TW200842902A - Electro magnetic shielding cable - Google Patents

Electro magnetic shielding cable Download PDF

Info

Publication number
TW200842902A
TW200842902A TW96113997A TW96113997A TW200842902A TW 200842902 A TW200842902 A TW 200842902A TW 96113997 A TW96113997 A TW 96113997A TW 96113997 A TW96113997 A TW 96113997A TW 200842902 A TW200842902 A TW 200842902A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
electromagnetic shielding
layer
insulating
core
Prior art date
Application number
TW96113997A
Other languages
Chinese (zh)
Other versions
TWI329324B (en
Inventor
Hsi-Fu Lee
Liang Liu
Kai-Li Jiang
Caesar Chen
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96113997A priority Critical patent/TWI329324B/en
Publication of TW200842902A publication Critical patent/TW200842902A/en
Application granted granted Critical
Publication of TWI329324B publication Critical patent/TWI329324B/en

Links

Landscapes

  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Abstract

The present invention relates to an electro magnetic shielding cable. The cable includes at least one central core, at least one insulative layer covering the at least one central core, at least one electro magnetic shielding layer covering the at least one insulative layer, and a protective insulative layer. The at least one electro magnetic shielding layer includes a plurality of nanotube ropes.

Description

200842902 九、發明說明: 【發明所屬之技術領域】 本發辦涉及-种线缆,尤其涉及一種具有电磁屏蔽 功能线缆。/ 【先前技術/】 電磁屏蔽線_、電子產業裏較為常用的信號傳輸線 材’微米級尺寸的電磁屏蔽魏更廣泛制於ιτ產品、醫 學儀器、空間設備中。傳統的線缓内部設置有兩導體,内 導體用以傳輸電信號,外導體用以屏蔽傳輸的電信號並且 將其封閉在内部,從而使線境具有高頻損耗低、屏蔽及抗 干擾能力強、使用頻帶寬等特性。 一般情況下,電磁屏蔽線纜從内至外的結構依次為形 成内導體的緵芯、包覆於纜芯外表面的絕緣介質層、妒成 外導體的屏蔽層及外護套。其中,纜芯用來傳輸電信號, 材料以銅或銅辞合金為主。屏蔽層通常由多股金屬線編織 或用金屬薄膜卷覆在絕緣介質層外形成,用以屏蔽電磁干 擾或無用外部信號干擾。對於金屬線編織而成的屏蔽層, 金f線的含量及編織的鬆緊程度會影響其抗干擾能力,為 獲知車乂好的屏蔽效果,通常,屏蔽層中金屬線的含量較大 f需要將其編織雜騎密。對於金屬細卷覆在絕緣介 I層/卜而成的屏蔽層,需預先形成金屬薄膜後卷覆於絕緣 ’I貝層外。上述金屬線編織及金屬薄膜卷覆形成的屏蔽 層’在生產速度上遠遠低於線緵纔芯的生產速度,是限制 屯磁屏蔽線纟顏產的主要目素,另外,大量使肖金屬線或 200842902 電磁屏蔽線纜的生產成本也較200842902 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a cable, and more particularly to a cable having an electromagnetic shielding function. / [Prior Art /] Electromagnetic shielding wire _, the signal transmission wire commonly used in the electronics industry 'Micro-scale electromagnetic shielding Wei is widely used in ιτ products, medical instruments, space equipment. The conventional wire is internally provided with two conductors, the inner conductor is for transmitting electrical signals, and the outer conductor is used for shielding the transmitted electrical signal and enclosing it inside, so that the line has high frequency loss, shielding and anti-interference ability. Use frequency bandwidth and other features. In general, the structure of the electromagnetic shielding cable from the inside to the outside is a core forming an inner conductor, an insulating dielectric layer covering the outer surface of the core, a shielding layer formed as an outer conductor, and an outer sheath. Among them, the cable core is used to transmit electrical signals, and the material is mainly copper or copper alloy. The shielding layer is usually formed by braiding a plurality of metal wires or wrapping a metal film over the insulating dielectric layer to shield electromagnetic interference or unwanted external signal interference. For the shielding layer of metal wire weaving, the content of gold f wire and the tightness of weaving will affect its anti-interference ability. In order to know the good shielding effect of the rut, usually, the content of metal wire in the shielding layer is large. Its weaving is dense. For the shielding layer in which the metal thin coil is coated on the insulating layer/b, the metal film is formed in advance and then wound on the outside of the insulating layer. The shielding layer formed by the above-mentioned metal wire braiding and metal film winding is far lower than the production speed of the core wire in the production speed, and is a main target for limiting the production of the magnetic shielding wire, and in addition, a large amount of the metal The production cost of the wire or 200842902 electromagnetic shielding cable is also higher.

