and the pressing device applies a polymer melt composition to the nano carbon tube length The surface of the line structure 222. In the embodiment of the technical solution, the polymer melt composition is preferably foamed polyethylene 097108081 Form No. A0101 Page 15 of 35 1003166897-0 1345792 Modified on May 13, 100, the replacement of the acreene composition. Once the carbon nanotube long wire structure 222 exits the first extrusion device 230, the polymer melt composition expands to form an insulating dielectric layer. [0049] When the insulating medium layer is two or more layers, the above steps may be repeated. [0050] Step 5: Forming at least one shielding layer on the outer surface of the insulating dielectric layer. [0051] A shielding tape 232 is provided, which is provided by a second reel 234. The shield tape 232 is wrapped around the insulating dielectric layer to form a shield layer. The shielding tape 232 may be a strip-shaped film structure such as a metal film, a carbon nanotube film or a carbon nanotube composite film, or a long-line structure of a carbon nanotube, a long-line structure of a carbon nanotube, or a wire-like structure. In addition, the shielding tape 232 may also be composed of a woven layer formed of the above various materials, and bonded or directly wound on the outer surface of the insulating dielectric layer by an adhesive. [0052] In the embodiment of the technical solution, the shielding layer is composed of a plurality of long carbon nanotube tubes, and the long carbon nanotubes are directly or woven into a mesh shape and wound around the insulating dielectric layer. Each nanocarbon tube long line includes a plurality of carbon nanotube bundle segments grown from a carbon nanotube bundle array, each of the carbon nanotube bundle segments having substantially equal lengths and each of the carbon nanotube bundle segments being parallel to each other The carbon nanotube bundle is composed of a bundle of carbon nanotube bundles connected to each other by van der Waals force. Preferably, the strip of film 232 of the strip film structure is overlapped along the longitudinal edges to completely shield the core. The shielding tape 232 of the linear structure of the carbon nanotube long wire, the carbon nanotube composite long wire structure or the metal wire may be directly or 097108081. Form number A0101 page 16 / total 35 page 1003166897-0 1345792 [0055] [0058] [0058] On May 13, 100, the modified replacement sheet was woven into a mesh wound around the outer surface of the insulating dielectric layer. Specifically, the plurality of carbon nanotube long wires or metal wires may be wound around the outer surface of the insulating dielectric layer in a plurality of winding frames 236 in different spiral directions. It can be understood that when the shielding layer is of two or more layers, the upper layer step can be repeated. Step 6: Form an outer sheath on the outer surface of the shielding layer. The outer sheath can be applied to the outer surface of the shield by a second extrusion device 240. The polymer melt is extruded around the outer surface of the shield layer and, after cooling, forms an outer jacket. Further, the manufactured cable can be collected on a third reel 260 to facilitate storage and shipping. Referring to FIG. 9 , a second embodiment of the present invention provides a cable 30 including a plurality of cables 310 (a total of seven cores are shown in FIG. 9 ), and each of the cores 310 is covered with an insulating dielectric layer 320 and covered with A shielding layer 330 outside the plurality of cores 310 and an outer sheath 340 covering the outer surface of the shielding layer 330. The gap between the shield layer 330 and the insulating dielectric layer 320 may be filled with an insulating material. The structure, material and preparation method of each of the cable core 310 and the insulating dielectric layer 320, the shielding layer 330 and the outer sheath 340, and the cable core 110, the insulating dielectric layer 120, the shielding layer 130 and the external protection in the first embodiment The structure, material and preparation method of the sleeve 140 are basically the same. Referring to FIG. 10, a third embodiment of the present invention provides a cable 40 including a plurality of cores 410 (five cores are shown in FIG. 10), each core 410 is covered with an insulating dielectric layer 420 and a shielding layer. 430, and an outer sheath 440 covering the outer surfaces of the plurality of cores 410. 