TWI329324B - Electro magnetic shielding cable - Google Patents

Electro magnetic shielding cable Download PDF

Info

Publication number
TWI329324B
TWI329324B TW96113997A TW96113997A TWI329324B TW I329324 B TWI329324 B TW I329324B TW 96113997 A TW96113997 A TW 96113997A TW 96113997 A TW96113997 A TW 96113997A TW I329324 B TWI329324 B TW I329324B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
electromagnetic shielding
cable
layer
core
Prior art date
Application number
TW96113997A
Other languages
Chinese (zh)
Other versions
TW200842902A (en
Inventor
Hsi Fu Lee
Liang Liu
Kai-Li Jiang
Caesar Chen
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96113997A priority Critical patent/TWI329324B/en
Publication of TW200842902A publication Critical patent/TW200842902A/en
Application granted granted Critical
Publication of TWI329324B publication Critical patent/TWI329324B/en

Links

Landscapes

  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Description

1329324 九六年五月 曰修正頁 九、發明說明: , _ 【發明所屬之技術領域】 .叫W - νί 本發明係涉及一种線纜,尤其涉及—種且右;由、〜 功能的線缓。 ’、电磁屏蔽 【先前技術】 電磁屏蔽線缓係電子產業裏較為常用的 材’微米級尺寸的電磁屏蔽_更廣泛應用於。„ 學儀器、空間設備中。傳統的線纜内部設置有二、: 導體用以傳輸電信號,外導體用以屏蔽傳輪的電作=、= 將其封閉在内部,從而使線境具有高頻損耗低、尸= 干擾能力強、使用頻帶寬等特性。 _开敝抗 -般情況下,電磁屏蔽魏㈣至外的 成内導體的縣、包覆於㈣外表面的絕緣介質居= 外導體的屏蔽層及外護套。其中,欖芯用來傳輸奸於成 材枓以銅或銅鋅合金為主。屏蔽層通常由多股金編 層薄膜卷覆在絕緣介質層外形成,用以屏蔽電磁干 擾或…用外部信號干擾。對於金屬線編織而成的屏蔽層, 金屬線的含量及編織的鬆緊程度會影響其抗干擾能力: 獲得較好的屏蔽效果,通常,屏蔽層中金屬線的含量較大 ^需要將其編_較騎密。對於金屬_卷覆在絕緣介 =外而成的屏蔽層’需預先形成金屬薄膜後卷覆於絕緣 "貝層外。上述金屬線編織及金屬薄膜卷覆形成的屏蔽 曰在生產速度上遠遠低於線纜纜芯的生產速度,是限制 電磁屏蔽線·產的主要因素,另外,大量使用金屬線或 7 13293241329324 九 五 曰 页 、 、 、 、 、 、 、 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 . . . . . . . . . . . . . . . . . . . . . . . slow. ─, electromagnetic shielding [Prior Art] Electromagnetic shielding line is more commonly used in the electronics industry, 'micro-scale electromagnetic shielding _ is more widely used. „In the instrument and space equipment. The traditional cable has two internal settings: the conductor is used to transmit the electrical signal, and the outer conductor is used to shield the electrician of the transmission wheel =, = it is enclosed inside, so that the line is high. Low frequency loss, corpse = strong interference capability, use frequency bandwidth, etc. _Opening anti-normal case, electromagnetic shielding Wei (four) to the outer conductor of the inner conductor, covering the outer surface of the (four) outer insulation The shielding layer and the outer sheath of the conductor, wherein the core is used to transfer the metal in the material, and the copper or copper-zinc alloy is mainly used. The shielding layer is usually formed by wrapping a plurality of gold-clad film on the outside of the insulating medium layer for Shield electromagnetic interference or... Interference with external signals. For the shielding layer of metal wire weaving, the content of metal wire and the tightness of weaving will affect its anti-interference ability: Obtain a good shielding effect, usually, the metal wire in the shielding layer The content of the material is relatively large. It needs to be _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ And metal film roll shape The shielding 成 is far lower than the production speed of the cable core in the production speed, and is the main factor limiting the electromagnetic shielding wire. In addition, the metal wire or 7 1329324 is used in large quantities.