造,週於低成本大量生產。 【發明内容】 金屬薄膜材料作為屏蔽層, 高。 下面將藉由實施例進一步詳細說明一 種電磁屏蔽線 縵’其具妓㈣電郷蔽效錢域構鮮適於低成本 大量生產。 Γ主少一纜芯、包覆於纜芯外 電磁屏蔽層及外護套,其中, 一種電磁屏蔽線繞,包括至少 的至少一絕緣介質層、至少一雷磁」 電磁屏蔽層包含複數奈米碳管繩。 與先刚技術相比較,本發明藉由奈米碳管繩形成電磁 屏蔽層,a奈米碳官具有良好的導電性能從而㈣蔽層具 有較強的屏蔽效果,另,該屏蔽層相較於現有技術中編織 金屬線或卷覆金屬薄膜結構簡單,更因此適於低成本大量 生產。 【實施方式】 下面將結合附圖對本發明電磁屏蔽線纜的結構及其製 造方法作進一步之詳細說明。 本發明電磁屏蔽線纜包括至少一纔芯、包覆於纜芯外 的至少一絕緣介質層、至少一電磁屏蔽層及外護套。 請參閱圖1,本發明第一實施例的電磁屏蔽線纜1〇為 電磁屏蔽同軸線纜,包括一纜芯11〇、包覆於緵芯11〇外 200842902 的絕緣介質層12〇、包覆於絕緣介質層120外的屏蔽層130 及包覆於屏蔽層13〇外的外護套140。其中,纜芯11〇、絕 緣介質層120、屏蔽層130及外護套140同轴設置。Manufacturing, weekly mass production at low cost. SUMMARY OF THE INVENTION A metal thin film material is high as a shielding layer. In the following, an electromagnetic shielding wire 缦' will be further described in detail by way of example, which has a 妓 (4) electric entanglement effect and is suitable for low-cost mass production. The utility model has a core, a core shielding outer electromagnetic shielding layer and an outer sheath, wherein the electromagnetic shielding wire winding comprises at least one insulating dielectric layer and at least one lightning magnetic wave. The electromagnetic shielding layer comprises a plurality of nanometers. Carbon tube rope. Compared with the prior art, the present invention forms an electromagnetic shielding layer by a carbon nanotube rope, and a nano carbon official has good electrical conductivity so that (4) the shielding layer has a strong shielding effect, and the shielding layer is compared with the existing one. In the technology, the braided metal wire or the coiled metal film has a simple structure and is therefore suitable for mass production at low cost. [Embodiment] Hereinafter, the structure of an electromagnetic shielding cable of the present invention and a manufacturing method thereof will be further described in detail with reference to the accompanying drawings. The electromagnetic shielding cable of the present invention comprises at least one core, at least one insulating dielectric layer covering the core, at least one electromagnetic shielding layer and an outer sheath. Referring to FIG. 1 , an electromagnetic shielding cable 1 〇 according to a first embodiment of the present invention is an electromagnetic shielding coaxial cable, which comprises a core 11 〇, an insulating dielectric layer 12 包覆 wrapped around a 〇 core 11 2008 2008 200842902, and a coating. The shielding layer 130 outside the insulating dielectric layer 120 and the outer sheath 140 wrapped around the shielding layer 13 . The core 11 〇, the insulating dielectric layer 120, the shielding layer 130 and the outer sheath 140 are coaxially disposed.

