CN101490785A - 包含半导体纳米晶体的发光器件 - Google Patents

包含半导体纳米晶体的发光器件 Download PDF

Info

Publication number
CN101490785A
CN101490785A CNA2007800261122A CN200780026112A CN101490785A CN 101490785 A CN101490785 A CN 101490785A CN A2007800261122 A CNA2007800261122 A CN A2007800261122A CN 200780026112 A CN200780026112 A CN 200780026112A CN 101490785 A CN101490785 A CN 101490785A
Authority
CN
China
Prior art keywords
nanocrystal
electroluminescent material
electrode
layer
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800261122A
Other languages
English (en)
Other versions
CN101490785B (zh
Inventor
陈江龙
弗拉迪米尔·布洛维克
波利纳·阿尼基瓦
芒吉·G·巴文迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Publication of CN101490785A publication Critical patent/CN101490785A/zh
Application granted granted Critical
Publication of CN101490785B publication Critical patent/CN101490785B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种发光器件包含电致发光材料和半导体纳米晶体。该半导体纳米晶体接受来自该电致发光材料的能量并发射光。

Description

包含半导体纳米晶体的发光器件
优先权声明
本申请要求2007年5月18日提交的美国申请No.11/750,824和2006年5月21日提交的临时美国专利申请No.60/747,806的优先权,其中的每一个申请均全部引入作为参考。
技术领域
本发明涉及包含半导体纳米晶体的发光器件(light emitting devices)。
联邦政府资助的研究或开发
根据来自PECASE的许可号6896872和来自CMSE:IRG-3的许可号6894037,美国政府可具有本发明的某些权利。
背景技术
发光器件可用于例如显示器(例如平板显示器)、屏幕(例如计算机屏幕)和需要照明的其它产品中。因此,发光器件的亮度是该器件的重要特征。而且,低运行电压和高效率可改善制造发射器件的耐久性。在许多应用中,期望长的器件寿命。
发光器件可响应该器件的活性部件的激发而释放光子。发射可通过跨越该器件的活性部件(例如电致发光部件)施加电压而激发。电致发光部件可为聚合物,如共轭的有机聚合物、或含有电致发光部分的聚合物、或有机分子层。通常,该发射可通过器件各层之间的激发电荷的辐射复合而发生。所发射的光具有包括最大发射波长的发射分布和以亮度(坎德拉/平方米(cd/m2))或功率通量(W/m2))度量的发射强度。该器件的发射分布和其它物理特性可通过材料的电子结构(例如能隙)改变。例如,发光器件的亮度、颜色范围、效率、运行电压和运行半寿命可基于该器件的结构而变化。
发明内容
通常,发光器件可包含多个半导体纳米晶体。半导体纳米晶体可为任选地用有机配体修饰的无机半导体颗粒,例如,直径1-15nm的无机半导体颗粒。纳米晶体可显示出强的量子限制效应,这可用于设计自下而上的化学方法以产生具有用纳米晶体的尺寸和组成可调节的电子和光学性能的复杂异质结构。
半导体纳米晶体可用作发光器件中的发射材料。由于半导体纳米晶体可具有窄的发射线宽,可有效地光致发光,并且发射波长可调节,因此它们可为合意的发射材料。半导体纳米晶体可分散在液体中并因此与薄膜沉积技术例如旋转流延、滴落流延(drop casting)和浸涂相容。
半导体纳米晶体可使用微接触印刷沉积在衬底上。有利地,微接触印刷容许在表面上特征的微米尺度或纳米尺度(例如,小于1mm、小于500μm、小于200μm、小于100μm、小于25μm、或小于1μm)图案化。特别地,半导体纳米晶体的单层可通过微接触印刷沉积。在其它实例中,半导体纳米晶体的多层可通过喷墨印刷、旋涂、浸涂、微接触印刷或其它方法沉积在表面上。该多层可为小于3μm厚、小于2μm厚、或小于1μm厚。该方法可容许将图案化的半导体纳米晶体膜基本上干(即,基本上无溶剂地)施加在衬底上。因而可使用更多种类的衬底,因为衬底的选择可不受由溶解性和表面化学要求所施加的限制的束缚。
电压驱动的电致发光器件可具有夹层结构,其中第一电极、第一绝缘体层、宽带隙材料(其起到电致发光光发射层的作用)、第二绝缘体层和第二电极层堆叠在绝缘衬底上。为了发射不同颜色的光,宽带隙材料必须用掺杂剂掺杂以形成活性颜色中心。与该结构有关的一个缺点是设计层的组成(包括掺杂剂类型和浓度)以并排发射红光、绿光和蓝光的困难。
当半导体纳米晶体包含在电压驱动的发光器件中时,该器件可产生所需的一种或多种颜色的光。发射不同颜色的光的复合器件可容易地并排生产,而很小或者不改变在器件制造中使用的材料加工条件。
在一个方面中,发光器件包括第一电极、第二电极、电致发光材料、设置于所述电致发光材料与至少一个电极之间的电介质材料、以及布置以接收来自所述电致发光材料的能量的多个半导体纳米晶体。
在另一方面中,形成器件的方法包括:在第一电极上方沉积电介质材料,在所述第一电极上方沉积电致发光材料,以接收来自所述电致发光材料的能量的布置沉积多个半导体纳米晶体,和在所述第一电极、电介质材料、电致发光材料和多个半导体纳米晶体上方布置第二电极。所述电介质材料设置于所述电致发光材料与至少一个电极之间。
将所述多个半导体纳米晶体分散在所述电致发光材料之间可包括将所述多个半导体纳米晶体和所述电致发光材料溶解在溶剂中。以接收来自所述电致发光材料的能量的布置沉积所述多个半导体纳米晶体可包括在所述第一电极上方沉积所述纳米晶体。
在另一方面,产生光的方法包括:提供包括如下的器件:第一电极、第二电极、电致发光材料、设置于所述电致发光材料与至少一个电极之间的电介质材料、以及布置以接收来自所述电致发光材料的能量的多个半导体纳米晶体;和跨越所述第一电极和第二电极施加光产生电势。