金屬薄膜材料作為屏蔽層, 高。 电磁屏敝線纜的生產成本也較 内部’確有必要提供—種電磁屏蔽魏,該線繞 .ΛΓΓ 具有良好的電磁屏蔽性能並且易於製 造,適於低成本大量生產。 衣 【發明内容】 :::藉由貫施例進—步詳細說明一種電磁屏蔽線The metal film material is high as a shielding layer. The production cost of the electromagnetic screen cable is also better than that of the internal one. It is a kind of electromagnetic shielding Wei, which has good electromagnetic shielding performance and is easy to manufacture, and is suitable for low-cost mass production. Clothing [Summary] ::: A detailed description of an electromagnetic shielding line by means of a detailed example

、有良好的電磁屏蔽效果並且結構簡單適於低成本 大置生產。 一種電磁屏蔽魏,包括至少m包覆於繞芯外 的至少-絕緣介質層、至少_電磁屏蔽層及外護套,其中, 電磁屏蔽層由複數奈米碳管繩組成。 與先前技術相比較,本發明藉由奈米碳管繩形成電磁 屏蔽層’目奈米碳管具有良好的導電性能從而使屏蔽層具 有較強的屏蔽效果,另,該屏蔽層相較於現有技術中編織 金屬線或卷覆金屬薄膜結構簡單,更因此適於低成本大量 生產。It has good electromagnetic shielding effect and simple structure for low-cost large-scale production. An electromagnetic shielding comprising at least m covering at least an insulating dielectric layer outside the core, at least an electromagnetic shielding layer and an outer sheath, wherein the electromagnetic shielding layer is composed of a plurality of carbon nanotube strings. Compared with the prior art, the present invention forms an electromagnetic shielding layer by a carbon nanotube rope. The 'nano carbon tube has good electrical conductivity so that the shielding layer has a strong shielding effect, and the shielding layer is compared with the prior art. The medium braided metal wire or the coiled metal film has a simple structure and is therefore suitable for mass production at low cost.