、、龙芯110可由一單獨的導電芯構成,也可由複數導電 、、糸相互纏繞形成,附圖中僅顯示一單獨的導電芯。導電芯 或導電絲均由導電材料製成,可選用導電金屬材料、導電 至屬合金材料、奈米碳管線或含奈米碳管的複合導電材 料。其中,導電金屬材料優選銅或鋁。導電金屬合金材料 優選鋼鋅合金或銅銀合金,其中,銅鋅合金中銅的品質百 刀比、、、勺為7(U ’鋅的品質百分比約為3〇% ;銅銀合金中銅的 =處百分比約為10%〜4〇%,銀的品質百分比約為6〇%〜9〇%。 不米=讀為複數奈米碳f間凡德瓦爾力首尾相連從而形 f預定長度的奈米碳管束。奈米碳管複合導電材料由& ::及含導電金屬的材料組成。優選地, :導 rt金或銅銀合金。當奈米碳管複合材料由銅 組成時,奈米碳管在銅材料中 :及:“官 士 / 火㈣合材料由銅鋅合金及奈米皆〜 成日寸,鋼鋅合金中銅的重量 ”九&、、且 八冰从上 里百刀比約為70%,鋅的會旦石 刀比約為30%,奈米碳管右钿拉入人丄 甲扪室里百 〇屬〜f^銅鋅合金中的重量百分比約為 ,.,合材料由銅銀合金及夺平俨 成,合金中銅的重量百分比約為秦 “㈠且 比約為60%〜90%,奈米碳管鋼’銀的重量百分 為〇. 01%.。 亂艮&孟中的重量百分比約 200842902 H $層120用於電氣絕緣,可選用聚四ι乙 奈米枯土-南分子複合材料。奈綠土 —高分子複合柯料 中奈米枯土係奈米級層狀結構的魏鹽礦物,由多種水合 矽酉夂I及疋里的氧化鋁、鹼金屬氧化物及驗土金屬氧化 物組成4耐纽鱗優良雜,如奈米高駐或奈米蒙 脫土同刀子材料可選用石夕樹脂、聚酿胺、聚烯烴如聚乙 烯或χΚ丙烯等但並不以此為限。本實施例優選奈米蒙脫 土-聚乙烯複合材料,其具有良好的電氣絕緣 、而才火阻燃、 低煙無鹵等特性,不僅可為纜芯提供有效的電氣絕緣,保 護纜芯,同時還能滿足環保的要求。 井蔽層130由複數奈米碳管繩組成,該奈米碳管繩直 接或編織成網狀纏繞在絕緣介質層⑽外。每個奈米碳管 繩包括複數從奈讀管束_長出的奈树管束片段,^ 個奈米碳管束#段具有大致相等的長度鸡個奈米碳管束 片段由複數相互平行的奈米碳管束構成,其中,奈米碳管 束片段兩端通過凡德瓦爾力相互連接。 屏蔽層130中的奈米碳管繩的製備方法主要包括以下 厂农這常木石灰官束陣列。 提供—平整光滑的基底,可_ p型或η型絲底 ^貝^中選用Ρ型絲底,其直徑為2英寸,厚35〇箱 以t底上_電子束蒸發法、知積或崎法等朽 形成厚度為幾奈❹m百奈米的金屬催化_, 催化劑可為酬、钻㈣、鎳㈤二優 200842902 用鐵為催化劑,沉積厚度約為5奈米。 而後將沉積有催化劑的基底在空氣中退火,退火溫度 範圍為3〇〇〜400°C,時間約為10小時。之後基底被分割成 ^ 許多矩形小塊,矩形小塊放入石英舟中,在保護氣體存在 條件下,在反應爐中加熱一段時間使其達到一預定溫度, 一般為500〜700X:,優選為650°C。 再通入30 seem碳源氣與300 seem的保護氣體(如氬 氣)5〜30分鐘,制得高度約1〇〇微米的奈米碳管束陣列。 f 其中峡源氣為碟氳化合物,可為乙炔、乙烧等,優選 用乙炔,該保護氣體為惰性氣體或氮氣。 為得到可拉制奈米碳管繩的奈米碳管束陣列,在製造 奈米碳管束陣列的過程中,必須滿足以下三個條件: (1) 基底平整光滑; (2) 奈米碳管束陣列的生長速度快; (3) 碳源氣的分壓要低。 , 生長奈米碳管束陣列的基底平整光滑,可使得位於基 底表面的奈米碳管生長得更密集,從而形成垂直於基底的 奈米碳管束陣列。 奈米碳官束陣列的生長速度快與碳源氣的分壓低可有 效地抑制無定形碳沉積在奈米碳管的表面,從而減小奈米 碳管束間的凡德瓦爾力。因為無定形碳的沉積速度正比於 碳源氣的分壓,可通過調整碳源氣與保護氣體的流速比控 制碳源氣的分壓。而奈米碳管束陣列的生長速度正比於催 化劑與反應爐的溫度差。可通過調整碳源氣的流速控制催 11 200842902 化劑的溫度,而反應爐的溫度可直接控制。 在本實施例中,催化劑與反應爐的最低溫度差控制為 50 C,碳源氣的分壓要低於2〇%,最好是低於1〇%。 步驟(二),製造奈米碳管繩。 從奈米碳管束陣列中選定一包括複數奈米碳管束的奈 米妷官束片段,並使用拉伸工具拉伸該奈米碳管束片段, 使奈米碳管繩沿拉伸方向形成。 在拉伸過程中,奈米碳管束片段在拉力的作用下沿拉 力方向伸長的同時,奈米碳管束片段兩端由於凡德瓦爾力 的作用而相互連接在—起,形成奈米碳管繩。 声拉的力的大小取決於所選奈米碳管束片段的寬 ,、亥見度越寬’所需要的力越大。由實驗資料得出〇·丄 牛的力可拉出微錢的奈米碳管繩。在本實施例中 2為⑽微米的奈米碳管束陣列可拉出長度為30厘米、 從為200微米的奈米碳管繩。The dragon core 110 may be formed of a single conductive core or may be formed by interdigitating a plurality of conductive wires, and only a single conductive core is shown in the drawing. The conductive core or the conductive wire are made of a conductive material, and a conductive metal material, a conductive alloy material, a nano carbon line or a composite conductive material containing a carbon nanotube may be used. Among them, the conductive metal material is preferably copper or aluminum. The conductive metal alloy material is preferably a steel-zinc alloy or a copper-silver alloy, wherein the quality of copper in the copper-zinc alloy is 100%, and the spoon is 7 (the mass percentage of U'zinc is about 3〇%; the copper in the copper-silver alloy) = the percentage at the point is about 10% ~ 4〇%, the percentage of silver quality is about 6〇% ~ 9〇%. Not meters = read as a complex number of nano carbon f between Van der Waals force end-to-end and thus form a predetermined length of Nai The carbon nanotube bundle. The carbon nanotube composite conductive material is composed of &:: and a conductive metal-containing material. Preferably, the rt gold or copper-silver alloy. When the carbon