所述多个半导体纳米晶体可设置于所述第一电极和第二电极之间。
所述电致发光材料可布置在层中。所述电介质材料可布置在邻近所述电致发光材料的至少一个层中。所述多个半导体纳米晶体可布置在层中,该层可任选地邻近于所述电致发光材料。所述多个半导体纳米晶体可分散在所述电致发光材料之间。
可选择所述多个半导体纳米晶体以发射单色光,或发射多于一种的不同颜色的光。可选择所述多个半导体纳米晶体以发射白光。可选择所述多个半导体纳米晶体以发射可见光或红外光。
本发明的其它特征、目的和优点将从说明书和附图中以及从权利要求书中明晰。
附图说明
图1是描绘发光器件的示意图。
图2是描绘形成发光器件的方法的图。
图3A-3C是描绘发光器件的示意图。
图4是显示来自发光器件的光发射的彩色照片。
图5A和5B分别为发光器件在关闭和开启状态下的彩色照片。
具体实施方式
发光器件可包括将该器件的两个电极分开的两个或多个层。这些层可包括置于电极和发射层之间的电介质层。当跨越各电极施加电压时,可在电致发光材料上形成激子。激子可随后复合而发射光。电致发光材料可根据其发射性能如发射波长或线宽进行选择。电致发光材料可为宽带隙材料。
发光器件可具有如图1所示的结构,其中有第一电极2、与电极2相接触的第一层3、与层3相接触的第二层4、以及与第二层4相接触的第二电极5。第一层3和第二层4可各自为绝缘电介质。该结构的电极之一与衬底1相接触。各电极可与电源接触以跨越该结构提供电压。当跨越该异质结构施加适当极性的电压时,可通过该异质结构的发射层产生电致发光。可在该器件中,例如在第一层3与第二层4之间,包括单独的发射层(未示于图1中)。该单独的发射层可包含宽带隙材料。
衬底可为不透明或透明的。透明衬底可用于透明LED的制造。参见例如,Bulovic,V.等人的Nature 1996,380,29和Gu,G.等人的Appl.Phys.Lett.1996,68,2606-2608,其各自全部引入作为参考。透明LED可用于例如平视显示器,如在头盔护目镜或汽车挡风玻璃上的应用中。该衬底可为刚性或柔性的。该衬底可为塑料、金属或玻璃。第一电极可为例如高功函的空穴注入导体,如氧化铟锡(ITO)层。其它的第一电极材料可包括镓铟锡氧化物、锌铟锡氧化物、氮化钛或聚苯胺。第二电极可为例如低功函(例如,小于4.0eV)的电子注入金属,如Al、Ba、Yb、Ca、锂-铝合金(Li:Al)或镁-银合金(Mg:Ag)。第二电极如Mg:Ag可覆盖有不透明保护性金属层例如用于保护阴极层免受大气氧化的Ag层、或基本上透明ITO的相对薄的层。第一电极可具有约
Figure A200780026112D00081
的厚度。第一层可具有约
Figure A200780026112D00083
至约5μm的厚度,如在至100nm、100nm至1μm、或1μm至5μm范围内的厚度。第二层可具有约
Figure A200780026112D00085
至5μm的厚度,如在
Figure A200780026112D00086
至100nm、100nm至1μm、或1μm至5μm范围内的厚度。第二电极可具有约
Figure A200780026112D00087
至大于约
Figure A200780026112D00088
的厚度。
电介质层可包含根据其绝缘性能和与器件制造方法的相容性而选择的材料。一些示例性的电介质材料包括,但不限于,金属氧化物(例如氧化硅)和宽带隙聚合物(例如聚甲基丙烯酸甲酯)。发射层包含发射材料,优选具有宽带隙的发射材料。例如,硫化锌为合适的发射材料。
在一些实施方式中,将电介质材料和发射材料组合在单一材料中。例如,可将硫化锌晶体涂覆或包封在电介质材料如聚合物中。这些聚合物涂覆的晶体可以单一材料同时起到电介质和发射材料的作用。
这些层可通过旋涂、浸涂、蒸气沉积、溅射或其它薄膜沉积方法沉积在电极之一的表面上。第二电极可夹入、溅射到或蒸发到固体层的暴露表面上。可将电极之一或将两个电极都图案化。器件的电极可通过导电通路连接到电压源。在施加电压时,从该器件产生光。
有利地,无机半导体可在低温下例如通过溅射沉积在衬底上。通过跨越低压气体(例如氩气)施加高电压以产生高能态的电子和气体离子的等离子体而进行溅射。赋能等离子体离子撞击所需的涂覆材料的靶,导致原子从该靶以足够的能量射出而行进至衬底并与衬底结合。
微接触印刷提供将材料施加到衬底上的预定区域上的方法。该预定区域是衬底上的其中材料被选择性地施加的区域。可对材料和衬底进行选择使得该材料基本上全部保持在预定区域中。通过选择形成图案的预定区域,可将材料施加到衬底上使得该材料形成图案。该图案可为规则图案(例如阵列、或系列线条)、或不规则图案。一旦衬底上形成材料图案,衬底可具有包含材料的区域(预定区域)和基本上不含有材料的区域。在一些情况中,材料在衬底上形成单层。预定区域可为不连续的区域。换言之,当将材料施加到衬底的预定区域上时,包含材料的位置可被基本上不含有材料的其它位置分开。在其它实例中,可通过喷墨印刷、旋涂、浸涂、微接触印刷或其它方法将半导体纳米晶体的多层沉积在表面上。该多层可为小于3μm厚、小于2μm厚、或小于1μm厚。
通常,微接触印刷通过形成图案化的模具开始。该模具具有带有隆起和凹陷的图案的表面。例如,通过用在与图案化的模具表面接触的同时固化的液体聚合物前体涂覆模具的图案化表面,以隆起和凹陷的互补图案形成印模。随后可将印模上墨,即将印模与要沉积在衬底上的材料接触。该材料变得可逆地粘附到印模上。随后使上墨的印模与衬底接触。印模的隆起区域可接触衬底,同时印模的凹陷区域可与衬底分隔。在上墨的印模接触衬底之处,墨水材料(或其至少一部分)从印模转移到衬底上。这样,将隆起和凹陷的图案从印模转移至衬底作为衬底上包含材料和不含有材料的区域。微接触印刷和相关技术描述于例如美国专利No.5,512,131、6,180,239和6,518,168中,其各自全部引入作为参考。在一些情况中,印模可为具有墨水图案的无特征印模,其中该图案在将墨水施加到印模上时形成。参见2005年10月21日提交的美国专利申请No.11/253,612,其全部引入作为参考。