[實施方式】 下面將結合附圖對本發明電磁屏蔽線纜的結構及其製 造方法作進一步之詳細說明。 本發明電磁屏蔽線纜包括至少一纜芯、包覆於緵芯外 的至少一絕緣介質層、至少一電磁屏蔽層及外護套。 請參閱圖1,本發明第一實施例的電磁屏蔽線镜1〇為 電磁屏蔽同軸線纜,包括一纜芯110、包覆於纜芯110外 8 的絕緣介質層120、包覆於絕緣介質層120外的屏蔽層l3〇 及包覆於屏蔽層130外的外護套140。其中,境芯HQ、纖 緣介質層120、屏蔽層130及外護套140同軸設置。 纜芯110可由一單獨的導電芯構成,也可由複數導電 絲相互纏繞形成,附圖中僅顯示一單獨的導電芯。導電广、' 或導電絲均由導電材料製成,可選用導電金屬材料、導電 金屬合金材料、奈米碳管線或含奈米碳管的複合導電材 料。其中,導電金屬材料優選銅或鋁。導電金屬合金材料 優選銅鋅合金或銅銀合金,其中,銅辞合金中銅的品質百 分比約為70/ ’辞的品質百分比約為30% ;銅銀合金中銅的 品質百分比約為10%〜40%,銀的品質百分比約為〜9〇%。 奈米碳管線為複數奈米碳管間凡德瓦爾力首尾相連從而形 成預定長度的奈米碳管束。奈米碳管複合導電材料由奈米 石厌¥及3導電金屬的材料組成。優選地,奈米碳管複合導 電材料由奈米碳管及含銅材料製成,含銅材料優選銅、銅 鋅合金或銅銀合金。當奈米碳管複合材料由銅及奈米碳管 組成時,奈米碳管在銅材料中的重量百分比約為 〇· 01%〜2% ;當奈米碳管複合材料由銅鋅合金及奈米碳管組 成時,銅鋅合金中銅的重量百分比約為7〇%,辞的重量百 刀比約為30%’奈米碳管在銅鋅合金中的重量百分比約為 〇’ 01%〜2% n树管複歸料由舰合金及奈米碳管組 成,合金中鋼的重量百分比約為10%〜40%,銀的重量百分 '、勺為6(U 90% ’奈米碳管在銅銀合金中的重量百分比約 為 〇· 01%〜2%。 1329324 -------— 年月⑴^文)正瞀換頁 ,絕緣介質層12G用於電氣絕緣,可選用聚讀乙烯或 奈米粘土-尚分子複合材料。奈米粘土_高分子複合材料中 奈米枯土係奈米級層狀結構的矽酸鹽礦物,由多種水合矽 欠1及疋塁的氧化鋁、驗金屬氧化物及驗土金屬氧化物 、、且成’具耐火阻燃等優良特性’如奈米高嶺土或奈米蒙脫 土。尚分子材料可選用矽樹脂、聚醯胺、聚烯烴如聚乙烯 ^來丙烯等,但並不以此為限。本實施例優選奈米蒙脫土_ ♦乙烯複合材料,其具有良好的電氣絕緣、耐火阻燃、低 煙無㈣躲’不僅可為航提供有效的電氣絕緣,保護 纜芯,同時還能滿足環保的要求。 屏蔽層130由複數奈米碳管繩組成,該奈米碳管繩直 接或編織成網狀纏繞在絕緣介質層12〇外。每個奈米碳管 繩包括複數從奈米碳管束陣列長&的奈米碳管束片段,每 個奈米碳管束片段具有大致相等的長度且每個奈米碳管束 片段由複數相互平行的奈米碳管束構成,其中,奈米碳管 束片段兩端通過凡德瓦爾力相互連接。 屏蔽層130中的奈米碳管繩的製備方法主要包括以下 步驟: 步驟(一)’製造奈米碳管束陣列。 k供一平整光滑的基底,可選用Ρ型或η型石夕基底, 本貫施例中選用ρ型石夕基底,其直徑為2英寸,厚350微 米。在基底上採用電子束蒸發法、熱沉積或濺射法等方法 形成厚度為幾奈米到幾百奈米的金屬催化劑層,其中金屬 催化劑可為鐵(Fe)、鈷(Co)、鎳(Ni)或其合金之一,優選 10 1329324 日彥(文)正發換頁 用鐵為催化劑,沉積厚度約為5奈米 而後將沉積有催化劑的基底在空氣中退火,退火溫度 範圍為300〜400 C,時間約為10小時。之後基底被分割成 許多矩形小塊,矩形小塊放入石英舟中,在保護氣體存在 條件下,在反應爐中加熱一段時間使其達到一預定溫度, 一般為500〜700°C,優選為65(TC。 再通入30 seem碳源氣與30G seem的保護氣體(如氬 氣)5〜30分鐘,制得高度約100微米的奈米碳管束陣列。[Embodiment] Hereinafter, the structure of an electromagnetic shielding cable of the present invention and a manufacturing method thereof will be further described in detail with reference to the accompanying drawings. The electromagnetic shielding cable of the present invention comprises at least one cable core, at least one insulating dielectric layer covering the outer core, at least one electromagnetic shielding layer and an outer sheath. Referring to FIG. 1, an electromagnetic shielding wire mirror 1 according to a first embodiment of the present invention is an electromagnetic shielding coaxial cable, comprising a cable core 110, an insulating dielectric layer 120 covering the outer surface 8 of the cable core 110, and being covered with an insulating medium. The shielding layer l3 outside the layer 120 and the outer sheath 140 covered on the outside of the shielding layer 130. The core HQ, the fibrous dielectric layer 120, the shielding layer 130 and the outer sheath 140 are coaxially disposed. The core 110 may be formed from a single conductive core or may be formed by intertwining a plurality of conductive filaments, only a single conductive core being shown in the drawings. Conductive, 'or conductive filaments are made of conductive materials. Conductive metal materials, conductive metal alloy materials, nano carbon pipes or composite conductive materials containing carbon nanotubes can be used. Among them, the conductive metal material is preferably copper or aluminum. The conductive metal alloy material is preferably a copper-zinc alloy or a copper-silver alloy, wherein the percentage of copper in the copper alloy is about 70%, and the percentage of copper in the copper-silver alloy is about 10%. 