nanotube composite material is composed of copper, the nanometer Carbon tube in copper material: and: "Justice / fire (four) composite material from copper-zinc alloy and nano-------------------------- The knife ratio is about 70%, the ratio of zinc to the diamond knife is about 30%, and the right weight of the carbon nanotubes is pulled into the human armor chamber. The weight percentage of the genus ~f^copper-zinc alloy is about . The composite material is made of copper-silver alloy and flattened. The weight percentage of copper in the alloy is about Qin (1) and the ratio is about 60%~90%, and the carbon nanotube steel is silver. The percentage is 〇. 01%. 艮 艮 & Mengzhong's weight percentage is about 200842902 H $ layer 120 is used for electrical insulation, optional polytetramethylene nano-sludge-South molecular composite material. Nai smectite - In the polymer composites, the Wei salt minerals of the nano-layered structure of nano-baked soil are composed of various hydrated yttrium I and yttrium alumina, alkali metal oxides and soil-measuring metal oxides. The scales are excellent, such as nano-high or nano-montmorillonite, and the knife material may be selected from the group consisting of Shishi resin, polyamine, polyolefin such as polyethylene or propylene, but not limited thereto. Mimenite-polyethylene composite material, which has good electrical insulation, fire-retardant, low-smoke and halogen-free characteristics, can not only provide effective electrical insulation for the cable core, protect the cable core, but also meet environmental protection. The well layer 130 is composed of a plurality of carbon nanotube ropes which are directly or woven into a mesh shape and wound around the insulating medium layer (10). Each of the carbon nanotube ropes includes a plurality of tubes from the tube. The section of the nai tree tube bundle that grows, ^ the section of the carbon nanotube bundle # has roughly The length of the chicken carbon nanotube bundle segment is composed of a plurality of mutually parallel carbon nanotube bundles, wherein the carbon nanotube bundle segments are connected to each other by van der Waals force. Preparation of the carbon nanotube rope in the shielding layer 130 The method mainly includes the following farmer's regular limestone official beam array. Provides a smooth and smooth base, which can be used for _p-type or η-type silk soles. The diameter of the wire is 2 inches and the thickness is 35 inches. The metal catalysis with a thickness of several nanometers and a hundred nanometers is formed by the electron beam evaporation method, the electron beam evaporation method, the known product or the smear method. The catalyst can be used for the deposition of the catalyst, and the catalyst can be used for the deposition of the catalyst (4), nickel (5), and 2, 200842902. The thickness is about 5 nm. The substrate on which the catalyst is deposited is then annealed in air at an annealing temperature in the range of 3 Torr to 400 ° C for about 10 hours. After that, the substrate is divided into a plurality of rectangular small pieces, which are placed in a quartz boat and heated in a reaction furnace for a