图2描绘了概述微接触印刷过程中的基本步骤的流程图。首先,使用在硅表面上限定图案例如隆起和凹陷的图案的标准半导体加工技术制造硅母模(master)(或者,对于非图案化沉积,可使用空白Si母模)。然后将聚二甲基硅氧烷(PDMS,例如Sylgard 184)前体混合,脱气,倾倒到该母模上,和再次脱气,并且容许其在室温下(或者为了更快的固化时间,高于室温)固化(步骤1)。然后使具有包含硅母模图案的表面的PDMS脱离母模,并将其切割为所需形状和尺寸。然后用选择以如需要地容易地粘附和释放墨水的表面化学层覆盖该印模。例如,该表面化学层可为化学气相沉积的聚对亚苯基二甲基-C层。取决于要复制的图案,该表面化学层可为例如0.1至2μm厚(步骤2)。然后例如通过旋转流延、注射泵分配、或喷墨印刷半导体纳米晶体溶液而将印模上墨(步骤3)。该溶液可具有例如在氯仿中1至10mg/mL的浓度。该浓度可根据所需结果而改变。然后可将上墨的印模与衬底接触,并且施加轻微的压力例如30秒以将墨水(即半导体纳米晶体单层)完全转移到该新的衬底上(步骤4)。图2A和2B描绘ITO涂覆的玻璃衬底的制备。将第一层如第一电介质层沉积到ITO衬底上。将图案化的半导体纳米晶体单层转移到该层上,然后可添加该器件的剩余部分(步骤5)。参见,例如,均在2005年10月21日提交的美国专利申请No.11/253,595和11/253,612以及2005年1月11日提交的美国专利申请No.11/032,163,其各自引入本文作为参考。
可与器件结构组合选择器件材料的电性能(如带隙和能带偏移)以制造其中激子基本上在宽带隙发射材料上形成的器件。该发射材料可在光从该器件发射之前将能量转移至发射-变换(emission-altering)材料。能量转移可通过光从发射材料的发射和被发射-变换材料的再吸收而发生。或者,能量转移可为具有光发射和再吸收的能量的转移(如
Figure A200780026112D0010105029QIETU
能量转移)。在任一种情况下,一旦该发射-变换材料处于激发态,它可发射光。在一些情况中,发射和再吸收可为能量转移的主要方法。当如此时,发射-变换材料不需要邻近于发射材料。然而,能量转移的效率取决于能量转移合作者之间的距离,距离越小,能量转移效率越大。
半导体纳米晶体可有利地用作发射-变换材料。半导体纳米晶体可具有带有强烈的窄带发射的宽吸收带。取决于纳米晶体的尺寸、形状、组成和结构构造,发射的峰值波长可在整个可见和红外区域内调节。纳米晶体可备有具有所需化学特性(例如所需溶解度)的外表面。通过纳米晶体的光发射可为长期稳定的。
当纳米晶体达到激发态(或者换言之,激子位于纳米晶体上)时,可在发射波长处发生发射。该发射具有相应于量子限制的半导体材料的带隙的频率。该带隙是纳米晶体尺寸的函数。具有小直径的纳米晶体可具有介于物质的分子和大块(bulk)形式之间的性质。例如,具有小直径的基于半导体材料的纳米晶体可表现出在所有三维中电子和空穴两者的量子限制,这导致随着微晶尺寸减小材料的有效带隙增加。因此,随着微晶尺寸减小,纳米晶体的光学吸收和发射两者蓝移,或者向较高的能量移动。
来自纳米晶体的发射可为窄的高斯发射带,其可通过改变纳米晶体的尺寸、纳米晶体的组成、或者这两者而在光谱的紫外、可见或红外区域的整个完整波长范围内进行调节。例如,CdSe可在可见区域内调节并且InAs可在红外区域内调节。纳米晶体群的窄尺寸分布可导致在窄的光谱范围内的光发射。所述群可为单分散的并且可在纳米晶体直径上呈现出小于15%rms的偏差,优选小于10%,更优选小于5%。可观察到纳米晶体在可见区域内发射的在不大于约75nm,优选60nm,更优选40nm,且最优选30nm半宽度(FWHM)的窄范围内的光谱发射。IR-发射的纳米晶体可具有不大于150nm,或者不大于100nm的FWHM。以发射能量表示,该发射可具有不大于0.05eV或不大于0.03eV的FWHM。发射宽度随着纳米晶体直径分散性的减小而减小。半导体纳米晶体可具有高的发射量子效率如大于10%、20%、30%、40%、50%、60%、70%或80%。
形成纳米晶体的半导体可包括II-VI族化合物、II-V族化合物、III-VI族化合物、III-V族化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物或II-IV-V族化合物,例如,ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、MgO、MgS、MgSe、MgTe、HgO、HgS、HgSe、HgTe、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、TlN、TlP、TlAs、TlSb、TlSb、PbS、PbSe、PbTe、或其混合物。
制备单分散半导体纳米晶体的方法包括注入到热的配位溶剂中的有机金属试剂如二甲基镉的热解。这允许离散成核并导致宏观量的纳米晶体的受控生长。纳米晶体的制备和处理描述于例如美国专利6,322,901和6,576,291以及美国专利申请No.60/550,314中,其各自全部引入作为参考。制造纳米晶体的方法是胶体生长法。胶体生长通过将M给体和X给体快速注射到热的配位溶剂中而发生。该注射产生核,其可以受控方式生长以形成纳米晶体。该反应混合物可温和加热以生长纳米晶体并使纳米晶体退火。样品中纳米晶体的平均尺寸和尺寸分布均依赖于生长温度。维持稳定的生长所必需的生长温度随着平均晶体尺寸的增大而提高。纳米晶体是纳米晶体群的一员。由于离散成核和受控生长,所获得的纳米晶体群具有窄的单分散的直径分布。单分散的直径分布也可称为尺寸。成核后在配位溶剂中纳米晶体的受控生长和退火也可导致均匀的表面衍生和规则的核结构。随着尺寸分布锐化,可升温以维持稳定的生长。通过添加更多M给体或X给体,可缩短生长期。
M给体可为无机化合物、有机金属化合物或元素金属。M为镉、锌、镁、汞、铝、镓、铟或铊。X给体为能够与M给体反应形成具有通式MX的材料的化合物。典型地,X给体为硫属化物给体或磷属元素化物给体,如膦硫属化物、双(甲硅烷基)硫属化物、二氧、铵盐、或三(甲硅烷基)磷属元素化物。合适的X给体包括二氧、双(三甲基甲硅烷基)硒化物((TMS)2Se)、三烷基膦硒化物如(三正辛基膦)硒化物(TOPSe)或(三正丁基膦)硒化物(TBPSe)、三烷基膦碲化物如(三正辛基膦)碲化物(TOPTe)或六丙基磷三酰胺碲化物(HPPTTe)、双(三甲基甲硅烷基)碲化物((TMS)2Te)、双(三甲基甲硅烷基)硫化物((TMS)2S)、三烷基膦硫化物如(三正辛基膦)硫化物(TOPS)、铵盐如卤化铵(例如NH4Cl)、三(三甲基甲硅烷基)磷化物((TMS)3P)、三(三甲基甲硅烷基)砷化物((TMS)3As)、或三(三甲基甲硅烷基)锑化物((TMS)3Sb)。在一些实施方式中,M给体和X给体可为在相同分子内的部分。
配位溶剂可帮助控制纳米晶体的生长。配位溶剂为具有给体孤对的化合物,例如,具有可用于配位到生长纳米晶体表面的孤电子对的化合物。溶剂配位可使生长纳米晶体稳定化。典型的配位溶剂包括烷基膦、烷基膦氧化物、烷基膦酸或烷基次膦酸,然而,其它配位溶剂如吡啶、呋喃和胺也可适于纳米晶体生产。合适的配位溶剂的例子包括吡啶、三正辛基膦(TOP)、氧化三正辛基膦(TOPO)和三羟丙基膦(tHPP)。可使用工业级TOPO。
