CN101497805A - 超临界法酸化固体催化制备生物柴油的方法 - Google Patents

超临界法酸化固体催化制备生物柴油的方法 Download PDF

Info

Publication number
CN101497805A
CN101497805A CNA2009100794946A CN200910079494A CN101497805A CN 101497805 A CN101497805 A CN 101497805A CN A2009100794946 A CNA2009100794946 A CN A2009100794946A CN 200910079494 A CN200910079494 A CN 200910079494A CN 101497805 A CN101497805 A CN 101497805A
Authority
CN
China
Prior art keywords
oil
reaction
solid catalyst
acidified solid
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2009100794946A
Other languages
English (en)
Inventor
张敬畅
刘瑾
杨秀英
曹维良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Hainan Institute of Science and Technology
Original Assignee
Beijing University of Chemical Technology
Hainan Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology, Hainan Institute of Science and Technology filed Critical Beijing University of Chemical Technology
Priority to CNA2009100794946A priority Critical patent/CN101497805A/zh
Publication of CN101497805A publication Critical patent/CN101497805A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Abstract

本发明涉及一种助溶剂条件下采用酸化固体催化剂制备生物柴油的方法。该方法以动植物油为原料,先将原料油和醇类物质置于高压反应釜内,再加入少量酸化固体催化剂,在助溶剂作用下,使反应在110℃~180℃、0.1MPa~7MPa达到临界状态,在临界状态下反应5min~2h,经过分离得到生物柴油。该方法由于加入了助溶剂,提高了催化剂的催化活性,降低了反应温度,提高了反应速率;该方法产物的后处理简单不产生三废污染,反应后催化剂易于回收,回收的催化剂能重复使用,无设备腐蚀。