predetermined temperature in the presence of a shielding gas, generally 500 to 700X: preferably 650 ° C. Then, 30 seem carbon source gas and 300 seem of shielding gas (such as argon) were introduced for 5 to 30 minutes to prepare an array of carbon nanotube bundles having a height of about 1 〇〇 micrometer. f The gorge source gas is a dish oxime compound, which may be acetylene, acetylene or the like, preferably acetylene, and the shielding gas is an inert gas or nitrogen. In order to obtain a carbon nanotube bundle array of pullable carbon nanotube ropes, the following three conditions must be met in the process of fabricating a carbon nanotube bundle array: (1) The substrate is smooth and smooth; (2) The carbon nanotube bundle array The growth rate is fast; (3) The partial pressure of the carbon source gas is low. The growth carbon nanotube bundle array has a smooth and smooth base, which allows the carbon nanotubes on the surface of the substrate to grow denser, thereby forming an array of carbon nanotube bundles perpendicular to the substrate. The growth rate of the nano-carbon beam array and the low partial pressure of the carbon source gas can effectively suppress the deposition of amorphous carbon on the surface of the carbon nanotubes, thereby reducing the van der Waals force between the carbon nanotube bundles. Since the deposition rate of amorphous carbon is proportional to the partial pressure of the carbon source gas, the partial pressure of the carbon source gas can be controlled by adjusting the flow rate ratio of the carbon source gas to the shielding gas. The growth rate of the nanotube bundle array is proportional to the temperature difference between the catalyst and the reactor. The temperature of the catalyst can be controlled by adjusting the flow rate of the carbon source gas, and the temperature of the reactor can be directly controlled. In the present embodiment, the minimum temperature difference between the catalyst and the reactor is controlled to 50 C, and the partial pressure of the carbon source gas is less than 2%, preferably less than 1%. Step (2), manufacturing a carbon nanotube rope. A nanotube bundle segment including a plurality of carbon nanotube bundles is selected from the array of carbon nanotube bundles, and the carbon nanotube bundle segments are stretched using a stretching tool to form a carbon nanotube string in a stretching direction. During the stretching process, while the carbon nanotube bundle segment is elongated in the tensile direction under the action of the tensile force, the two ends of the carbon nanotube bundle segment are connected to each other due to the effect of the van der Waals force, forming a carbon nanotube string. . The force of the acoustic pull depends on the width of the selected carbon nanotube bundle segment, and the greater the force required for the wider visibility. From the experimental data, it is concluded that the force of the 〇·丄 cow can pull out the nano carbon tube rope of the micro money. In this embodiment, a carbon nanotube bundle array of 2 (10) micrometers can pull a carbon nanotube rope having a length of 30 cm and a diameter of 200 micrometers.