40%, the percentage of silver quality is about ~9〇%. The nano carbon line is a combination of a plurality of carbon nanotubes that are connected end to end to form a predetermined length of carbon nanotube bundles. The carbon nanotube composite conductive material is composed of a material of nanometer stone and 3 conductive metal. Preferably, the carbon nanotube composite conductive material is made of a carbon nanotube and a copper-containing material, and the copper-containing material is preferably copper, copper-zinc alloy or copper-silver alloy. When the carbon nanotube composite material is composed of copper and carbon nanotubes, the weight percentage of the carbon nanotubes in the copper material is about %·01%~2%; when the carbon nanotube composite material is composed of copper-zinc alloy and When the carbon nanotubes are composed, the weight percentage of copper in the copper-zinc alloy is about 7〇%, and the weight-to-weight ratio is about 30%. The weight percentage of the carbon nanotubes in the copper-zinc alloy is about 〇' 01%. ~2% n tree tube reconstitution consists of ship alloy and carbon nanotubes. The weight percentage of steel in the alloy is about 10%~40%, the weight of silver is ', and the spoon is 6 (U 90% 'nano The weight percentage of the carbon tube in the copper-silver alloy is about %·01%~2%. 1329324 -------- 年月(1)^文) The 绝缘 瞀, the dielectric layer 12G is used for electrical insulation, optional Poly read ethylene or nano-clay - still molecular composites. Nano-clay_polymer composite material, nano-layered structure of niobate minerals, composed of a variety of hydrated bismuth and bismuth alumina, metal oxides and soil metal oxides, And become 'with fire-resistant flame retardant and other excellent characteristics' such as nano kaolin or nano montmorillonite. The molecular material may be selected from the group consisting of ruthenium resin, polyamide, polyolefin, such as polyethylene, to propylene, etc., but not limited thereto. In this embodiment, the nano montmorillonite _ ♦ ethylene composite material is preferred, which has good electrical insulation, fire-resistant flame retardant, low smoke and no (four) escaping, not only can provide effective electrical insulation for the voyage, protect the cable core, and at the same time satisfy Environmental requirements. The shield layer 130 is composed of a plurality of carbon nanotube ropes which are directly or woven into a mesh shape and wound around the insulating medium layer 12. Each of the carbon nanotube strings includes a plurality of carbon nanotube bundle segments from a nanotube bundle array length &, each of the carbon nanotube bundle segments having substantially equal lengths and each of the carbon nanotube bundle segments being parallel to each other A carbon nanotube bundle is constructed in which both ends of a carbon nanotube bundle segment are connected to each other by a van der Waals force. The preparation method of the carbon nanotube rope in the shielding layer 130 mainly comprises the following steps: Step (1) Manufacture of a carbon nanotube bundle array. For a flat and smooth base, a choice of Ρ-type or η-type shi 基底 base is used. In this embodiment, a ρ-type Shi Xi base is used, which is 2 inches in diameter and 350 micrometers thick. A metal catalyst layer having a thickness of several nanometers to several hundred nanometers is formed on the substrate by electron beam evaporation, thermal deposition or sputtering, wherein the metal catalyst may be iron (Fe), cobalt (Co), or nickel ( Ni) or one of its alloys, preferably 10 1329324, is used as a catalyst to deposit a thickness of about 5 nm, and then the substrate on which the catalyst is deposited is annealed in air at an annealing temperature ranging from 300 to 400. C, the time is about 10 hours. After that, the substrate is divided into a plurality of rectangular small pieces, which are placed in a quartz boat and heated in a reaction furnace for a predetermined temperature in the presence of a shielding gas, generally 500 to 700 ° C, preferably 65 (TC. Then pass 30 seem carbon source gas and 30G seem of shielding gas (such as argon) for 5 to 30 minutes to obtain a carbon nanotube bundle array with a height of about 100 microns.