在反应的生长阶段期间的尺寸分布可通过监控颗粒的吸收线宽来评估。响应于颗粒的吸收光谱中的变化调整反应温度容许在生长期间维持尖锐的粒度分布。可在晶体生长期间将反应物添加到成核溶液中以生长更大的晶体。通过在特定纳米晶体平均直径处停止生长和选择半导体材料的合适组成,对于CdSe和CdTe,可在300nm至5μm、或300nm至800nm的波长范围内连续地调节纳米晶体的发射光谱。纳米晶体具有小于
Figure A200780026112D00131
的直径。纳米晶体群具有在
Figure A200780026112D00132
Figure A200780026112D00133
范围内的平均直径。
纳米晶体可为具有窄尺寸分布的纳米晶体群中的一员。纳米晶体可为球、棒、盘或其它形状。纳米晶体可包括半导体材料核。纳米晶体可包括具有式MX的核,其中M为镉、锌、镁、汞、铝、镓、铟、铊、或其混合物,和X为氧、硫、硒、碲、氮、磷、砷、锑、或其混合物。
所述核可在该核的表面上具有外覆层(overcoating)。外覆层可为具有与核的组成不同的组成的半导体材料。纳米晶体表面上的半导体材料外覆层可包括II-VI族化合物、II-V族化合物、III-VI族化合物、III-V族化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物和II-IV-V族化合物,例如,ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、MgO、MgS、MgSe、MgTe、HgO、HgS、HgSe、HgTe、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、TlN、TlP、TlAs、TlSb、TlSb、PbS、PbSe、PbTe、或其混合物。例如,ZnS、ZnSe或CdS外覆层可在CdSe或CdTe纳米晶体上生长。外覆方法描述于例如美国专利6,322,901中。通过调节在外覆过程中反应混合物的温度和监控核的吸收光谱,可获得具有高的发射量子效率和窄的尺寸分布的外覆材料。外覆层可为1至10个单层厚。
粒度分布可如美国专利6,322,901中所述,通过以纳米晶体的不良溶剂如甲醇/丁醇进行尺寸选择性沉淀而进一步精制。例如,可将纳米晶体分散于丁醇在己烷中的10%的溶液中。可将甲醇滴加到该搅拌着的溶液中直至乳白色持续。由离心导致的上清液和絮凝物的分离产生富集有样品中的最大微晶的沉淀物。可重复该步骤直至注意到没有光吸收光谱的进一步锐化。尺寸选择性沉淀可在多种溶剂/非溶剂对中进行,包括吡啶/己烷和氯仿/甲醇。经尺寸选择的纳米晶体群可具有距平均直径不大于15%rms的偏差,优选10%rms的偏差或更小,并且更优选5%rms的偏差或更小。
纳米晶体的外表面可包括得自在生长期间所使用的配位溶剂的化合物。该表面可通过重复暴露于过量的竞争配位基团进行改性。例如,被覆盖的纳米晶体的分散体可用配位有机化合物如吡啶处理,以产生容易地分散在吡啶、甲醇和芳香族化合物中但不再分散在脂肪族溶剂中的微晶。这种表面交换过程可用任何能够与纳米晶体的外表面配位或结合的化合物进行,包括例如膦、硫醇、胺和磷酸酯(盐)。可将纳米晶体暴露于短链聚合物,其呈现出对该表面的亲和性和以对悬浮或分散介质具有亲和性的部分封端。这种亲和性改善该悬浮体的稳定性并阻碍纳米晶体的絮凝。纳米晶体配位化合物描述于例如美国专利No.6,251,303中,该专利全部引入作为参考。
更具体地,配位配体可具有下式:
Figure A200780026112D00141
其中k为2、3或5,并且n为1、2、3、4或5,使得k-n不小于0;X为O、S、S=O、SO2、Se、Se=O、N、N=O、P、P=O、As、或As=O;Y和L各自独立地为芳基,杂芳基,或任选地含有至少一个双键、至少一个三键、或至少一个双键及一个三键的直链或支链C2-12烃链。该烃链可任选地被一个或多个C1-4烷基、C2-4烯基、C2-4炔基、C1-4烷氧基、羟基、卤素、氨基、硝基、氰基、C3-5环烷基、3-5元杂环烷基、芳基、杂芳基、C1-4烷羰氧基、C1-4烷氧羰基、C1-4烷羰基或甲酰基。该烃链还可任选地被-O-、-S-、-N(Ra)-、-N(Ra)-C(O)-O-、-O-C(O)-N(Ra)-、-N(Ra)-C(O)-N(Rb)-、-O-C(O)-O-、-P(Ra)-或-P(O)(Ra)-中断。Ra和Rb各自独立地为氢、烷基、烯基、炔基、烷氧基、羟烷基、羟基或卤代烷基。
芳基为取代或未取代的环状芳族基团。实例包括苯基、苄基、萘基、甲苯基、蒽基、硝基苯基或卤代苯基。杂芳基为在环中具有一个或多个杂原子的芳基,例如呋喃基、吡啶基、吡咯基或菲基。
合适的配位配体可商购或通过普通有机合成技术例如如J.March,Advanced Organic Chemistry中所述制备,该文献全部引入作为参考。
透射电子显微术(TEM)可提供关于纳米晶体群的尺寸、形状和分布的信息。粉末X射线衍射(XRD)图样可提供关于纳米晶体的晶体结构的类型和质量的最完整信息。尺寸的估算也是可能的,因为粒径经由X-射线相干长度与峰宽成反比。例如,纳米晶体的直径可通过透射电子显微术直接测量或利用例如Scherrer方程由X-射线衍射数据估算。其还可由UV/Vis吸收光谱估算。
单独的器件可形成于单一衬底上的多个位置处以形成显示器。该显示器可包括以不同波长发射的器件。通过将具有发射不同颜色的材料阵列的衬底图案化,可形成包括不同颜色的像素的显示器。在一些应用中,该衬底可包括后板(backplane)。后板包括用于控制或转换对单独像素的功率的有源(active)或无源(passive)电子设备。包括后板对于如显示器、传感器或成像器的应用可为有用的。特别地,后板可构造作为有源矩阵、无源矩阵、固定格式、直接驱动或混合型。显示器可构造用于静置图像、活动图像、或照明。照明显示器可提供白光、单色光、或颜色可调的光。参见例如2005年10月21日提交的美国专利申请No.11/253,612,其全部引入作为参考。
所述器件可在受控(无氧和无水分)环境中制造,防止在制造过程期间的发光效率的弱化(quenching)。其它多层结构可用于改善器件性能(参见例如,
发光器件的性能可通过提高它们的效率、使它们的发射光谱变窄或变宽、或使它们的发射偏振而改善。参见例如,Bulovic等的Semiconductors andSemimetals 64,255(2000)、Adachi等的Appl.Phys.Lett.78,1622(2001)、Yamasaki等的Appl.Phys.Lett.76,1243(2000)、Dirr等的Jpn.J.Appl.Phys.37,1457(1998)和D’Andrade等的MRS Fall Meeting,BB6.2(2001),这些文献中的每一篇均全部引入本文作为参考。纳米晶体可包含在有效的混合型有机/无机发光器件中。