Description

超临界法酸化固体催化制备生物柴油的方法
技术领域
本发明属于生物柴油的制备技术领域,具体涉及在近临界状态下采用酸化固体催化剂催化酯交换制备生物柴油的方法。
技术背景
随着石油资源的日益枯竭和人们环保意识的提高,人们越来越关注石油燃料的替代品。生物柴油是由动植物油脂、餐饮业废弃油脂等与甲醇等短链醇通过酯交换反应生成的脂肪酸酯。与矿物柴油相比较,生物柴油具有闪点较高,十六烷值较高,润滑性能良好,可生物降解、无毒、无污染等优点,是一种新型的可再生洁净能源,可以作为优质的石油柴油替代用品。我国是农业大国,农业资源亟待开发。用植物油脂来生产生物柴油既调整了农作物经济结构,同时又提高了农民的经济收入,是一件利国利民的好事。
目前合成生物柴油的主要方法为酯交换法。酯交换法是通过酯基转移作用将高粘度的植物油或动物油脂转化成低黏度的脂肪酸酯,该方法主要包括酶催化法、超临界法、均相催化法和多相催化法。酶催化法中短链醇极易导致酶失活,而且反应过程中生成的副产物甘油容易附着在脂肪酶表面,使反应难以进行。超临界法是一种高效、简便的方法,但反应条件苛刻,甲醇的临界压力和临界温度分别为8.09MPa和239.4℃,这使得反应系统设备投资大大增加,同时也增加了操作的危险性。均相催化法主要采用H2SO4、HCl等催化剂,反应速度快、转化率高,但该方法易腐蚀设备,催化剂分离困难,产品后续处理过程复杂,清洗会产生大量工业废水造成环境污染,副反应多,乳化现象严重。非均相催化法可以避免在传统的均相酸催化法过程中诸多缺点,酸化固体催化剂在使用过程中无腐蚀设备,催化剂可回收重复使用、产品的后处理简单,无废液产生、副反应多和乳化现象等严重问题,且催化剂可回收重复使用,可以一次性分离得到副产物甘油,是一种环境友好型催化剂。
Saka最早提出了利用超临界流体技术制备生物柴油的方法,研究表明,在甲醇与菜籽油的质量比为42:1的情况下,当反应温度低于超临界温度(240℃)时,反应1h后的转化率只有70%左右,当反应温度高于超临界温度时,尤其是当温度达到300℃以上时(压力也超过10MPa),反应速率明显提高,4min内的转化率达95%。虽然在甲醇的超临界条件下,反应速率提高了,但在该反应条件明显提高了设备以及工艺的难度。
陈和等人研究了SO4 2-/TiO2和SO4 2-/ZrO2固体酸催化剂对棉籽油酯交换反应的反应活性,在230℃、醇油摩尔比12:1及催化剂用量为棉籽油2%的条件下,反应8h后甲酯的收率达到90%以上。单独使用固体酸催化的酯交换反应,在较高的温度下反应很长时间才有会较为可观的转化率,无疑会增加生产成本及负担。
发明内容
本发明的目的是提出一种助溶剂条件下酸化固体催化剂催化制备生物柴油的方法,具有反应条件温和、反应速率快、转化率高、无废液产生、无设备腐蚀、产物容易分离、催化剂可重复使用等优点。
本发明将超临界法与非均相催化法相结合,即采用酸化固体催化剂,在助溶剂的条件进行酯交换反应制备生物柴油。助溶剂加入使得反应在较低的温度下就可以达到亚临界状态,从而使小分子醇活性大幅度提高,更容易进行酯交换反应。所以该方法使得反应条件更趋于温和,提高了酸化固体催化剂的催化活性,加快了反应速率,提高了转化率。且助溶剂来源广泛、价格低廉,具有很好的工业应用前景。
本发明所使用的酸化固体催化剂是一种具有特殊催化活性的催化剂,酸化的固体催化剂既不同于固体超强酸催化剂,也不同于均相催化剂。固体超强酸因其具有极强的酸性而使副反应增加,反应产物色泽深,需脱色处理。酸化固体催化剂兼具了均相催化剂和固体超强酸催化剂的各自优势,其酸性可根据需要淋洗硫酸浓度的不同进行调解,催化酯交换的活性高,副反应少,反应后易于与产物分离,可回收重复使用,产物的后处理简单无污染无腐蚀,可一次性分离得到生物柴油和甘油,所得产品色泽好,纯度高。