蒙脫土,古八中“粘土可為奈米高嶺土或奈米 歸或聚丙;;=為顿脂、聚酿胺、聚物如聚乙 土-聚乙稀複人=此為限。本實施例優選奈米蒙脫 _、具有良好的機械性能、耐火阻燃 機械、物理或化學可轉驗供保護,有效抵紫 要求。 、卜來知傷,同時還能滿足環境保護的 請參閱圖2, 本發明第二實施例揭示的電料蔽線纜 200842902 ' s 2〇匕括複數規芯210 (圖2中共顯示七個纜芯每一鎳怎 卜復息1巴緣介質層220、包覆於複數纜芯210外的一 〜 層’及—包覆於屏蔽層230外表面的外護套240。 < ::層挪及絕緣介質層220的間隙内可填充絕緣材料。 :每個、210及絕緣介質層22〇、屏蔽層23〇及外 叹套2=的構成、材料及屏蔽層23〇内奈米碳管繩的製備 方法與第-實施例中的纜芯m、絕緣介質層⑽、屏蔽層 f Τ及外漠套140的構成、材料及屏蔽層130 β的奈米碳 管繩的製備方法基本相同。 請參閱圖3,本發明第三實施例揭示的電磁屏蔽線纜 3〇包括複數纜芯310 (圖中共顯示五個纜芯)、每-纜芯 3—1〇外覆蓋-絕緣介質層32G及—屏蔽層咖、以及包覆於 復數纜芯310外表面的外護套34〇。屏蔽層的作用在 於對各個mio進行單獨的屏蔽,這樣不僅可防止外來 因素對纜芯310内部傳輸的電信號造成干擾而且可防止各 〔 纜芯310内傳輸的不同電信號間相互發生干擾。其中,每 個W 310、絕緣介質層32〇、屏蔽層33〇及外護套的 2成、材料及屏蔽層330内奈米碳管繩的製備方法與第一 貝知例中的纜芯11〇、絕緣介質層12〇、屏蔽層及外護 套140的構成、材料及屏蔽層ι3〇内的奈米碳管繩的製備 方法基本相同。 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。‘准,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 13 200842902 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 - 【圖式簡單說明】 ^ 圖1係本發明第一實施例的電磁屏蔽線纜的截面結構 示意圖。 圖2係本發明第二實施例的電磁屏蔽線纜的截面結構 示意圖。 圖3係本發明第三實施例的電磁屏蔽線纜的截面結構 示意圖。 【主要元件符號說明】 10、 20、 30 110、 210、 310 120、 220、 320 130、 230、 330 140、 240、 340 電磁屏蔽線纜 纜芯 絕緣介質層 屏蔽層 外護套 14Montmorillonite, Gu Bazhong "Clay can be nano-kaolin or nano- or poly-propene;; = for fat, polyamine, polymer such as polyethylene-polyethylene compound = this limit. This implementation For example, it is preferred to have nanometer montmorillon _, have good mechanical properties, fire-retardant mechanical, physical or chemical can be tested for protection, and effectively meet the requirements of purple. 卜来知伤,, but also meet environmental protection, please refer to Figure 2 The electric material shielding cable 200842902 's 2 disclosed in the second embodiment of the present invention includes a plurality of cores 210 (the total of seven cores in FIG. 2 is shown in each of the two layers of the dielectric layer 220, coated A layer ~ to the outside of the plurality of cores 210 and an outer sheath 240 covering the outer surface of the shield layer 230. <: The interlayer of the layer and the insulating dielectric layer 220 may be filled with an insulating material. 210 and insulating dielectric layer 22〇, shielding layer 23〇 and outer stalk 2= composition, material and shielding layer 23 method for preparing inner carbon nanotube rope and cable core m and insulating medium layer in the first embodiment (10) The construction method of the shielding layer f Τ and the outer jacket 140, and the preparation method of the carbon nanotube rope of the shielding layer 130 β are basically the same. Referring to FIG. 3, an electromagnetic shielding cable 3A according to a third embodiment of the present invention includes a plurality of cable cores 310 (a total of five cores are shown), each of the cores 1-3 outer covering-insulating dielectric layer 32G and a shielding layer, and an outer sheath 34〇 covering the outer surface of the plurality of cores 310. The shielding layer functions to shield each mio separately, so as not only to prevent external signals from transmitting electrical signals to the inside of the core 310. It causes interference and prevents each of the different electrical signals transmitted in the cable core 310 from interfering with each other. Among them, each W 310, the insulating dielectric layer 32, the shielding layer 33, and the outer sheath are formed, materials and shielding layers. The preparation method of the 330 inner carbon nanotube rope and the structure of the core 11〇, the insulating medium layer 12〇, the shielding layer and the outer sheath 140 in the first example, the material and the nano carbon in the shielding layer ι3〇 The preparation method of the pipe rope is basically the same. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. 'The above is only the preferred embodiment of the present invention, and it is impossible to use this. Limit the scope of patent application in this case. Equivalent modifications or variations made by those skilled in the art of the present invention 13 200842902 in accordance with the spirit of the present invention are intended to be included in the scope of the following claims. - BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a first embodiment of the present invention. 2 is a schematic cross-sectional view of an electromagnetic shielding cable according to a second embodiment of the present invention. Fig. 3 is a cross-sectional structural view of an electromagnetic shielding cable according to a third embodiment of the present invention. DESCRIPTION OF SYMBOLS 10, 20, 30 110, 210, 310 120, 220, 320 130, 230, 330 140, 240, 340 Electromagnetic shielded cable core insulation dielectric layer shield outer sheath 14