纳米晶体的窄FWHM可导致饱和的颜色发射。这可导致即使在可见光谱的红色和蓝色部分也为有效的纳米晶体发光器件,因为在纳米晶体发射器件中,对于红外和紫外发射没有损失光子。在单一材料体系的整个可见光谱范围内的可广泛调节的饱和的颜色发射是任何种类的有机发色团都不匹配的(参见例如Dabbousi等的J.Phys.Chem.101,9463(1997),其全部引入作为参考)。单分散的纳米晶体群将发射跨越窄波长范围的光。包含多于一种尺寸的纳米晶体的器件可发射多于一种窄波长范围的光。由观察者感知到的所发射的光的颜色可通过选择器件中的纳米晶体尺寸和材料适当组合进行控制。纳米晶体的带边能级的简并促进所有可能的激子的俘获和辐射复合,不管这些激子是由直接的电荷注入、能量转移还是光的吸收而产生的。
可制备发射可见或红外光的器件。可选择半导体纳米晶体的尺寸和材料,使得纳米晶体发射选定波长的可见或红外光。该波长可为300至2,500nm或更大,例如300至400nm、400至700nm、700至1100nm、1100至2500nm、或大于2500nm。
单独的器件可形成于单一衬底上的多个位置处以形成显示器。该显示器可包括以不同波长进行发射的器件。通过将具有发射不同颜色的半导体纳米晶体阵列的衬底图案化,可形成包括不同颜色的像素的显示器。
图3A说明电压驱动的电致发光器件的横截面图。在该器件中,半导体纳米晶体层003(其可为半导体纳米晶体的部分单层、单层、或多层)和宽带隙材料层004堆叠在衬底007上的两个绝缘层002、005与两个导电电极001、006之间。保护层000、导电层001和绝缘层002是透明的以容许在宽带隙材料层004和半导体纳米晶体层003中产生的光射出该器件。或者,光可射出衬底侧,条件是底电极和衬底是透明的。
根据该构造,电压驱动的纳米晶体电致发光器件在两个绝缘层与导电电极之间包括含有纳米晶体和宽带隙材料(如硫化锌)的光发射层。跨越两个导电电极施加电压以电驱动和激发宽带隙材料;激发能量通过发射光子或通过转移能量至纳米晶体层而释放。因而,纳米晶体层起到将电能直接或间接地转换为光子能的能量转换层的作用。作为在纳米晶体层内的能量转换的结果,与纳米晶体的能量结构有关的光被发射。因此,可设计纳米晶体的尺寸或组成以获得红、绿或蓝色、或颜色组合的光发射,并仍然保持宽带隙材料的化学组成不变。
图3B显示电压驱动的纳米晶体电致发光器件的替换构造。这里,半导体纳米晶体103分散在衬底107上两个绝缘层102、105与两个导电电极101、106之间的宽带隙材料104基质中。来自混合的纳米晶体层和宽带隙材料层的光从顶部和/或底部射出。
图3C显示电压驱动的纳米晶体电致发光器件的替换构造。这里,半导体纳米晶体201位于在顶电极202、电介质203、宽带隙材料204、电介质205、电极206和衬底207之外的区域中。纳米晶体201可任选地被覆盖层200(不一定存在)保护。来自宽带隙材料层的光可通过能量转移或再吸收而激发纳米晶体。
在电压驱动的纳米晶体电致发光器件中,绝缘层如氧化硅通过将硅表面热氧化而形成于衬底(如硅衬底)上。宽带隙材料例如硫化锌可流延或溅射在绝缘层顶部上。然后纳米晶体溶液可沉积(例如,通过旋转流延、喷墨印刷、微接触印刷或滴落流延)在硫化锌层顶部上。或者,宽带隙材料(如聚合物)和纳米晶体可一起溶解在溶剂中。参见例如2003年3月28日提交的美国专利申请No.10/400,907,其全部引入作为参考。合适的溶剂的实例包括氯仿和THF。然后可沉积宽带隙材料和纳米晶体的溶液。聚合物例如聚甲基丙烯酸甲酯(PMMA)的层可用作在纳米晶体层上的第二绝缘材料。顶电极和保护层可通过氧化铟锡(ITO)涂覆的载玻片提供。
为了形成器件,可将透明电极(如ITO)布置于透明衬底上。然后,使用大面积相容的、单一的单层沉积技术如微接触印刷或朗缪尔-布罗杰特(LB)技术沉积半导体纳米晶体。随后,例如通过溅射将n型半导体(例如ZnO或TiO2)施加到该层顶部上。可将金属电极热蒸发到其上以完成器件。更复杂的器件结构也是可能的。例如,邻近纳米晶体层可包含轻掺杂层,以使由传输层中的非束缚的(unbound)电荷载流子导致的激子猝灭而引起的非辐射损失最小化。
该器件可通过独立地生长两个传输层和使用弹性体如聚二甲基硅氧烷(PDMS)物理施加电接触而组装。这避免了在纳米晶体层上直接沉积材料的需要。
该器件可在施加所有传输层之后进行热处理。热处理可进一步增强电荷向纳米晶体的注入以及除去纳米晶体上的有机覆盖基团(capping group)。该覆盖基团的不稳定性可影响到器件的不稳定性。
所施加的用于光产生的电压可为AC电压或DC电压。DC电压可通过DC电压发生器提供,该DC电压发生器包括例如电池、电容器、或整流的AC电压。AC电压可通过产生电压波形例如方波的AC电压发生器提供。该波形可具有10Hz至1MHz、250Hz至100kHz、或500Hz至10kHz的频率。平均电压可为2至10伏、或3至8伏。所用占空因数百分率计算为平均电压除以最大电压再乘以100。占空因数百分率为在开/关循环中电压为开的相对时间(以%表示)。可调节频率、占空因数和峰值电压以将器件的光输出和稳定性最优化。占空因数的一些应用描述于例如G.Yu等的Applied PhysicsLetters 73:111-113(1998)中,其全部引入本文作为参考。例如,AC电压波形可为在5V和1kHz下的50%的占空因数,其具有5V的最大电压、1kHz的频率和2.5V的平均电压。这样,低的平均工作电压可改善器件的工作半寿命。
可使用这种在两个绝缘层和导电层之间包括包含纳米晶体层和宽带隙材料的层的电致发光器件制造显示单元,其中通过选择和图案化所需能量结构和组成的纳米晶体层而形成产生不同颜色的光的光发射层。因而,可实现多色显示。
图4是显示来自电致发光器件的发射的彩色照片。观察到来自ZnS电致发光材料的蓝色发射和来自半导体纳米晶体的红色发射两者。
图5A和5B为分别为显示处于关闭和开启状态(即,没有施加的电压和具有施加的电压)的电致发光器件的彩色照片。该器件包含ZnS电致发光材料和以在边上具有1mm正方形的“棋盘”图案沉积的红光发射半导体纳米晶体。当施加交流电压时,观察到来自ZnS材料的蓝色发射和由半导体纳米晶体中产生的红色发射。
其它实施方式在所附权利要求的范围内。

Claims (36)

1.发光器件,包括:
第一电极;
第二电极;
电致发光材料;
设置于所述电致发光材料与至少一个电极之间的电介质材料;和
布置以接收来自所述电致发光材料的能量的多个半导体纳米晶体。
2.权利要求1的发光器件,其中所述多个半导体纳米晶体设置在所述第一电极与所述第二电极之间。
3.权利要求1的发光器件,其中所述电致发光材料布置在层中。