117108081 of the shielding layer 430 Form No. A0101 Page 17 / Total 35 pages 1003166897-0 1345792 On May 13th, 100, the replacement is used to separate the individual cores 410, so as to prevent external factors. The electrical signals transmitted inside the core 410 cause interference and can prevent mutual interference between different electrical signals transmitted within the respective cores 410. The structure, material and preparation method of each of the core 410, the insulating dielectric layer 420, the shielding layer 430 and the outer sheath 440, and the cable core 110, the insulating dielectric layer 120, the shielding layer 130 and the external protection in the first embodiment The structure, material and preparation method of the sleeve 140 are basically the same. [0059] The cable using the nano carbon tube long-line structure as the core of the present invention and the preparation method thereof have the following advantages: First, the long-term structure of the carbon nanotube includes multiple passes through the van der Waals force a layer of connected carbon nanotube bundles, and a surface of a conductive material is formed on each surface of the carbon nanotubes, wherein the carbon nanotube bundle segments are electrically conductive and supported, and are formed by depositing a metal conductive layer on the carbon nanotubes. The long carbon wire structure of the carbon nanotube is finer than the metal conductive wire obtained by the metal wire drawing method in the prior art, and is suitable for making an ultrafine micro cable. Second, since the carbon nanotube is a hollow tubular structure, and the thickness of the metal conductive layer formed on the outer surface of the carbon nanotube is only a few nanometers, the current does not substantially cause a skin effect when passing through the metal conductive layer. , thereby avoiding the attenuation of the signal during transmission in the cable. Third, because the carbon nanotubes have excellent mechanical properties and have a hollow tubular structure, the carbon nanotube-containing cable has higher mechanical strength and lighter than a cable with a pure metal core. The quality is suitable for special fields such as aerospace and space equipment applications. Fourth, the long-term structure of the carbon nanotube formed by the metal-coated carbon nanotubes as the core has better conductivity than the pure carbon nanotube rope as the core. Fifth, due to the long-term structure of the carbon nanotubes through the rotation of the carbon nanotube film 097108081 Form No. A0101 Page 18 / Total 35 Page 1003166897-0 100 May 13 Nuclear replacement page 1345792 Turn or directly from It is manufactured by pulling in a carbon nanotube array, which is simple and low in cost. Sixth, the step of obtaining the carbon nanotube structure from the carbon nanotube array _ and the step of forming at least one layer of the conductive material can be performed in a vacuum vessel, thereby facilitating large-scale production of the core, thereby Conducive to the large-scale production of cables. [0060] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0061] FIG. 1 is a schematic cross-sectional view of a cable according to a first embodiment of the present technical solution. 2 is a schematic view showing the structure of a single carbon nanotube in the cable of the first embodiment of the present technical solution. 3 is a flow chart of a method of manufacturing a cable according to a first embodiment of the present technical solution. 4 is a schematic structural view of a manufacturing apparatus of a cable of a first embodiment of the present technical solution. 5 is a scanning electron microscope photograph of a carbon nanotube film according to a first embodiment of the present technical solution. 6 is a scanning electron micrograph of a carbon nanotube film after depositing a conductive material layer in the first embodiment of the present technical solution. 7 is a transmission electron micrograph of a carbon nanotube in a carbon nanotube film after depositing a conductive material layer in the first embodiment of the present technical solution. 097108081 Form No. A0101 Page 19 / Total 35 Page 1003166897-0 1345792 _ 100 years of May 13th revised replacement acres [0068] 圊8 series of the first embodiment of this technical solution to reverse the structure of the carbon nanotubes A scanning electron micrograph of the structure of the parent line. 9 is a schematic cross-sectional view of a cable of a second embodiment of the present technical solution. 10 is a schematic cross-sectional structural view of a cable of a third embodiment of the present technical solution. [Main component symbol description] [0071] Cable: 10, 30, 40 [0072] Cable core: 110, 310, 410 [0073] Carbon nanotube: 111 [0074] Wetting layer: 112 [0075] Transition layer : 113 [0076] Conductive layer: 114 [0077] Anti-oxidation layer: 115 [0078] Strengthening layer: 116 [0079] Insulating dielectric layer: 120, 320, 420 [0080] Shielding layer: 130, 330, 430 [0081] Outer Sheath: 140, 340, 440 [0082] Vacuum Vessel: 21 0 [0083] Evaporation Source: 212 [0084] Carbon Tube Structure 214 [0085] Carbon Tube Array: 216 097108081 Form No. A0101 Page 20 / Total 35 pages 1003166897-0 100 years on May 13th Shuttle replacement page 1345792 [0086] Device: 220 [0087] Nano carbon tube long wire structure: 222 [0088] First reel: 224 [0089] First squeeze Pressure device: 230 [0090] Shielding band: 232 [0091] Second reel: 234 [0092] Winding frame: 236 [0093] Second squeezing device: 240 [0094] Third reel: 260 097108081 Form number A0101 Page 21 of 35 1003166897-0

