CN101493686A - 刀具模态参数不确定的曲面五轴数控工艺参数优化方法 - Google Patents

刀具模态参数不确定的曲面五轴数控工艺参数优化方法 Download PDF

Info

Publication number
CN101493686A
CN101493686A CNA2009100467253A CN200910046725A CN101493686A CN 101493686 A CN101493686 A CN 101493686A CN A2009100467253 A CNA2009100467253 A CN A2009100467253A CN 200910046725 A CN200910046725 A CN 200910046725A CN 101493686 A CN101493686 A CN 101493686A
Authority
CN
China
Prior art keywords
parameter
modal
tooling system
curve
cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100467253A
Other languages
English (en)
Other versions
CN101493686B (zh
Inventor
丁汉
张小明
朱利民
朱向阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN2009100467253A priority Critical patent/CN101493686B/zh
Publication of CN101493686A publication Critical patent/CN101493686A/zh
Application granted granted Critical
Publication of CN101493686B publication Critical patent/CN101493686B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

本发明涉及一种刀具模态参数不确定的曲面五轴数控工艺参数优化方法,属于计算机数控加工技术领域。该加工工艺参数优化方法步骤包括:首先获取刀具系统模态参数不确定区间;建立五轴铣削加工动力学模型,模型中的输入参数包括:刀具系统模态参数区间、切削力系数、刀具几何和刀具路径;求解五轴铣削加工颤振稳定曲线;以此曲线为约束建立工艺参数优化模型;通过序列非线性规划方法求解该模型得到优化后的工艺参数。由于本发明中考虑了刀具系统模态参数的不确定,更加接近真实的加工状况,从而提高了加工中颤振预报的准确性。