其中碳源氣為碳氫化合物,可為乙炔、乙烧等,優選 用乙块’該保護氣體為惰性氣體或氮氣。 為得到可拉制奈米碳管繩的奈米碳管束陣列,在製造 奈米奴管束陣列的過程中,必須滿足以下三個條件: (1) 基底平整光滑; (2) 奈米碳管束陣列的生長速度快; (3) 碳源氣的分壓要低。 生長奈米碳管束陣列的基底平整光滑,可使得位於基The carbon source gas is a hydrocarbon, and may be acetylene, ethylene bake or the like. Preferably, the block gas is an inert gas or nitrogen gas. In order to obtain a carbon nanotube bundle array of pullable carbon nanotube ropes, the following three conditions must be met in the process of fabricating the nanotube bundle array: (1) The substrate is smooth and smooth; (2) The carbon nanotube bundle array The growth rate is fast; (3) The partial pressure of the carbon source gas is low. The base of the growing carbon nanotube bundle array is smooth and smooth, allowing the base to be located

底表面的奈米碳管生長得更密集,從而形成垂直於基底的 奈米碳管束陣列。 奈米碳管束陣列的生長速度快與碳源氣的分壓低可有 效地抑制無定形碳沉積在奈米碳管的表面,從而減小奈米 碳管束間的凡德瓦爾力。因為無定形碳的沉積速度正比於 碳源氣的分壓,可通過調整碳源氣與保護氣體的流速比控 制石厌源氣的錢。而奈米碳管糾列的生長速度正比於催 化劑與反應爐的溫度差。可通過婦碳源氣的流速控制催 11 1329324 丨】參l又)正發換頁 化劑的溫度,而反應爐的溫度可直接控制。 在本實施例中,催化劑與反應爐的最低溫度差控制為 5〇°C,碳源氣的分壓要低於20%,最好是低於1〇%。 步驟(二)’製造奈米碳管繩。 攸奈米碳管束陣列中選定一包括複數奈米碳管束的奈 米碳官束片段,並使用拉伸工具拉伸該奈米碳管束片段, 使奈米碳管繩沿拉伸方向形成。The carbon nanotubes on the bottom surface grow denser to form an array of carbon nanotube bundles perpendicular to the substrate. The growth rate of the carbon nanotube bundle array is fast and the partial pressure of the carbon source gas is low, which can effectively inhibit the deposition of amorphous carbon on the surface of the carbon nanotubes, thereby reducing the van der Waals force between the carbon nanotube bundles. Since the deposition rate of amorphous carbon is proportional to the partial pressure of the carbon source gas, the cost of the stone source gas can be controlled by adjusting the flow rate ratio of the carbon source gas to the shielding gas. The growth rate of the carbon nanotubes is proportional to the temperature difference between the catalyst and the reactor. The temperature of the catalyst can be controlled by the flow rate of the carbon source gas. 11 1329324 参 参 又 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 In the present embodiment, the minimum temperature difference between the catalyst and the reactor is controlled to 5 ° C, and the partial pressure of the carbon source gas is less than 20%, preferably less than 1%. Step (2) 'Manufacture a carbon nanotube rope. A nano carbon official beam segment including a plurality of carbon nanotube bundles is selected from the array of carbon nanotube bundles, and the carbon nanotube bundle segments are stretched using a stretching tool to form a carbon nanotube string in a stretching direction.

在拉伸過程中,奈米碳管束片段在拉力的作用下沿拉 力方向伸長的同時’奈米碳管束片段兩端由於凡德瓦爾力 的作用而相互連接在一起,形成奈米碳管繩。 拉伸所用的力的大小取決於所選奈米碳管束片段的寬 ^省寬度越見,所需要的力越大。由實驗資料得出〇. 1 ^牛的力可拉出⑽财寬的奈米碳管繩。在本實施例中 问度為1GG微米的奈米碳;可拉出長度為洲厘米、 直徑為200微米的奈米碳管繩。During the stretching process, the carbon nanotube bundle segments are elongated in the tensile direction under the action of the tensile force, while the ends of the 'nano carbon nanotube bundle segments are connected to each other due to the effect of the van der Waals force to form a carbon nanotube string. The amount of force used for stretching depends on the width of the selected carbon nanotube bundle segment. The greater the width, the greater the force required. From the experimental data, it can be concluded that the force of 1 ^ cattle can pull out the carbon nanotubes of (10) wealth. In the present embodiment, it is a carbon of 1 GG micrometer; a carbon nanotube string having a length of a centimeter centimeter and a diameter of 200 micrometers can be pulled out.