Claims (1)

1345792 [ϊ^〇5月13日按正ϋ~[. 七、申請專利範圍: 1 種線纜,包括至少一個纜芯、包覆於纜芯外的至少一個 絕緣介質層、包覆於絕緣介質層外的至少一個屏蔽層和包 覆於屏蔽層外的一個外護套,該纜芯包括導電材料及多個 奈米碳管,其改良在於,該纜芯中的奈米碳管沿纜芯轴向 有序排列,該導電材料包括包覆於單根奈米碳管表面的導 電層。 2 ·如申請專利範圍第1項所述的線纜,其中,所述每一奈米 碳管表面設置有所述導電層。 3 ·如申請專利範圍第1項所述的線纜,其中,所述纜芯中多 個奈米碳管排列成至少一奈米碳管長線結構》 4 ·如申請專利範圍第3項所述的線纜,其中,所述奈米碳管 長線結構中奈米碳管具有相等長度並通過凡德瓦爾力首尾 相連。 5 l •如申請專利範圍第3項所述的線纜,其中,所述奈米碳管 長線結構中奈米碳管沿欖芯轴向擇優取向排列。 g •如申請專利範圍第3項所述的線纜,其中,所述奈米碳管 長線結構爲一絞線結構,所述奈米碳管繞該絞線結構的轴 向螺旋狀旋轉排列。 •如申請專利範圍第3項所述的線纜,其中,所述奈米碳管 長線結構的直徑爲4.5奈米~100微米。 •如申請專利範圍第3項所述的線纜,其中,所述纜芯包括 多個相互纏繞的奈米碳管長線結構。 9 ^ ' 申請專利範圍第1項所述的線纜,其中,所述奈米碳管 包括單壁奈米碳管,雙壁奈米碳管或多壁奈米碳管,所述 〇971〇8〇81 表單編號A0101 第22頁/共35頁 1003166897-0 100年05月13日梭正脊换·θ 單壁奈米碳管的直徑爲〇. 5奈米〜5〇奈米,雙壁奈米碳7 〜 的直授爲1奈米〜50奈米,多壁奈米碳管的直徑爲15奈米 〜50奈米。 如申專利轮圍第2項所述的線缓,其中,所述導電層的 材料爲銅、銀、金或其合金,所述導電層的厚度爲卜2〇 奈米。 如申π專利範圍第2項所述的線镜,其中,所述纜芯進一 步包括一潤濕層設置於所述導電層與奈米碳管表面之間, 所述潤/愚層的材料爲鎳、&、鈦或其合金,所述潤濕層的 厚度爲卜10奈米。 如申味專利範圍第11項所述的線纜,其中,所述镜芯進一 步包括一過渡層設置於所述導電層與潤濕層之間,所述過 渡層的材料爲銅、銀或其合金,所述過渡層的厚度爲 1〜10奈米。 W .如申請專利範圍第2項所述的線纜,其中,所述纜芯進一 步包括一杬氧化層設置於所述導電層外表面,所述抗氧化 層的材料爲金、鉑或其合金,所述抗氧化層的厚度爲 1~10奈米。 14 .如申請專利範圍第2項所述的線纜,其中,所述纜芯進一 步包括一强化層設置於所述導電層外表面,所述强化層的 材料爲聚乙烯醇、聚苯撑苯並二噁唑、聚乙烯或聚氣乙烯 ,所述强化層的厚度爲0. 1~1微米。 如申請專利範圍第1項所述的線纜,其中,所述的線纜爲 同軸線纜’該同軸線纜包括由内至外同軸依次設置的一個 纜芯、包覆纜芯外表面的一個絕緣介質層' 包覆絕緣介質 層外表面的一個屏蔽層和包覆屏蔽層外表 097108081 15 . 面的一個外護套 1003166897-0 表單編號Α0101 苐23頁/共35頁 1345792 1〇〇年05月13日核正萄換W 16 .如申請專利範圍第1項所述的線纜,其中,所述的線纜包 括多個瘦芯、多個分別包覆於每一個境芯外的絕緣介質層 、包覆絕緣介質層外的一個屏蔽層和包覆於屏蔽層外的一 個外護套。 17.如申請專利範圍第1項所述的線纜,其中,所述的線纜包 括多個纜芯、多個分別包覆於每一個纜芯外的絕緣介質層 、多個分別包覆於每一個絕緣介質層外的屏蔽層和包覆於 屏蔽層外的一個外護套。 18 .如申請專利範圍第丨項所述的線纜,其中,所述屏蔽層爲 線狀材料、膜狀材料或上述兩種材料的組合,該線狀材料 直接纏繞或編織成網狀纏繞於絕緣介質層外,該膜狀材料 直接包覆或纏繞於絕緣介質層外。 19 ·如申請專利範圍第μ項所述的線纜,其中,所述屏蔽層的 材料爲金屬線或金屬薄膜。 〇 ·如申4專利範圍第18項所述的線缓,其中,所述屏蔽層的 材料爲奈米碳管長線、單層有序奈米碳管薄膜、多層有序 奈米碳管薄膜或無序奈米碳管薄膜。 21 ·如申請專利範圍第18項所述的線纜,其中,所述屏蔽層的 材料爲含有奈米碳管的導電材料'奈米碳管複合薄膜或奈 米碳管複合長線結構。 如申吻專利範圍第21項所述的線瘦,其中,所述奈米碳管 復合薄膜或奈米碳管複合長線結構包括有序排列的奈米碳 管,該奈米碳管的表面包覆至少一導電材料層。 2 Q 9 097108081 .一種線缓’包括至少一個缓芯、包覆於缓芯夕卜的至少一個 絕緣介質層、包覆於絕緣介質層外的至少—個屏蔽層和包 表單編號A0101 苐24頁/共35頁 1345792 100年05月13日按正替换頁 覆於屏蔽層外的一個外護套,該纜芯包括多個奈米碳管, 其改良在於,該纜芯進一步包括包覆於單根奈米碳管表面 的導電層及設置於所述導電層與奈米碳管表面之間的潤濕 層,該多個奈米碳管沿纜芯轴向有序排列。 24 .如申請專利範圍第23項所述的線纜,其中,所述導電層的 材料爲銅、銀、金或其合金,所述導電層的厚度爲卜20 奈米。 25 .如申請專利範圍第23項所述的線纜,其中,所述潤濕層的 材料爲鎳、鈀、鈦或其合金,所述潤濕層的厚度爲1〜10 奈米。 097108081 表單編號A0101 第25頁/共35頁 1003166897-01345792 [ϊ^〇 May 13th Press ϋ~[. VII. Patent application scope: 1 cable, including at least one cable core, at least one insulating dielectric layer covering the core, coated with insulating medium At least one shielding layer outside the layer and an outer sheath covering the shielding layer, the cable core comprises a conductive material and a plurality of carbon nanotubes, the improvement is that the carbon nanotubes in the cable core are along the core The axially ordered arrangement comprises a conductive layer overlying the surface of the individual carbon nanotubes. The cable according to claim 1, wherein the surface of each of the carbon nanotubes is provided with the conductive layer. 3. The cable of claim 1, wherein the plurality of carbon nanotubes in the core are arranged in at least one carbon nanotube long-line structure. 