Description

刀具模态参数不确定的曲面五轴数控工艺参数优化方法
技术领域
本发明涉及一种曲面五轴数控加工工艺参数优化方法,尤其涉及一种计算机数字控制的考虑刀具系统模态参数不确定的空间曲面五轴数控加工工艺参数优化方法。本发明属于计算机数控加工技术领域。
背景技术
在航空发动机叶轮、叶片类空间曲面和模具类难加工材料五轴加工过程中,零件加工精度、零件表面质量以及刀具磨损等都依赖于加工工艺参数的合理选取。为解决零件的高效和精密加工的需求,需要首先确保加工过程的稳定性(无颤振),其次选取优化的工艺参数以达到铣削加工的高效和高精度。
现有的五轴铣削加工工艺参数优化都是基于确定参数的五轴铣削加工动力学模型(Budak,E.,Tekeli,A.2005.Maximizing chatter free material removal rate inmilling through optimal selection of axial and radial depth of cut pairs,CIRP Annals-Manufacturing Technology 54(1):353-356),利用确定的刀具系统模态参数和切削力系数获取颤振稳定曲线,以此曲线为约束条件优化求解最终得到优化后的工艺参数,但是这种方法没有将刀具系统模态参数的不确定性引入到工艺参数规划中,不能反映真实的加工状况,因此获得的工艺参数不是真实的最优解,可能导致颤振发生,无法实现零件的精密、高效加工。
发明内容
本发明的目的在于针对现有技术中存在的缺陷,提供一种刀具模态参数不确定的曲面五轴数控工艺参数优化方法,能获取安全可靠的工艺参数,实现空间曲面的精密、高效加工。
为实现这一目的,本发明首先获取刀具系统模态参数不确定区间;建立五轴铣削加工动力学模型,模型中的输入参数包括:刀具系统模态参数区间、切削力系数、刀具几何和刀具路径;求解五轴铣削加工颤振稳定曲线;以此曲线为约束建立工艺参数优化模型;通过序列非线性规划方法求解该模型得到优化后的工艺参数。
本发明所提供的刀具模态参数不确定的曲面五轴数控工艺参数优化方法,具体步骤包括:
1)获取刀具系统模态参数:以锤击力或激振器敲击力作为激励输入信号,以刀具系统上刀尖点的加速度为输出信号,通过传递函数计算获取刀具系统的模态参数。所述刀具系统的模态参数包括模态质量、模态阻尼和模态刚度。
2)确定刀具系统模态参数的不确定区间上下界:根据多次刀具系统模态实验获取的刀具系统的模态参数,确定刀具系统各模态参数的不确定区间上下界。
3)获取铣削加工颤振稳定图下界曲线:建立刀具的几何参数、刀具系统模态参数、切削力系数、机床主轴转速及切削深度与铣削加工过程中的瞬态切削厚度之间的函数关系;利用这些函数关系,基于颤振预报的时间域有限元方法和区间代数,求解得到铣削加工颤振稳定图上下界曲线。
4)优化机床主轴转速和刀具振动:以机床主轴转速最大化和刀具振动最小化为优化目标,以铣削加工颤振稳定图下界曲线为约束条件,建立空间曲面五轴加工工艺参数优化模型,通过序列非线性规划方法优化求解该模型获得优化后的机床主轴转速。
由于本发明中考虑了刀具系统模态参数的不确定,更加接近真实的加工状况,从而提高了加工中颤振预报的准确性;本发明将颤振稳定图下界曲线引入工艺参数优化中,建立了刀具模态参数区间和刀具振动位移区间之间的关联,从而达到对空间曲面五轴加工工艺参数优化目标。
附图说明
图1为本发明实施例的刀具系统模态实验装置示意图。
图2为x方向刀具系统频响函数。
图3为y方向刀具系统频响函数。
图4为铣削加工颤振稳定图上下界曲线。
图5为本发明实施例的工艺参数优化结果。
具体实施方式
以下结合附图和实施例对本发明的接受方案作进一步的详细描述,但本实施例并不用于限制本发明。
本发明实施例采用的刀具系统模态实验装置如图1所示,选取碳钢四齿球头刀为加工刀具,该刀具装夹在Mikron600U五轴机床上基础该刀具的几何参数为:直径10毫米;螺旋角30度;总长度100毫米;悬臂长度70毫米。按照本发明的方法进行刀具模态参数不确定的曲面五轴数控工艺参数优化,其步骤为:
1、以力锤敲击刀具刀尖点,如图1所示,将该敲击力作为激励输入信号,从刀具刀尖点上的加速度传感器可以获取输出信号,通过电荷放大器记录输入信号和输出信号。根据输入信号和输出信号得到刀具刀尖点处的传递函数,然后由有理分式多项式法拟合传递函数,得到图2、图3所示的x方向刀具系统频响函数和y方向刀具系统频响函数,进一步得到辨识出刀尖点处模态参数:
x方向模态质量mx=0.7769E-2kg;y方向模态质量my=0.7709E-2kg;x方向模态阻尼cx=1480.5169kg/s;y方向模态阻尼cy=1502.1889kg/s;x方向模态刚度kx=0.6723E6N/m;y方向模态刚度ky=0.6868E6N/mm。
图2、图3中,横坐标为频率,纵坐标为频响函数的实部和虚部。
2、重复步骤1的刀具系统模态实验,在本实施例中重复10次,根据这10次刀具系统模态实验结果,确定刀具系统模态参数的不确定区间上下界,得到:
x方向模态质量上下界为[mx]=[0.6990E-2kg,0.8545E-2kg];
y方向模态质量[my]=[0.6936E-2kg,0.8477E-2kg];
x方向模态阻尼[cx]=[1331.3420kg/s,1628.5865kg/s];
y方向模态阻尼[cy]=[1351.6790kg/s,1653.7632kg/s];
x方向模态刚度[kx]=[0.6051E6N/m,0.7392E6N/m];
y方向模态刚度[ky]=[0.6181E6N/m,0.7552E6N/m]。
3、建立五轴铣削加工动力学方程,即刀具的几何参数g、刀具系统模态参数m,c,k、机床主轴转速Ω、切削深度b和切削力系数ft和fn等参数与铣削加工过程中的瞬态切削厚度x之间的函数关系:
m x 0 0 m y x · · ( t ) + c x 0 0 c y x · ( t ) + k x 0 0 k y x ( t ) = K ( t ) b ( g , t ) ( x ( t ) - x ( t - τ ) )
在上式中模型的变量x为铣削过程中的瞬态切削厚度,
Figure A20091004672500062
为瞬态切削厚度的一阶导数;
Figure A20091004672500063
为瞬态切削厚度的二阶导数;t是时间;τ=60/(4×Ω)是单个刀齿切削周期;K(t)b(x(t)-x(t-τ))是瞬态的切削力,
K ( t ) = Σ p = 1 4 g p ( t ) - f t sc - f n s 2 - f t c 2 - f n sc f t s 2 - f n sc f t sc - f n c 2 , s = sin θ p ( t ) , c = cos θ p ( t )
θp是刀齿-工件接触角,切削力系数ft和fn可以通过切削力实验标定的标准方法得到。基于颤振预报的时间域有限元方法和区间代数,在五轴铣削加工动力学方程基础上,求得铣削加工颤振稳定图上界曲线lU(m,c,k,f,g,Ω,b)≤1和下界曲线lL(m,c,k,f,g,Ω,b)≤1,如图4所示。
所述时间域有限元方法指的是文献[Mann,B.P.,Young,K.A.,Schmitz,T.L.,Dilley,D.N.,2005,Simultaneous stability and surface location error predictions inmilling,Journal of Manufacturing Science and Engineering,Transactions of theASME 127(3),pp.446-453]中提出的用于铣削过程颤振预报的方法;区间代数是指文献[Alefeld,G.and Herzberber,J.(1983),Introductions to Interval Computations.Academic Press,New York.]中提出的区间运算方法。
4、在五轴铣削加工动力学方程中,瞬态切削厚度x(t)=xp(t)+ξ(t),ξ(t)是刀具颤振引起的位移摄动项,xp(t)是刀具振动量,满足:
m x 0 0 m y x · · p ( t ) + c x 0 0 c y x · ( t ) + k x 0 0 k y x p ( t ) = G ( t )
由上式求出xp(t),建立空间曲面五轴加工工艺参数多目标优化模型,
min{xp,-Ω}
s.t.lL(m,c,k,f,g,Ω,b)≤1
在上述优化模型中,优化目标为机床主轴转速Ω最大化和刀具振动xp最小化,以铣削加工颤振稳定图下界曲线lL(m,c,k,f,g,Ω,b)≤1为约束条件,该条件给出了机床主轴转速和切削深度之间的约束关系。将空间曲面五轴加工工艺参数多目标优化模型转化为序列优化问题:
min{xp(t)}
s.t.Ω≤Ωi i=1,2,…k
lL(m,c,k,f,g,Ω,b)≤1
通过非线性规划方法求解得到优化后的主轴转速Ω和瞬态切削深度b。
优化模型求解得到的结果如图5所示:主轴转速和瞬态切削深度(圆圈点),选取本发明得到的工艺参数进行加工,无颤振现象发生,工件表面质量良好。作为对比,图5中的星号点为采用常规的工艺优化模型(即不考虑刀具系统模态参数的不确定性),优化求解得到的工艺参数,选取该工艺参数加工,则有颤振现象发生,工件表面质量差,导致残次品发生。