4.权利要求3的发光器件,其中所述电介质材料布置在邻近于所述电致发光材料的至少一个层中。
5.权利要求4的发光器件,其中所述多个半导体纳米晶体布置在层中。
6.权利要求4的发光器件,其中所述多个半导体纳米晶体布置在邻近于所述电致发光材料的层中。
7.权利要求4的发光器件,其中所述多个半导体纳米晶体布置在所述电致发光材料之间。
8.权利要求1的发光器件,其中选择所述多个半导体纳米晶体以发射单色光。
9.权利要求1的发光器件,其中选择所述多个半导体纳米晶体以发射多于一种的不同颜色的光。
10.权利要求9的发光器件,其中选择所述多个半导体纳米晶体以发射白光。
11.权利要求1的发光器件,其中选择所述多个半导体纳米晶体以发射可见光。
12.权利要求13的发光器件,其中选择所述多个半导体纳米晶体以发射红外光。
13.形成器件的方法,包括:
将电介质材料沉积在第一电极上方;
将电致发光材料沉积在所述第一电极上方;
以接收来自所述电致发光材料的能量的布置沉积多个半导体纳米晶体;和
将第二电极布置在所述第一电极、电介质材料、电致发光材料和多个半导体纳米晶体上方;
其中所述电介质材料设置于所述电致发光材料与至少一个电极之间。
14.权利要求13的方法,其中以接收来自所述电致发光材料的能量的布置沉积多个半导体纳米晶体包括将所述纳米晶体沉积在所述第一电极上方。
15.权利要求13的方法,其中沉积所述电致发光材料包括形成层。
16.权利要求13的方法,其中所述电介质材料布置在邻近于所述电致发光材料的至少一个层中。
17.权利要求16的方法,其中沉积所述多个半导体纳米晶体包括形成层。
18.权利要求16的方法,其中沉积所述多个半导体纳米晶体包括形成邻近于所述电致发光材料的层。
19.权利要求16的方法,其中沉积所述多个半导体纳米晶体包括将所述多个半导体纳米晶体分散在所述电致发光材料之中。
20.权利要求19的方法,其中将所述多个半导体纳米晶体分散在所述电致发光材料之中包括将所述多个半导体纳米晶体和所述电致发光材料溶解在溶剂中。
21.权利要求13的方法,其中选择所述多个半导体纳米晶体以发射单色光。
22.权利要求13的方法,其中选择所述多个半导体纳米晶体以发射多于一种的不同颜色的光。
23.权利要求21的方法,其中选择所述多个半导体纳米晶体以发射白光。
24.产生光的方法,包括:
提供器件,其包括第一电极;第二电极;电致发光材料;设置于所述电致发光材料与至少一个电极之间的电介质材料;和布置以接收来自所述电致发光材料的能量的多个半导体纳米晶体;和
跨越所述第一电极和所述第二电极施加光产生电势。
25.权利要求24的方法,其中所述多个半导体纳米晶体设置在所述第一电极与所述第二电极之间。
26.权利要求24的方法,其中所述电致发光材料布置在层中。
27.权利要求26的方法,其中所述电介质材料布置在邻近于所述电致发光材料的至少一个层中。
28.权利要求27的方法,其中所述多个半导体纳米晶体布置在层中。
29.权利要求27的方法,其中所述多个半导体纳米晶体布置在邻近于所述电致发光材料的层中。
30.权利要求27的方法,其中所述多个半导体纳米晶体分散在所述电致发光材料之中。
31.权利要求24的方法,其中选择所述多个半导体纳米晶体以发射单色光。
32.权利要求27的方法,其中选择所述多个半导体纳米晶体以发射单色光。
33.权利要求24的方法,其中选择所述多个半导体纳米晶体以发射多于一种的不同颜色的光。
34.权利要求24的方法,其中选择所述多个半导体纳米晶体以发射白光。
35.权利要求24的方法,其中选择所述多个半导体纳米晶体以发射可见光。
36.权利要求24的方法,其中选择所述多个半导体纳米晶体以发射红外光。
CN2007800261122A 2006-05-21 2007-05-21 包含半导体纳米晶体的发光器件 Active CN101490785B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US74780606P 2006-05-21 2006-05-21
US60/747,806 2006-05-21
US11/750,824 2007-05-18
US11/750,824 US8941299B2 (en) 2006-05-21 2007-05-18 Light emitting device including semiconductor nanocrystals
PCT/US2007/012041 WO2008088367A2 (en) 2006-05-21 2007-05-21 Light emitting device including semiconductor nanocrystals

Publications (2)

Publication Number Publication Date
CN101490785A true CN101490785A (zh) 2009-07-22
CN101490785B CN101490785B (zh) 2011-04-20

Family

ID=39224212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800261122A Active CN101490785B (zh) 2006-05-21 2007-05-21 包含半导体纳米晶体的发光器件

Country Status (6)

Country Link
US (1) US8941299B2 (zh)
EP (1) EP2038908B1 (zh)
JP (1) JP5452218B2 (zh)
KR (1) KR101396101B1 (zh)
CN (1) CN101490785B (zh)
WO (1) WO2008088367A2 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007103310A2 (en) * 2006-03-07 2007-09-13 Qd Vision, Inc. An article including semiconductor nanocrystals
US8718437B2 (en) * 2006-03-07 2014-05-06 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
JP4137936B2 (ja) * 2005-11-16 2008-08-20 昭和電工株式会社 窒化ガリウム系化合物半導体発光素子