本发明提出的一种助溶剂条件下酸化固体催化剂催化制备生物柴油的方法,其特征在于,所述方法依次按如下步骤进行:
A.将原料油脂、短链醇和酸化固体催化剂加入到反应釜中,密封后通氮气排除反应体系中的氧气,再充入助溶剂;其中短链醇与原料油脂的摩尔比为3-27∶1,酸化固体催化剂的用量为原料油脂总质量的0.1~5%;助溶剂是气体,其充入量是使反应釜中压力达到0.5~4MPa;
所述原料油为大豆油、转基因大豆油、菜籽油、转基因菜子油、椰子油、棉籽油、蓖麻油、桐油、棕榈油、花生油、桃仁油、杏仁油、葵花籽油、亚麻油、玉米油、藻类油脂、橄榄油、猪油、牛油、鱼油、餐饮业回收油、工业废油、潲水油、地沟油、酸化油中的一种或多种;较好的是大豆油、棉籽油、桐油、棕榈油。
所述短链醇为甲醇、乙醇和丙醇中的任意一种;
所述的酸化固体催化剂为SO4 2-/MxOy类催化剂或SO4 2-/TiO2-ZrO2、SO4 2-/ZrO2-Fe2O3、SO4 2-/TiO2-Fe2O3复合类酸化固体催化剂;
SO4 2-/MxOy类酸化固体催化剂是Zr(SO4)2.4H2O、Zr(SO4)2/AC、Zr(SO4)2/Al2O3、Zr(SO4)2/SiO2、CuSO4、Fe2(SO4)3、ZnSO4、Co2(SO4)3、MnSO4、CuCl2、FeCl3、ZnCl2、CoCl3、MnCl2、SO4 2-/ZrO2、SO4 2-/TiO2、SO4 2-/ZnO、SO4 2-/Fe2O3、SO4 2-/MnO、SO4 2-/Al2O3或SO4 2-/SiO2中的一种或多种;较好的是Zr(SO4)4H2O、Fe2(SO4)3、SO4 2-/ZrO2、SO4 2-/TiO2催化剂;
所述的助溶剂为一氧化碳、二氧化碳、甲烷、乙烷、丙烷、丁烷或戊烷中的一种或几种;较好的是一氧化碳、二氧化碳和甲烷;
B.将高压釜内物料升温至110℃~180℃、在0.1MPa~7MPa压力下,进行酯交换反应,反应时间为5min~2h;
C.将步骤B得到的反应混合物过滤,回收滤出的催化剂,滤液经减压蒸馏,蒸馏出醇,将蒸馏余液静置分层,上层油相为目标产物-生物柴油,下层为副产物甘油。
上述催化剂经处理后能再循环使用;蒸馏出的醇回收后可重复使用;副产物甘油几乎不含杂质,可作为工业原料再利用。
经测定得到的油相中主要成分为脂肪酸甲酯,其含量>90%,其他成分是少量未反应完全的甘油酯,
本发明最明显的优点是在助溶剂条件下酸化固体催化剂催化酯交换法,助溶剂的加入提高了催化剂的催化活性,降低了反应温度,提高了反应速率,反应结束后催化剂易于回收并重复使用,产物的后处理简单不产生三废污染,无设备腐蚀。
附图说明
图1:1#样品的气相色谱图。
图2:2#样品的红外谱图。
具体实施方案
下面结合实施例对本发明进一步的说明。
实施例1:
A.将60g大豆油加入到容积为250ml反应釜内,然后加入6.6g甲醇,使得甲醇与大豆油的摩尔比为3:1;再向反应釜内缓慢加入占原料油总质量0.1%的酸化固体催化剂SO4 2-/ZrO2,将高压釜密封好,向反应体系中通入氮气以排除釜中的氧气,然后用定量管向釜内充入一氧化碳至釜内压力为0.5Mpa;
B.启动搅拌并将高压釜内物料升温至180℃,在操作压力为1.0MPa条件下进行酯交换反应,反应2h。
C.将B步骤得到的反应混合物进行抽滤,回收滤纸上面的催化剂,抽滤后的滤液通过减压蒸馏装置回收未反应的甲醇,蒸馏余液静置分层,上层为油相,呈亮黄色,记为1#样品,下层为副产物甘油,呈淡黄色,记为2#样品。
将1#样品做色谱分析,见图1,其主要成分为脂肪酸甲酯和未反应完全的甘油酯,其中生物柴油的含量为99%。
将2#样品做红外分析,见图2,经红外谱图分析并与纯甘油标准谱图对比可知,2#样品的红外曲线与纯甘油标准曲线吻合,即得到的甘油纯度很高。