Claims (1)

1、一种刀具模态参数不确定的曲面五轴数控工艺参数优化方法,其特征在于包括如下步骤:
1)以锤击力或激振器敲击力作为激励输入信号,以刀具系统上刀尖点的加速度为输出信号,通过传递函数计算获取刀具系统的模态参数;所述刀具系统的模态参数包括模态质量、模态阻尼和模态刚度;
2)根据多次刀具系统模态实验获取的刀具系统的模态参数,确定刀具系统各模态参数的不确定区间上下界;
3)建立刀具的几何参数、刀具系统模态参数、切削力系数、机床主轴转速及切削深度与铣削加工过程中的瞬态切削厚度之间的函数关系;利用这些函数关系,基于颤振预报的时间域有限元方法和区间代数,求解得到铣削加工颤振稳定图上下界曲线;
4)以机床主轴转速最大化和刀具振动最小化为优化目标,以铣削加工颤振稳定图下界曲线为约束条件,建立空间曲面五轴加工工艺参数优化模型,通过序列非线性规划方法优化求解该模型,获得优化后的机床主轴转速。
CN2009100467253A 2009-02-26 2009-02-26 刀具模态参数不确定的曲面五轴数控工艺参数优化方法 Expired - Fee Related CN101493686B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100467253A CN101493686B (zh) 2009-02-26 2009-02-26 刀具模态参数不确定的曲面五轴数控工艺参数优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100467253A CN101493686B (zh) 2009-02-26 2009-02-26 刀具模态参数不确定的曲面五轴数控工艺参数优化方法