Claims (1)

200842902 、申凊專利範圍 1一種電磁屏蔽線繞,包栝至少-纜芯、包覆於繞芯外的 至少一絕緣介質層、至少一電磁屏蔽層及外護套,其中, 電磁屏蔽層包含複數奈米碳管繩。 2·如申請專利範圍第1項所述的電磁屏蔽線纜,其特徵在 於’,每個奈米碳管繩包括多個從奈米碳管束陣列長出的 奈米碳管束片段’每個奈米碳管束片段具有大致相等的 長度且每個奈米碳管束片段由多個相互平行的 束構成,奈米碳管束片段兩端通過范德華力相互連'接 3. :申請專利範圍第2項所述的電磁屏蔽線繞,其中,該 包磁屏敝線㈣同軸線纜’包括由内至外同軸依次設置 =一缓芯、包_芯外表面的—絕緣介質層、包覆絕缘 u質層外表面的-屏蔽層及包㈣蔽層外表面的 套。 咬 4. ^°、申請專利範圍帛2項所述的電磁屏蔽_,其中,該 電磁屏蔽賴包括複賴芯、複數分別包祕每一㈣ =絕緣介質層、包覆絕緣介f層的—屏蔽層及包= 屏蔽層外表面的一外護套。 5·如申請專利範圍第2項所述的電磁屏蔽魏,其中,該 電磁屏蔽線觀括複數繞芯、複數分別包覆於每一^ 外的絕緣介質層、複數分別包覆於每_絕緣介質層= 屏敝層及包覆於屏蔽層外的一外護套。 6. +如申請專利範圍第3項、第4項或第5項所述的電磁 敵線、纜,其中,該奈米碳管繩直接或編織成網狀纏繞於 200842902 * 絕緣介質層外。 7·如申請專利範圍第6項所述的電磁屏蔽線纜,其中,該 ·- 奈米碳管繩由100微米的奈米碳管束陣列拉出,其長度 • 為30厘米,直徑為200微米。 8.如申請專利範圍第7項所述的電磁屏蔽線纜,其中,該 絕緣介質層的材料為聚對苯二曱酸乙二醇酯、聚碳酸 酯、丙烯腈一丁二烯丙烯一苯乙烯共聚物或聚碳酸酯/丙 稀猜一丁二稀一苯乙稀共聚物。 16200842902, the patent scope of claim 1 is an electromagnetic shielding wire wound, comprising at least a cable core, at least one insulating dielectric layer covering the core, at least one electromagnetic shielding layer and an outer sheath, wherein the electromagnetic shielding layer comprises a plurality of Nano carbon tube rope. 2. The electromagnetic shielding cable according to claim 1, wherein each of the carbon nanotube strings comprises a plurality of carbon nanotube bundle segments grown from a carbon nanotube bundle array. The carbon nanotube bundle segments have substantially equal lengths and each of the carbon nanotube bundle segments is composed of a plurality of mutually parallel bundles, and the ends of the carbon nanotube bundle segments are connected to each other by van der Waals force. 3: Patent Application No. 2 The electromagnetic shielding wire winding is described, wherein the magnetic shielding wire (4) coaxial cable 'includes coaxially from inner to outer coaxial = insulating core layer, outer surface of the outer core, and insulating insulating layer The outer surface of the - shielding layer and the cover of the outer layer of the cover (four). Bite 4. ^ °, the scope of the patent application 帛 2 of the electromagnetic shielding _, wherein the electromagnetic shielding depends on the core, the complex number of each secret (4) = insulating dielectric layer, covering the insulating layer f - Shield and package = an outer jacket on the outer surface of the shield. 5. The electromagnetic shielding according to claim 2, wherein the electromagnetic shielding line comprises a plurality of winding cores, a plurality of insulating dielectric layers respectively coated on each of the outer layers, and a plurality of insulating layers respectively covering each of the insulating layers. Dielectric layer = screen layer and an outer sheath wrapped around the shield. 6. The electromagnetic enemy line or cable according to claim 3, 4 or 5, wherein the carbon nanotube string is directly or woven into a mesh and wound around the 200842902 * insulating dielectric layer. 7. The electromagnetic shielding cable according to claim 6, wherein the carbon nanotube string is pulled out by a 100 micron carbon nanotube bundle array having a length of 30 cm and a diameter of 200 micrometers. . 8. The electromagnetic shielding cable according to claim 7, wherein the insulating dielectric layer is made of polyethylene terephthalate, polycarbonate, acrylonitrile butadiene propylene-benzene. Ethylene copolymer or polycarbonate/acrylic syrup. 16
TW96113997A 2007-04-20 2007-04-20 Electro magnetic shielding cable TWI329324B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96113997A TWI329324B (en) 2007-04-20 2007-04-20 Electro magnetic shielding cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96113997A TWI329324B (en) 2007-04-20 2007-04-20 Electro magnetic shielding cable