回收的催化剂经500℃煅烧10min除去催化剂表面吸附的脂类物质,或者用丙酮洗涤2-3次除掉表面吸附的油脂,然后将处理好的催化剂投入重复性实验,前三次的使用甲酯的收率均在90%以上,第四次使用时,甲酯收率衰减为89%。
实施例2:
A.将60g棉籽油加入到反应釜内(反应釜容积为250ml),然后加入28.5g乙醇,使得乙醇与大豆油的摩尔比为9:1;再向反应釜内缓慢加入0.3%的固体催化剂Fe2(SO4)3(占原料油总质量的百分比),将高压釜密封好,向反应体系中通入氮气以排除釜中的氧气,然后用定量管向釜内充入1.0Mpa二氧化碳;
B.启动搅拌并将高压釜内物料升温至170℃,在操作压力为1.5MPa条件下进行酯交换反应,反应1.5h。
C.将B步骤得到的反应混合物进行抽滤,回收滤纸上面的催化剂,抽滤后的滤液通过减压蒸馏装置回收未反应的乙醇,蒸馏余液静置分层,上层为油相,呈亮黄色,其主要成分为脂肪酸甲酯和未反应完全的甘油酯,经色谱分析得知生物柴油的含量为94%。下层为副产物甘油,呈淡黄色,经红外谱图分析并与纯甘油标准谱图对比可知,得到的甘油纯度很高。
回收到的催化剂经500℃煅烧10min除去催化剂表面吸附的脂类物质,或者用丙酮洗涤2-3次除掉表面吸附的油脂,以备重复使用。
实施例3:
A.将60g桐油加入到反应釜内(反应釜容积为250ml),然后加入49.6g丙醇,使得丙醇与大豆油的摩尔比为12:1;再向反应釜内缓慢加入0.6%的固体催化剂MnCl2(占原料油总质量的百分比),将高压釜密封好,向反应体系中通入氮气以排除釜中的氧气,然后用定量管向釜内充入1.5Mpa甲烷;
B.启动搅拌并将高压釜内物料升温至160℃,在操作压力为3.5MPa条件下进行酯交换反应,反应1.0h。
C.将B步骤得到的反应混合物进行抽滤,回收滤纸上面的催化剂,抽滤后的滤液通过减压蒸馏装置回收未反应的丙醇,蒸馏余液静置分层,上层为油相,呈亮黄色,其主要成分为脂肪酸甲酯和未反应完全的甘油酯,经色谱分析得知生物柴油的含量为93%。下层为副产物甘油,呈淡黄色,经红外谱图分析并与纯甘油标准谱图对比可知,得到的甘油纯度很高。
回收到的催化剂经500℃煅烧10min除去催化剂表面吸附的脂类物质,或者用丙酮洗涤2-3次除掉表面吸附的油脂,以备重复使用。
实施例4:
A.将60g棕榈油加入到反应釜内(反应釜容积为250ml),然后加入33g甲醇,使得甲醇与大豆油的摩尔比为15:1;再向反应釜内缓慢加入1.0%的固体催化剂Zr(SO4)4H2O(占原料油总质量的百分比),将高压釜密封好,向反应体系中通入氮气以排除釜中的氧气,然后用定量管向釜内充入2.0Mpa乙烷;
B.启动搅拌并将高压釜内物料升温至150℃,在操作压力为3.8MPa条件下进行酯交换反应,反应45min。
C.将B步骤得到的反应混合物进行抽滤,回收滤纸上面的催化剂,抽滤后的滤液通过减压蒸馏装置回收未反应的甲醇,蒸馏余液静置分层,上层为油相,呈亮黄色,其主要成分为脂肪酸甲酯和未反应完全的甘油酯,经色谱分析得知生物柴油的含量为98%。下层为副产物甘油,呈淡黄色,经红外谱图分析并与纯甘油标准谱图对比可知,得到的甘油纯度很高。
回收到的催化剂经500℃煅烧10min除去催化剂表面吸附的脂类物质,或者用丙酮洗涤2-3次除掉表面吸附的油脂,以备重复使用。
实施例5:
A.将60g蓖麻油加入到反应釜内(反应釜容积为250ml),然后加入39.6g甲醇,使得甲醇与大豆油的摩尔比为18:1;再向反应釜内缓慢加入2.0%的酸化固体催化剂SO4 2-/TiO2(占原料油总质量的百分比),将高压釜密封好,向反应体系中通入氮气以排除釜中的氧气,然后用定量管向釜内充入2.5Mpa丙烷;