Publications (2)

Publication Number Publication Date
CN101493686A true CN101493686A (zh) 2009-07-29
CN101493686B CN101493686B (zh) 2010-07-28

Family

ID=40924311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100467253A Expired - Fee Related CN101493686B (zh) 2009-02-26 2009-02-26 刀具模态参数不确定的曲面五轴数控工艺参数优化方法

Country Status (1)

Country Link
CN (1) CN101493686B (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554326A (zh) * 2012-02-17 2012-07-11 上海交通大学 一种基于叶轮叶片动态刚度的铣削精加工方法
CN102622489A (zh) * 2012-03-26 2012-08-01 上海交通大学 基于acis平台的五轴侧铣加工切削力预测方法
CN102621929A (zh) * 2012-03-08 2012-08-01 华中科技大学 双转台五轴联动数控机床的夹具高度及加工路径优化方法
CN103323200A (zh) * 2013-05-15 2013-09-25 华中科技大学 主轴空运行激励下速度相关的刀尖点模态参数的获取方法
CN103645677A (zh) * 2013-12-10 2014-03-19 长春设备工艺研究所 一种高精度圆柱套内壁闭合异形曲线槽的加工方法
CN104493636A (zh) * 2014-11-12 2015-04-08 华中科技大学 一种用于提高铣削稳定性的金属深冷加工方法
CN105242546A (zh) * 2015-11-04 2016-01-13 大连理工大学 一种基于材料特性的高速铣削力建模方法
CN105467928A (zh) * 2015-10-22 2016-04-06 黑龙江科技大学 基于二维颤振稳定极限图确定工程用稳定加工工艺参数图的方法
CN105608288A (zh) * 2016-01-20 2016-05-25 东北大学 一种基于过阻尼效应铣削颤振稳定性预测方法
CN105843177A (zh) * 2015-11-19 2016-08-10 上海交通大学 铣削加工主轴转速正弦调制参数优化方法
CN103645677B (zh) * 2013-12-10 2016-11-30 长春设备工艺研究所 一种高精度圆柱套内壁闭合异形曲线槽的加工方法
CN104182795B (zh) * 2014-08-19 2017-04-05 南京航空航天大学 基于中间特征的飞机结构件数控加工切削参数优化方法
CN107328724A (zh) * 2017-07-06 2017-11-07 中国计量科学研究院 一种基于吸光度的高准确度核酸浓度测定方法
CN107976956A (zh) * 2017-11-22 2018-05-01 沈阳机床股份有限公司 数控机床的多目标切削数据生成算法及切割参数优化方法
CN108920844A (zh) * 2018-07-06 2018-11-30 哈尔滨理工大学 一种基于联合仿真的球头铣刀几何参数优化方法
CN109375578A (zh) * 2018-10-31 2019-02-22 湖南工学院 一种机油泵壳体内深孔高效加工控制方法
CN109839895A (zh) * 2019-01-24 2019-06-04 温州大学 一种刀具几何结构参数和加工工艺参数共同优化的方法
CN110321652A (zh) * 2019-07-11 2019-10-11 山东大学 面向叶片旋风铣削工艺的动力学建模方法及系统
CN110549165A (zh) * 2018-06-01 2019-12-10 乔治费歇尔加工方案公司 用于确定机床的结构特性的系统和方法
CN111443661A (zh) * 2019-01-16 2020-07-24 罗伯特·博世有限公司 用于利用机床来自动化加工工件的方法和装置
CN111819504A (zh) * 2017-12-06 2020-10-23 德普技术公司 用于工具路径虚拟化和优化的系统、方法和设备
CN114988679A (zh) * 2022-08-08 2022-09-02 启东市云鹏玻璃机械有限公司 一种玻璃切割机床智能走刀控制方法
CN117103280A (zh) * 2023-10-19 2023-11-24 中国长江电力股份有限公司 一种大型水轮机顶盖在位机器人减材加工方法及系统