WO2007095061A2 (en) * 2006-02-09 2007-08-23 Qd Vision, Inc. Device including semiconductor nanocrystals and a layer including a doped organic material and methods
WO2007092606A2 (en) * 2006-02-09 2007-08-16 Qd Vision, Inc. Displays including semiconductor nanocrystals and methods of making same
US8849087B2 (en) * 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US9874674B2 (en) 2006-03-07 2018-01-23 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
WO2007143197A2 (en) 2006-06-02 2007-12-13 Qd Vision, Inc. Light-emitting devices and displays with improved performance
WO2007112088A2 (en) * 2006-03-24 2007-10-04 Qd Vision, Inc. Hyperspectral imaging device
WO2007117672A2 (en) 2006-04-07 2007-10-18 Qd Vision, Inc. Methods of depositing nanomaterial & methods of making a device
WO2007120877A2 (en) * 2006-04-14 2007-10-25 Qd Vision, Inc. Transfer surface for manufacturing a light emitting device
WO2007139033A1 (ja) * 2006-05-26 2007-12-06 Fujifilm Corporation 面発光型エレクトロルミネッセント素子
WO2008111947A1 (en) * 2006-06-24 2008-09-18 Qd Vision, Inc. Methods and articles including nanomaterial
WO2008105792A2 (en) * 2006-06-24 2008-09-04 Qd Vision, Inc. Methods for depositing nanomaterial, methods for fabricating a device, methods for fabricating an array of devices and compositions
WO2008108798A2 (en) * 2006-06-24 2008-09-12 Qd Vision, Inc. Methods for depositing nanomaterial, methods for fabricating a device, and methods for fabricating an array of devices
JP2010508620A (ja) * 2006-09-12 2010-03-18 キユーデイー・ビジヨン・インコーポレーテツド 所定のパターンを表示するために有用なエレクトロルミネセントディスプレイ
WO2008133660A2 (en) 2006-11-21 2008-11-06 Qd Vision, Inc. Nanocrystals including a group iiia element and a group va element, method, composition, device and other prodcucts
WO2008063658A2 (en) * 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
WO2008063652A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Blue emitting semiconductor nanocrystals and compositions and devices including same
WO2008063653A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
US8836212B2 (en) * 2007-01-11 2014-09-16 Qd Vision, Inc. Light emissive printed article printed with quantum dot ink
JP5773646B2 (ja) 2007-06-25 2015-09-02 キユーデイー・ビジヨン・インコーポレーテツド ナノ材料を被着させることを含む組成物および方法
US9136498B2 (en) 2007-06-27 2015-09-15 Qd Vision, Inc. Apparatus and method for modulating photon output of a quantum dot light emitting device
US20090001403A1 (en) * 2007-06-29 2009-01-01 Motorola, Inc. Inductively excited quantum dot light emitting device
WO2009014707A2 (en) 2007-07-23 2009-01-29 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
US8128249B2 (en) * 2007-08-28 2012-03-06 Qd Vision, Inc. Apparatus for selectively backlighting a material
WO2009099425A2 (en) 2008-02-07 2009-08-13 Qd Vision, Inc. Flexible devices including semiconductor nanocrystals, arrays, and methods
KR20110008206A (ko) 2008-04-03 2011-01-26 큐디 비젼, 인크. 양자점들을 포함하는 발광 소자
US9525148B2 (en) 2008-04-03 2016-12-20 Qd Vision, Inc. Device including quantum dots