B.启动搅拌并将高压釜内物料升温至140℃,在操作压力为4.7MPa条件下进行酯交换反应,反应30min。
C.将B步骤得到的反应混合物进行抽滤,回收滤纸上面的催化剂,抽滤后的滤液通过减压蒸馏装置回收未反应的甲醇,蒸馏余液静置分层,上层为油相,呈亮黄色,其主要成分为脂肪酸甲酯和未反应完全的甘油酯,经色谱分析得知生物柴油的含量为99%。下层为副产物甘油,呈淡黄色,经红外谱图分析并与纯甘油标准谱图对比可知,得到的甘油纯度很高。
回收到的催化剂经500℃煅烧10min除去催化剂表面吸附的脂类物质,或者用丙酮洗涤2-3次除掉表面吸附的油脂,以备重复使用。
实施例6:
A.将60g椰子油加入到反应釜内(反应釜容积为250ml),然后加入46.2g甲醇,使得甲醇与大豆油的摩尔比为21:1;再向反应釜内缓慢加入3.0%的酸化固体催化剂SO4 2-/TiO2-ZrO2(占原料油总质量的百分比),将高压釜密封好,向反应体系中通入氮气以排除釜中的氧气,然后用定量管向釜内充入3.0Mpa丁烷;
B.启动搅拌并将高压釜内物料升温至130℃,在操作压力为5.6MPa条件下进行酯交换反应,反应15min。
C.将B步骤得到的反应混合物进行抽滤,回收滤纸上面的催化剂,抽滤后的滤液通过减压蒸馏装置回收未反应的甲醇,蒸馏余液静置分层,上层为油相,呈亮黄色,其主要成分为脂肪酸甲酯和未反应完全的甘油酯,经色谱分析得知生物柴油的收率为97%。下层为副产物甘油,呈淡黄色,经红外谱图分析并与纯甘油标准谱图对比可知,得到的甘油纯度很高。
回收到的催化剂经500℃煅烧10min除去催化剂表面吸附的脂类物质,或者用丙酮洗涤2-3次除掉表面吸附的油脂,以备重复使用。
实施例7:
A.将60g葵花籽油加入到反应釜内(反应釜容积为250ml),然后加入52.8g甲醇,使得甲醇与大豆油的摩尔比为24:1;再向反应釜内缓慢加入3.5%的固体催化剂Zr(SO4)2/AC(占原料油总质量的百分比),将高压釜密封好,向反应体系中通入氮气以排除釜中的氧气,然后用定量管向釜内充入3.5Mpa的甲烷和一氧化碳的混合物;
B.启动搅拌并将高压釜内物料升温至120℃,在操作压力为6.2MPa条件下进行酯交换反应,反应10min。
C.将B步骤得到的反应混合物进行抽滤,回收滤纸上面的催化剂,抽滤后的滤液通过减压蒸馏装置回收未反应的甲醇,蒸馏余液静置分层,上层为油相,呈亮黄色,其主要成分为脂肪酸甲酯和未反应完全的甘油酯,经色谱分析得知生物柴油的含量为97%。下层为副产物甘油,呈淡黄色,经红外谱图分析并与纯甘油标准谱图对比可知,得到的甘油纯度很高。
回收到的催化剂经500℃煅烧10min除去催化剂表面吸附的脂类物质,或者用丙酮洗涤2-3次除掉表面吸附的油脂,以备重复使用。
实施例8:
A.将60g橄榄油加入到反应釜内(反应釜容积为250ml),然后加入59.4g甲醇,使得甲醇与大豆油的摩尔比为27:1;再向反应釜内缓慢加入4.0%的酸化固体催化剂SO4 2-/Fe2O3(占原料油总质量的百分比),将高压釜密封好,向反应体系中通入氮气以排除釜中的氧气,然后用定量管向釜内充入4.0Mpa的甲烷和二氧化碳的混合物;
B.启动搅拌并将高压釜内物料升温至110℃,在操作压力为7.0MPa条件下进行酯交换反应,反应5min。
C.将B步骤得到的反应混合物进行抽滤,回收滤纸上面的催化剂,抽滤后的滤液通过减压蒸馏装置回收未反应的甲醇,蒸馏余液静置分层,上层为油相,呈亮黄色,其主要成分为脂肪酸甲酯和未反应完全的甘油酯,经色谱分析得知生物柴油的含量为96%。下层为副产物甘油,呈淡黄色,经红外谱图分析并与纯甘油标准谱图对比可知,得到的甘油纯度很高。
回收到的催化剂经500℃煅烧10min除去催化剂表面吸附的脂类物质,或者用丙酮洗涤2-3次除掉表面吸附的油脂,以备重复使用。