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554326B (zh) * 2012-02-17 2014-02-26 上海交通大学 一种基于叶轮叶片动态刚度的铣削精加工方法
CN102554326A (zh) * 2012-02-17 2012-07-11 上海交通大学 一种基于叶轮叶片动态刚度的铣削精加工方法
CN102621929A (zh) * 2012-03-08 2012-08-01 华中科技大学 双转台五轴联动数控机床的夹具高度及加工路径优化方法
CN102621929B (zh) * 2012-03-08 2014-03-26 华中科技大学 双转台五轴联动数控机床的夹具高度及加工路径优化方法
CN102622489A (zh) * 2012-03-26 2012-08-01 上海交通大学 基于acis平台的五轴侧铣加工切削力预测方法
CN102622489B (zh) * 2012-03-26 2014-01-15 上海交通大学 基于acis平台的五轴侧铣加工切削力预测方法
CN103323200A (zh) * 2013-05-15 2013-09-25 华中科技大学 主轴空运行激励下速度相关的刀尖点模态参数的获取方法
CN103323200B (zh) * 2013-05-15 2015-07-22 华中科技大学 主轴空运行激励下速度相关的刀尖点模态参数的获取方法
CN103645677B (zh) * 2013-12-10 2016-11-30 长春设备工艺研究所 一种高精度圆柱套内壁闭合异形曲线槽的加工方法
CN103645677A (zh) * 2013-12-10 2014-03-19 长春设备工艺研究所 一种高精度圆柱套内壁闭合异形曲线槽的加工方法
CN104182795B (zh) * 2014-08-19 2017-04-05 南京航空航天大学 基于中间特征的飞机结构件数控加工切削参数优化方法
CN104493636A (zh) * 2014-11-12 2015-04-08 华中科技大学 一种用于提高铣削稳定性的金属深冷加工方法
CN105467928A (zh) * 2015-10-22 2016-04-06 黑龙江科技大学 基于二维颤振稳定极限图确定工程用稳定加工工艺参数图的方法
CN105467928B (zh) * 2015-10-22 2018-01-19 黑龙江科技大学 基于二维颤振稳定极限图确定工程用稳定加工工艺参数图的方法
CN105242546A (zh) * 2015-11-04 2016-01-13 大连理工大学 一种基于材料特性的高速铣削力建模方法
CN105843177A (zh) * 2015-11-19 2016-08-10 上海交通大学 铣削加工主轴转速正弦调制参数优化方法
CN105843177B (zh) * 2015-11-19 2018-08-03 上海交通大学 铣削加工主轴转速正弦调制参数优化方法
CN105608288A (zh) * 2016-01-20 2016-05-25 东北大学 一种基于过阻尼效应铣削颤振稳定性预测方法
CN105608288B (zh) * 2016-01-20 2018-10-23 东北大学 一种基于过阻尼效应铣削颤振稳定性预测方法
CN107328724A (zh) * 2017-07-06 2017-11-07 中国计量科学研究院 一种基于吸光度的高准确度核酸浓度测定方法
CN107328724B (zh) * 2017-07-06 2019-08-13 中国计量科学研究院 一种基于吸光度的高准确度核酸浓度测定方法
CN107976956A (zh) * 2017-11-22 2018-05-01 沈阳机床股份有限公司 数控机床的多目标切削数据生成算法及切割参数优化方法
CN107976956B (zh) * 2017-11-22 2020-04-03 沈阳机床股份有限公司 数控机床的多目标切削数据生成算法及切削参数优化方法
CN111819504B (zh) * 2017-12-06 2023-10-10 赫克斯冈技术中心 用于工具路径虚拟化和优化的系统、方法和设备
CN111819504A (zh) * 2017-12-06 2020-10-23 德普技术公司 用于工具路径虚拟化和优化的系统、方法和设备
CN110549165A (zh) * 2018-06-01 2019-12-10 乔治费歇尔加工方案公司 用于确定机床的结构特性的系统和方法
CN108920844A (zh) * 2018-07-06 2018-11-30 哈尔滨理工大学 一种基于联合仿真的球头铣刀几何参数优化方法
CN109375578A (zh) * 2018-10-31 2019-02-22 湖南工学院 一种机油泵壳体内深孔高效加工控制方法
CN111443661A (zh) * 2019-01-16 2020-07-24 罗伯特·博世有限公司 用于利用机床来自动化加工工件的方法和装置
CN109839895A (zh) * 2019-01-24 2019-06-04 温州大学 一种刀具几何结构参数和加工工艺参数共同优化的方法
CN110321652A (zh) * 2019-07-11 2019-10-11 山东大学 面向叶片旋风铣削工艺的动力学建模方法及系统
CN114988679A (zh) * 2022-08-08 2022-09-02 启东市云鹏玻璃机械有限公司 一种玻璃切割机床智能走刀控制方法
CN114988679B (zh) * 2022-08-08 2022-10-25 启东市云鹏玻璃机械有限公司 一种玻璃切割机床智能走刀控制方法
CN117103280A (zh) * 2023-10-19 2023-11-24 中国长江电力股份有限公司 一种大型水轮机顶盖在位机器人减材加工方法及系统
CN117103280B (zh) * 2023-10-19 2023-12-22 中国长江电力股份有限公司 一种大型水轮机顶盖在位机器人减材加工方法及系统