4 as described in claim 3 The cable, wherein the carbon nanotubes in the long-line structure have equal lengths and are connected end to end by Van der Waals force. The cable according to claim 3, wherein the carbon nanotubes in the long-line structure of the carbon nanotubes are arranged in a preferred orientation along the axial direction of the core. The cable according to claim 3, wherein the carbon nanotube long-line structure is a twisted wire structure, and the carbon nanotubes are arranged in a spiral shape about the axis of the strand structure. The cable of claim 3, wherein the carbon nanotube long-line structure has a diameter of 4.5 nm to 100 μm. The cable of claim 3, wherein the cable core comprises a plurality of intertwined carbon nanotube long-line structures. 9 ^ ' The cable of claim 1, wherein the carbon nanotube comprises a single-walled carbon nanotube, a double-walled carbon nanotube or a multi-walled carbon nanotube, the 〇971〇 8〇81 Form No. A0101 Page 22/Total 35 Page 1003166897-0 100 years of May 13th, the spine is changing θ. The diameter of the single-walled carbon nanotube is 〇. 5 nm ~ 5 〇 nano, double wall Nano carbon 7 ~ is directly taught to be 1 nm ~ 50 nm, and the diameter of the multi-walled carbon nanotubes is 15 nm ~ 50 nm. The wire according to claim 2, wherein the material of the conductive layer is copper, silver, gold or an alloy thereof, and the conductive layer has a thickness of 2 nanometers. The wire mirror of claim 2, wherein the core further comprises a wetting layer disposed between the conductive layer and the surface of the carbon nanotube, wherein the material of the layer is Nickel, &, titanium or an alloy thereof, the wetting layer has a thickness of 10 nm. The cable according to claim 11, wherein the mirror core further comprises a transition layer disposed between the conductive layer and the wetting layer, wherein the material of the transition layer is copper, silver or The alloy has a thickness of 1 to 10 nm. The cable of claim 2, wherein the core further comprises a tantalum oxide layer disposed on an outer surface of the conductive layer, the material of the oxidation resistant layer being gold, platinum or an alloy thereof The anti-oxidation layer has a thickness of 1 to 10 nm. The cable of claim 2, wherein the cable core further comprises a reinforcing layer disposed on an outer surface of the conductive layer, wherein the reinforcing layer is made of polyvinyl alcohol or polyphenylene benzene.至1微米。 The thickness of the layer is 0. 1~1 micron. The cable of claim 1, wherein the cable is a coaxial cable. The coaxial cable includes a core disposed in series from the inside to the outside, and a cover outer surface of the core. Insulating dielectric layer' Covering the outer surface of the insulating dielectric layer and covering the outer surface of the insulating layer 097108081 15 . One outer sheath of the surface 1003166897-0 Form No. Α0101 苐23 pages / Total 35 pages 1345792 1 May The invention relates to the cable of claim 1, wherein the cable comprises a plurality of thin cores and a plurality of insulating dielectric layers respectively covering each of the cores. a shielding layer outside the insulating dielectric layer and an outer sheath covering the shielding layer. 