Claims (3)

1.超临界法酸化固体催化制备生物柴油的方法,具体制备步骤如下:
A.将原料油脂、短链醇和酸化固体催化剂加入到反应釜中,密封后通氮气排除反应体系中的氧气,再充入助溶剂;其中短链醇与原料油脂的摩尔比为3-27:1,酸化固体催化剂的用量为原料油脂总质量的0.1~5%;助溶剂是气体,其充入量是使反应釜中压力达到0.5~4MPa;
所述原料油为大豆油、转基因大豆油、菜籽油、转基因菜子油、椰子油、棉籽油、蓖麻油、桐油、棕榈油、花生油、桃仁油、杏仁油、葵花籽油、亚麻油、玉米油、藻类油脂、橄榄油、猪油、牛油、鱼油、餐饮业回收油、工业废油、潲水油、地沟油、酸化油中的一种或多种;
所述的酸化固体催化剂为SO4 2-/MxOy类催化剂或SO4 2-/TiO2-ZrO2、SO4 2-/ZrO2-Fe2O3、SO4 2-/TiO2-Fe2O3复合类酸化固体催化剂;其中SO4 2-/MxOy类酸化固体催化剂是Zr(SO4)2.4H2O、Zr(SO4)2/AC、Zr(SO4)2/Al2O3、Zr(SO4)2/SiO2、CuSO4、Fe2(SO4)3、ZnSO4、Co2(SO4)3、MnSO4、CuCl2、FeCl3、ZnCl2、CoCl3、MnCl2、SO4 2-/ZrO2、SO4 2-/TiO2、SO4 2-/ZnO、SO4 2-/Fe2O3、SO4 2-/MnO、SO4 2-/Al2O3或SO4 2-/SiO2中的一种或多种;
所述的助溶剂为一氧化碳、二氧化碳、甲烷、乙烷、丙烷、丁烷或戊烷中的一种或几种;
B.将高压釜内物料升温至110℃~180℃,在0.1MPa~7MPa压力下,进行酯交换反应,反应时间为5min~2h;
C.将步骤B得到的反应混合物过滤,回收滤出的催化剂,滤液经减压蒸馏,蒸馏出醇,将蒸馏余液静置分层,上层油相为目标产物-生物柴油,下层为副产物甘油。
2.根据权利要求1所述的超临界法酸化固体催化制备生物柴油的方法,其特征是:所述原料油为大豆油、棉籽油、桐油、棕榈油。所述短链醇为甲醇、乙醇和丙醇中的任意一种;所述的助溶剂是一氧化碳、二氧化碳和甲烷。
3.根据权利要求1所述的超临界法酸化固体催化制备生物柴油的方法,其特征是:所述SO4 2-/MxOy类酸化固体催化剂是Zr(SO4)2.4H2O、Fe2(SO4)3、SO4 2-/ZrO2或SO4 2-/TiO2催化剂中的一种。
CNA2009100794946A 2009-03-13 2009-03-13 超临界法酸化固体催化制备生物柴油的方法 Pending CN101497805A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2009100794946A CN101497805A (zh) 2009-03-13 2009-03-13 超临界法酸化固体催化制备生物柴油的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2009100794946A CN101497805A (zh) 2009-03-13 2009-03-13 超临界法酸化固体催化制备生物柴油的方法