外護套140由絕緣材料製成,可選用奈米枯土-高分子 材料的複合材料,其中奈錄土可為奈米高嶺土或奈米蒙 脫土 ’南分子材料可為石夕樹脂、聚醯胺、聚稀烴如聚乙烯 ^聚丙婦等,但並不以此為限。本實施例優選奈米蒙脫土— 來乙稀複合材料,其具有良好的機械性能、耐纽燃性能、 ’歧抵紫機械、 2子料來損傷,同時還能滿足環境保護的要求。 ”閱圖2,本發明第二實施例揭示的電磁 20包括複數纜芯21 η Γ同9 士 4 es _ #蚊線說 見、210 (圖2中共鮮員不七個纜芯)、每一 12The outer sheath 140 is made of an insulating material, and a composite material of nano-bare-polymer material can be selected, wherein the naproxen can be a nano-kaolin or a nano-montmorillonite, and the south molecular material can be a stone compound or a polycrystalline material. Indoleamine, poly-hydrocarbons such as polyethylene, polypropylene, etc., but not limited to this. In this embodiment, a nano-montmorillonite-ethylene-thin composite material is preferred, which has good mechanical properties, resistance to new-burning properties, damage to the purple mechanical machine, and 2 sub-materials, and can also meet the requirements of environmental protection. 2, the electromagnetic 20 disclosed in the second embodiment of the present invention includes a plurality of cores 21 η Γ with 9 士 4 es _ # mosquito line see, 210 (the total number of fresh cores in Figure 2 is not seven), each 12

1329324 210外覆蓋一絕緣介質層220、包覆於複數纜芯210外的一 屏蔽層230及一包覆於屏蔽層230外表面的外護套240。 屏蔽層230及絕緣介質層220的間隙内可填充絕緣材料。 其中,每個纜芯210及絕緣介質層220、屏蔽層230及外 護套240的構成、材料及屏蔽層230内奈米碳管繩的製備 方法與第一實施例中的纜芯11〇、絕緣介質層12〇、屏蔽層 130及外護套140的構成、材料及屏蔽層13〇内的奈米碳 管繩的製備方法基本相同。 請參閱圖3,本發明第三實施例揭示的電磁屏蔽線纜 30包括複數纜芯3}〇(圖中共顯示五個纜芯)、每一纜芯 310外覆蓋一絕緣介質層320及一屏蔽層330、以及包覆於 複數纜芯310外表面的外護套34〇。屏蔽層33〇的作用在 於對各個纜芯310進行單獨的屏蔽,這樣不僅可防止外來 因素對纜芯310内部傳輸的電信號造成干擾而且可防止各 纜芯310内傳輸的不同電信號間相互發生干擾。其中,每 個纜芯310、絕緣介質層32〇、屏蔽層33〇及外護套34〇的 構成、材料及屏蔽層330内奈米後管繩的製備方法與第一 實施例中的纜芯110、絕緣介質層12〇、屏蔽層13〇及外護 套140的構成、材料及屏蔽層13〇内的奈米碳管繩的製備 方法基本相同。 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利巾請。惟’以上所述者僅為本發明之較佳實施例, 自不能以錄制本案之巾請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 13 1329324 mrsri^------—. 年月w知乂)正名、換頁 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明第一實施例的電磁屏蔽線纜的截面結構 示意圖。 圖2係本發明第二實施例的電磁屏蔽線纜的截面結構 示意圖。 圖3係本發明第三實施例的電磁屏蔽線纜的截面結構 示意圖。 【主要元件符號說明】 10、 20、 30 110、 210、 310 120、 220、 320 130、 230、 330 140、 240、 340 電磁屏敝_線窺 纜芯 絕緣介質層 屏蔽層 外護套 14The outer cover of the 1329324 210 is covered with an insulating dielectric layer 220, a shielding layer 230 covering the outer plurality of cores 210, and an outer sheath 240 covering the outer surface of the shielding layer 230. The gap between the shield layer 230 and the insulating dielectric layer 220 may be filled with an insulating material. The structure, the material of each of the core 210 and the insulating dielectric layer 220, the shielding layer 230 and the outer sheath 240, and the method for preparing the carbon nanotube rope in the shielding layer 230 are the same as those of the first embodiment. The composition of the insulating dielectric layer 12, the shielding layer 130 and the outer sheath 140, and the preparation method of the material and the carbon nanotube string in the shielding layer 13 are basically the same. Referring to FIG. 3, the electromagnetic shielding cable 30 disclosed in the third embodiment of the present invention includes a plurality of cores 3} (a total of five cores are shown), each of the cores 310 is covered with an insulating dielectric layer 320 and a shield. The layer 330, and the outer sheath 34〇 coated on the outer surface of the plurality of cores 310. The function of the shielding layer 33 is to separately shield the respective cores 310, so as not only to prevent external factors from interfering with the electrical signals transmitted inside the cores 310, but also to prevent different electrical signals transmitted in the respective cores 310 from occurring with each other. interference. Wherein, the structure of each of the cable core 310, the insulating medium layer 32, the shielding layer 33 and the outer sheath 34, the material, and the preparation method of the nano tube in the shielding layer 330 and the core of the first embodiment 110. The structure of the insulating dielectric layer 12, the shielding layer 13 and the outer sheath 140, and the preparation method of the material and the carbon nanotube rope in the shielding layer 13 are basically the same. In summary, the present invention has indeed met the requirements of the invention patent, and the patent towel is requested in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to claim the scope of the patent for recording the case. Anyone who is familiar with the skill of the present invention shall be equivalent to the equivalent modification or change in accordance with the spirit of the present invention. 13 1329324 mrsri^------—. Year of the month, the name of the company is changed, and the page is covered in the following patent application scope. Inside. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing an electromagnetic shielding cable according to a first embodiment of the present invention. Fig. 2 is a schematic cross-sectional view showing an electromagnetic shielding cable of a second embodiment of the present invention. Fig. 3 is a schematic cross-sectional view showing an electromagnetic shielding cable according to a third embodiment of the present invention. [Description of main component symbols] 10, 20, 30 110, 210, 310 120, 220, 320 130, 230, 330 140, 240, 340 Electromagnetic screen 敝 _ line view Cable core Insulation dielectric layer Shielding outer sheath 14