17. The cable of claim 1, wherein the cable comprises a plurality of cable cores, a plurality of insulating dielectric layers respectively wrapped around each of the cable cores, and a plurality of respectively wrapped on the cable. a shielding layer outside each of the insulating dielectric layers and an outer sheath covering the shielding layer. The cable of claim 2, wherein the shielding layer is a linear material, a film material or a combination of the two materials, and the linear material is directly wound or woven into a mesh winding. The film material is directly coated or wound outside the insulating dielectric layer outside the insulating dielectric layer. The cable of claim 11, wherein the material of the shielding layer is a metal wire or a metal film. The invention relates to the line slowness described in claim 18, wherein the shielding layer is made of a long carbon nanotube tube, a single-layer ordered carbon nanotube film, a multilayer ordered carbon nanotube film or Disordered carbon nanotube film. The cable according to claim 18, wherein the material of the shielding layer is a conductive material containing a carbon nanotube, a carbon nanotube composite film or a carbon nanotube composite long-line structure. The thin line structure described in claim 21, wherein the carbon nanotube composite film or the carbon nanotube composite long-line structure comprises an ordered arrangement of carbon nanotubes, and the surface of the carbon nanotubes is coated Covering at least one layer of conductive material. 2 Q 9 097108081 . A line slower comprising at least one slow core, at least one insulating dielectric layer coated on the slow core, at least one shielding layer wrapped around the insulating dielectric layer, and a package form number A0101 苐 24 pages / Total 35 pages 1345792 On May 13, 100, an outer sheath covering the outer layer of the shield is replaced by a positive replacement sheet, the core includes a plurality of carbon nanotubes, and the improvement is that the core further includes a cover sheet a conductive layer on the surface of the carbon nanotube and a wetting layer disposed between the conductive layer and the surface of the carbon nanotube, the plurality of carbon nanotubes being arranged in an axial direction along the core of the cable. The cable according to claim 23, wherein the conductive layer is made of copper, silver, gold or an alloy thereof, and the conductive layer has a thickness of 20 nm. The cable according to claim 23, wherein the wetting layer is made of nickel, palladium, titanium or an alloy thereof, and the wetting layer has a thickness of 1 to 10 nm. 097108081 Form No. A0101 Page 25 of 35 1003166897-0
TW97108081A 2008-03-07 2008-03-07 Cable TWI345792B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97108081A TWI345792B (en) 2008-03-07 2008-03-07 Cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97108081A TWI345792B (en) 2008-03-07 2008-03-07 Cable