Also Published As

Publication number Publication date
CN101493686B (zh) 2010-07-28

Similar Documents

Publication Publication Date Title
CN101493686B (zh) 刀具模态参数不确定的曲面五轴数控工艺参数优化方法
CN102873381B (zh) 一种基于动力学模型的高速铣削工艺参数优化方法
CN103198186B (zh) 基于特征的飞机结构件切削参数优化方法
Savas et al. The optimization of the surface roughness in the process of tangential turn-milling using genetic algorithm
CN102554326B (zh) 一种基于叶轮叶片动态刚度的铣削精加工方法
CN103433807B (zh) 一种铣削力模型工艺参数的优化方法
CN101905340B (zh) 一种高速铣削稳定性快速判定方法
CN103990840B (zh) 叶片双向变余量铣削方法
CN107457609A (zh) 基于刚度变化的铣削颤振抑制方法及铣削颤振优化系统
Gusev et al. Multidimensional model of surface waviness treated by shaping cutter
Scippa et al. Milled surface generation model for chip thickness detection in peripheral milling
Gusev et al. Dynamics of stock removal in profile milling process by shaped tool
CN105033764A (zh) 一种淬硬钢模具铣削稳定性的检测方法
Luo et al. Material removal process optimization for milling of flexible workpiece considering machining stability
CN106096146A (zh) 切削过程中薄壁件动力学参数的预测方法
Zoghipour et al. Multi objective optimization of rough pocket milling strategies during machining of lead-free brass alloys using Desirability function and Genetic algorithms-based analysis
CN103092137B (zh) 五轴联动数控侧铣加工表面波纹控制方法
CN108746795B (zh) 一种预测模具型腔数控铣削中颤振的方法
JP2006102843A (ja) 最適加工装置及び最適加工方法
Luo et al. On the machinability and surface finish of superalloy GH909 under dry cutting conditions
Liu et al. Modeling and cutting path optimization of shallow shell considering its varying dynamics during machining
CN107480318A (zh) 硬脆材料薄壁零件切削加工工艺优化方法
Daud et al. Prediction of chatter in CNC machining based on dynamic cutting force for ball end milling
CN110516340A (zh) 基于铣削系统刚度变化的过程阻尼统一模型建模方法
Rosado et al. Digital Twin for Final Generated Surface Dimensional Error Analysis at Tool Path Level in Contour Milling

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100728

Termination date: 20180226