Publications (1)

Publication Number Publication Date
CN101497805A true CN101497805A (zh) 2009-08-05

Family

ID=40945078

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2009100794946A Pending CN101497805A (zh) 2009-03-13 2009-03-13 超临界法酸化固体催化制备生物柴油的方法

Country Status (1)

Country Link
CN (1) CN101497805A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242914A (zh) * 2013-05-30 2013-08-14 广州市特种承压设备检测研究院 一种餐厨垃圾快速生产生物柴油的方法及制备的生物柴油
CN105498809A (zh) * 2016-01-29 2016-04-20 福州东冶能源科技有限公司 从植物油脱臭馏出物中提取维生素e的微酸性dyd催化剂及其提取维生素e的方法
CN109675502A (zh) * 2017-10-19 2019-04-26 中国石油化工股份有限公司 一种制备生物柴油的预酯化方法
CN110423649A (zh) * 2019-07-15 2019-11-08 西安理工大学 生物柴油的超临界非均相催化制备系统
CN111081320A (zh) * 2019-12-04 2020-04-28 中国石油大学(华东) 一种确定稠油-甲烷-二氧化碳-丙烷体系高压物性参数的方法
CN111205372A (zh) * 2020-03-18 2020-05-29 北京化工大学 醋酸丙酸纤维素的制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242914A (zh) * 2013-05-30 2013-08-14 广州市特种承压设备检测研究院 一种餐厨垃圾快速生产生物柴油的方法及制备的生物柴油
CN105498809A (zh) * 2016-01-29 2016-04-20 福州东冶能源科技有限公司 从植物油脱臭馏出物中提取维生素e的微酸性dyd催化剂及其提取维生素e的方法
CN105498809B (zh) * 2016-01-29 2018-04-20 福州东冶能源科技有限公司 从植物油脱臭馏出物中提取维生素e的微酸性dyd催化剂及其提取维生素e的方法
CN109675502A (zh) * 2017-10-19 2019-04-26 中国石油化工股份有限公司 一种制备生物柴油的预酯化方法
CN109675502B (zh) * 2017-10-19 2021-08-31 中国石油化工股份有限公司 一种制备生物柴油的预酯化方法
CN110423649A (zh) * 2019-07-15 2019-11-08 西安理工大学 生物柴油的超临界非均相催化制备系统
CN111081320A (zh) * 2019-12-04 2020-04-28 中国石油大学(华东) 一种确定稠油-甲烷-二氧化碳-丙烷体系高压物性参数的方法
CN111081320B (zh) * 2019-12-04 2021-06-15 中国石油大学(华东) 一种确定稠油-甲烷-二氧化碳-丙烷体系高压物性参数的方法
CN111205372A (zh) * 2020-03-18 2020-05-29 北京化工大学 醋酸丙酸纤维素的制备方法
CN111205372B (zh) * 2020-03-18 2020-12-08 北京化工大学 醋酸丙酸纤维素的制备方法

Similar Documents

Publication Publication Date Title
Sharma et al. Sustainable environmental management and related biofuel technologies
CN1891787B (zh) 固体磁性催化剂制备生物柴油的生产方法
CN101497805A (zh) 超临界法酸化固体催化制备生物柴油的方法
CN101418225A (zh) 一种负载型固体酸结合共溶剂制备生物柴油的方法
CN102002381B (zh) 一种藻类生物质直接催化液化法制备生物油的方法
CN101906355A (zh) 一种利用餐厨垃圾回收油制取生物柴油的方法
CA2829990A1 (en) Method for preparing biodiesel
CN100400622C (zh) 一种用固体碱催化剂制备生物柴油的方法
CN101591574B (zh) 一种氧化锆固体碱催化剂制备生物柴油的方法
Panchal et al. The current state applications of ethyl carbonate with ionic liquid in sustainable biodiesel production: A review
CN1303187C (zh) 利用潲水油合成生物柴油的方法
CN100392045C (zh) 一种采用固定床气相酯化制备脂肪酸甲酯的方法
CN1891786B (zh) 乌桕油制备生物柴油的生产技术
CN101205473B (zh) 煅烧硅酸钠催化制备生物柴油
CN101691537A (zh) 木质纤维素炼制燃料乙醇中的副产物的集成处理方法
CN1810932A (zh) 一种中温低压法制备生物柴油的方法
CN105132192A (zh) 一种制备生物柴油的方法
CN1626621A (zh) 一种由植物油生产生物柴油的新方法
CN100523131C (zh) 用废油制备生物柴油的酯化反应工艺
Miriam et al. Enhanced FAME production using green catalyst with superior profile from the isolated halophilic Aphanothece halophytica grown in raceway ponds
CN1775913A (zh) 高酸值潲水油制备生物柴油的新工艺
CN103484234A (zh) 一种微藻的催化液化制备生物油的方法
CN100526427C (zh) 用高酸值油脂生产生物柴油的催化剂及生物柴油生产方法
CN100510010C (zh) 四氯化钛催化高酸值废弃油脂制备生物柴油的方法
Gadore et al. Metal oxide-based heterogeneous catalysts for biodiesel production

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20090805