Publications (2)

Publication Number Publication Date
TW200939252A TW200939252A (en) 2009-09-16
TWI345792B true TWI345792B (en) 2011-07-21

Family

ID=44867651

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97108081A TWI345792B (en) 2008-03-07 2008-03-07 Cable

Country Status (1)

Country Link
TW (1) TWI345792B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8825178B2 (en) 2011-10-28 2014-09-02 Tsinghua University Electrode lead of pacemaker and pacemaker
US9020609B2 (en) 2011-10-28 2015-04-28 Tsinghua University Electrode lead of pacemaker and pacemaker using the same
US9084884B2 (en) 2011-10-28 2015-07-21 Tsinghua University Method for making pacemaker electrode lead
US9138577B2 (en) 2011-10-28 2015-09-22 Tsinghua University Electrode lead of pacemaker and pacemaker using the same
US9248281B2 (en) 2011-10-28 2016-02-02 Tsinghua University Pacemakers and pacemaker leads
US9272134B2 (en) 2011-12-15 2016-03-01 Tsinghua University Pacemakers and pacemaker electrodes
US9433801B2 (en) 2011-10-28 2016-09-06 Tsinghua University Pacemakers and pacemaker leads
US9440067B2 (en) 2011-10-28 2016-09-13 Tsinghua University Electrode lead and pacemaker using the same
TWI561275B (en) * 2011-10-21 2016-12-11 Hon Hai Prec Ind Co Ltd Lead wire and peacemaker using the same
TWI581820B (en) * 2011-10-28 2017-05-11 鴻海精密工業股份有限公司 Electrode lead and pacemaker using the same
TWI593437B (en) * 2011-10-28 2017-08-01 鴻海精密工業股份有限公司 Pacemaker electrode lead and pacemaker using the same
US10226621B2 (en) 2011-12-15 2019-03-12 Tsinghua University Pacemakers and pacemaker electrodes