Publications (2)

Publication Number Publication Date
TW200842902A true TW200842902A (en) 2008-11-01
TWI329324B TWI329324B (en) 2010-08-21

Family

ID=44822153

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96113997A TWI329324B (en) 2007-04-20 2007-04-20 Electro magnetic shielding cable

Country Status (1)

Country Link
TW (1) TWI329324B (en)

Also Published As

Publication number Publication date
TWI329324B (en) 2010-08-21

Similar Documents

Publication Publication Date Title
TWI345793B (en) Cable
CN101556839B (en) Cable
US7449631B2 (en) Coaxial cable
US9831012B2 (en) Cable
US7491883B2 (en) Coaxial cable
JP4424690B2 (en) coaxial cable
US7459627B2 (en) Coaxial cable
CN101499337B (en) Cable production method
EP2451635B1 (en) Hybrid conductors and method of making same
US9972420B2 (en) Carbon nanotube shielding for transmission cables
CN205789279U (en) graphene low noise cable
KR101189858B1 (en) Cable and methods for making the same
TWI330375B (en) Electro magnetic interference suppressing cable
CN202816425U (en) Antistatic, wear resistant, tensile, environment-friendly and high temperature resistant shielded arranged cable
CN210865667U (en) High-flexibility light sensing cable
TW200842902A (en) Electro magnetic shielding cable
CN102110501B (en) Preparation method of wire cable and cable core thereof
TWI335036B (en) Electro magnetic shielding cable
TWI329325B (en) Electro magnetic shielding cable
TWI413131B (en) Cable
CN208141909U (en) A kind of electric wire
CN205376147U (en) Multicore signal line
TWI345794B (en) Method for making cable
CN216793379U (en) Small-size communication cable for ships
CN203150202U (en) Irradiation crosslinking video and control cable