Claims (1)

U29324U29324 十、申請專利範圍 L—種電磁屏蔽線纜,包括至少—纜芯、包覆於纜芯外的 至少一絕緣介質層、至少/電磁屏蔽層及外護套,其中, 電磁屏蔽層由複數奈米破管繩組成。 2·如申請專利範圍第1項所述的電磁屏蔽線纜,其特徵在 於’母偏奈米碳管繩包括多個攸奈米碳管束陣列長出的X. Patent application scope L-type electromagnetic shielding cable, comprising at least a cable core, at least one insulating dielectric layer covering the outer core of the cable core, at least/electromagnetic shielding layer and outer sheath, wherein the electromagnetic shielding layer is composed of multiple The rice is broken by a rope. 2. The electromagnetic shielding cable of claim 1, wherein the 'mother carbon nanotube string comprises a plurality of nanotube carbon nanotube bundle arrays. 奈米碳管東片段,每個奈米碳管束片段具有大致相等的 長度且每個奈米碳管束片段由多個相互平行的奈米碳管 束構成,奈米碳管束片段兩端通過范德華力相互連接。 3.如申請專利範圍第2項所述的電磁屏蔽線纜,其中,該 電磁屏蔽線纜為同軸線纜,包括由内至外同軸依次設°置 的-纜芯、包覆纜芯外表面的—絕緣介質層、包覆二 介質層外表面的-屏蔽層及包覆屏蔽層外表面的—外護The carbon nanotube east segment, each of the carbon nanotube bundle segments having substantially equal lengths and each of the carbon nanotube bundle segments is composed of a plurality of mutually parallel carbon nanotube bundles, and the carbon nanotube bundle segments are mutually coupled by van der Waals force connection. 3. The electromagnetic shielding cable according to claim 2, wherein the electromagnetic shielding cable is a coaxial cable, comprising a cable core disposed on the inner and outer coaxial lines, and an outer surface of the covered cable core. - an insulating dielectric layer, a shielding layer covering the outer surface of the two dielectric layers, and an outer surface covering the outer surface of the shielding layer 電磁屏蔽線觀括複數嘴:::界敝線纔’其中,該 外的絕緣介_、|數分別包覆於每—纜芯 屏蔽層外表面的-外護套。 60屏敝層及包覆於 5·如申請專利範圍第2項所述的電磁屏蔽線雙, 電磁屏蔽線纜包括複數辦—〜 ''' ,、中,该 外的絕緣介質層、福別包覆於每1芯 Μ-^ϊβ Ά ^ m 刀別包覆於每一絕緣介質屌外的 屏敝層及包覆於屏蔽層相—外護套。1貝層外的 6.如申請專利範圍第3 蔽線纜,其中,^+苐4項或第5項所述的電磁屏 °亥奈未碳管繩直接或編織成網狀縷繞於 15 1329324 厂臉 - 年月〖』殄(史)正替換f 絕緣介質層外。 7. 如申請專利範圍第6項所述的電磁屏蔽線纜,其中,該 奈米碳管繩由100微米的奈米碳管束陣列拉出,其長度 為30厘米,直徑為200微米。 8. 如申請專利範圍第7項所述的電磁屏蔽線纜,其中,該 絕緣介質層的材料為聚對苯二曱酸乙二醇酯、聚碳酸 酯、丙烯腈一丁二烯丙烯一苯乙烯共聚物或聚碳酸酯/丙 烯腈-丁二烯-苯乙烯共聚物。The electromagnetic shielding line includes a plurality of mouths::: the boundary line, wherein the outer insulation _, | number is respectively wrapped on the outer sheath of the outer surface of each of the core shielding layers. 60 screen 敝 layer and covered in 5. The electromagnetic shielding wire double according to the second item of the patent application scope, the electromagnetic shielding cable includes a plurality of -> ''', the middle, the outer dielectric layer, the farewell The cover layer is coated on each of the Μ-ϊβ Ά ^ m knives and is coated on the outer layer of the shield layer and the outer sheath. 