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497438B (en) 2008-02-01 2012-11-21 清华大学 Carbon nano-tube compound film
CN101497437B (en) 2008-02-01 2012-11-21 清华大学 Method for preparing carbon nano-tube compound film
CN101556839B (en) 2008-04-09 2011-08-24 清华大学 Cable
CN101499338B (en) 2008-02-01 2011-07-27 清华大学 Stranded wire production method
JP5015971B2 (en) 2008-02-01 2012-09-05 ツィンファ ユニバーシティ Coaxial cable manufacturing method
US10128022B1 (en) * 2017-10-24 2018-11-13 Northrop Grumman Systems Corporation Lightweight carbon nanotube cable comprising a pair of plated twisted wires

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI561275B (en) * 2011-10-21 2016-12-11 Hon Hai Prec Ind Co Ltd Lead wire and peacemaker using the same
US9138577B2 (en) 2011-10-28 2015-09-22 Tsinghua University Electrode lead of pacemaker and pacemaker using the same
TWI581817B (en) * 2011-10-28 2017-05-11 鴻海精密工業股份有限公司 Pacemaker electrode lead and pacemaker using the same
US8825178B2 (en) 2011-10-28 2014-09-02 Tsinghua University Electrode lead of pacemaker and pacemaker
US9248281B2 (en) 2011-10-28 2016-02-02 Tsinghua University Pacemakers and pacemaker leads
TWI593437B (en) * 2011-10-28 2017-08-01 鴻海精密工業股份有限公司 Pacemaker electrode lead and pacemaker using the same
US9433801B2 (en) 2011-10-28 2016-09-06 Tsinghua University Pacemakers and pacemaker leads
US9440067B2 (en) 2011-10-28 2016-09-13 Tsinghua University Electrode lead and pacemaker using the same
TWI559952B (en) * 2011-10-28 2016-12-01 Hon Hai Prec Ind Co Ltd Pacemaker electrode lead and pacemaker using the same
US9020609B2 (en) 2011-10-28 2015-04-28 Tsinghua University Electrode lead of pacemaker and pacemaker using the same
TWI581820B (en) * 2011-10-28 2017-05-11 鴻海精密工業股份有限公司 Electrode lead and pacemaker using the same
US9084884B2 (en) 2011-10-28 2015-07-21 Tsinghua University Method for making pacemaker electrode lead
TWI584841B (en) * 2011-12-15 2017-06-01 鴻海精密工業股份有限公司 Lead wire and peacemaker using the same
US9272134B2 (en) 2011-12-15 2016-03-01 Tsinghua University Pacemakers and pacemaker electrodes
US10226621B2 (en) 2011-12-15 2019-03-12 Tsinghua University Pacemakers and pacemaker electrodes

Also Published As

Publication number Publication date
TW200939252A (en) 2009-09-16

Similar Documents

Publication Publication Date Title
TWI345792B (en) Cable
TWI345793B (en) Cable
CN105244071B (en) cable
CN101556839B (en) Cable
CN101499337B (en) Cable production method
CN101499328B (en) Stranded wire
CN101499338B (en) Stranded wire production method
EP2896051B1 (en) Bulk carbon nanotube and metallic composites and method of fabricating
EP2451635B1 (en) Hybrid conductors and method of making same
KR102003577B1 (en) Carbon nanotube conductor with enhanced electrical conductivity
US7754283B2 (en) Continuous production of carbon nanotubes
TWI380949B (en) Carbon nanotube yarn strucutre
KR101189858B1 (en) Cable and methods for making the same
CN102063959A (en) Cable
CN102110501B (en) Preparation method of wire cable and cable core thereof
TWI345794B (en) Method for making cable
TW201222563A (en) Cable
TWI329324B (en) Electro magnetic shielding cable