6. Outside the shell layer 6. As for the third cable of the patent application scope, wherein the electromagnetic screen described in item 4 or item 5 is not directly or woven into a mesh shape around 15 1329324 Factory face - Year 〖 』 殄 (history) is replacing f outside the dielectric layer. 7. The electromagnetic shielding cable of claim 6, wherein the carbon nanotube string is drawn from a 100 micron array of carbon nanotube bundles having a length of 30 cm and a diameter of 200 microns. 8. The electromagnetic shielding cable according to claim 7, wherein the insulating dielectric layer is made of polyethylene terephthalate, polycarbonate, acrylonitrile butadiene propylene-benzene. Ethylene copolymer or polycarbonate/acrylonitrile-butadiene-styrene copolymer. 1616
TW96113997A 2007-04-20 2007-04-20 Electro magnetic shielding cable TWI329324B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96113997A TWI329324B (en) 2007-04-20 2007-04-20 Electro magnetic shielding cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96113997A TWI329324B (en) 2007-04-20 2007-04-20 Electro magnetic shielding cable

Publications (2)

Publication Number Publication Date
TW200842902A TW200842902A (en) 2008-11-01
TWI329324B true TWI329324B (en) 2010-08-21

Family

ID=44822153

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96113997A TWI329324B (en) 2007-04-20 2007-04-20 Electro magnetic shielding cable

Country Status (1)

Country Link
TW (1) TWI329324B (en)

Also Published As

Publication number Publication date
TW200842902A (en) 2008-11-01

Similar Documents

Publication Publication Date Title
TWI345793B (en) Cable
CN101556839B (en) Cable
CN101499337B (en) Cable production method
JP4424690B2 (en) coaxial cable
CN101286385B (en) Electromagnetic shielding cable
EP2451635B1 (en) Hybrid conductors and method of making same
US9193586B2 (en) Cable
JP5701907B2 (en) CNT-infused fibers as self-shielding wires for reinforced transmission lines
CN101499338B (en) Stranded wire production method
JP2014508370A5 (en)
AU2011305751A1 (en) CNT-infused fiber as a self shielding wire for enhanced power transmission line
KR101189858B1 (en) Cable and methods for making the same
TWI329324B (en) Electro magnetic shielding cable
TWI330375B (en) Electro magnetic interference suppressing cable
CN102110501B (en) Preparation method of wire cable and cable core thereof
TWI335036B (en) Electro magnetic shielding cable
TWI329325B (en) Electro magnetic shielding cable
TWI345794B (en) Method for making cable
TW201222563A (en) Cable