WO2009137053A1 (en) 2008-05-06 2009-11-12 Qd Vision, Inc. Optical components, systems including an optical component, and devices
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
WO2009151515A1 (en) 2008-05-06 2009-12-17 Qd Vision, Inc. Solid state lighting devices including quantum confined semiconductor nanoparticles
US20100109521A1 (en) * 2008-10-21 2010-05-06 San Ming Yang Quantum dot electroluminescent device
WO2010129889A2 (en) 2009-05-07 2010-11-11 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
WO2010129887A2 (en) 2009-05-07 2010-11-11 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US10066164B2 (en) * 2009-06-30 2018-09-04 Tiecheng Qiao Semiconductor nanocrystals used with LED sources
WO2011109007A1 (en) 2010-03-01 2011-09-09 David Battaglia Simultaneous optimization of absorption and emission of nanocrystals
TWI408834B (zh) * 2010-04-02 2013-09-11 Miin Jang Chen 基於奈米晶粒之光電元件及其製造方法
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
US9419174B2 (en) * 2012-09-26 2016-08-16 University Of Florida Research Foundation, Inc. Transparent quantum dot light-emitting diodes with dielectric/metal/dielectric electrode
US9935240B2 (en) 2012-12-10 2018-04-03 Massachusetts Institute Of Technology Near-infrared light emitting device using semiconductor nanocrystals

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3216305A (en) 1964-04-23 1965-11-09 Kaplan Stanley Hammerable anchor bolt with deformable serrated apertures
JP3125332B2 (ja) 1991-06-21 2001-01-15 ソニー株式会社 量子ドットトンネル素子とそれを用いた情報処理装置及び情報処理方法
JPH07502479A (ja) 1991-11-22 1995-03-16 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 自己集合性単一層を使って固体無機表面に共有結合した半導体微少結晶
US5505928A (en) 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
US5260957A (en) 1992-10-29 1993-11-09 The Charles Stark Draper Laboratory, Inc. Quantum dot Laser
US5293050A (en) 1993-03-25 1994-03-08 International Business Machines Corporation Semiconductor quantum dot light emitting/detecting devices
US6048616A (en) 1993-04-21 2000-04-11 Philips Electronics N.A. Corp. Encapsulated quantum sized doped semiconductor particles and method of manufacturing same
US6180239B1 (en) 1993-10-04 2001-01-30 President And Fellows Of Harvard College Microcontact printing on surfaces and derivative articles
US5512131A (en) 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US5422489A (en) 1994-01-24 1995-06-06 Bhargava; Rameshwar N. Light emitting device
US5537000A (en) 1994-04-29 1996-07-16 The Regents, University Of California Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices
US5677545A (en) 1994-09-12 1997-10-14 Motorola Organic light emitting diodes with molecular alignment and method of fabrication
JPH10506502A (ja) 1994-09-29 1998-06-23 ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー 量子ドットを備えた光ファイバ
US5585640A (en) 1995-01-11 1996-12-17 Huston; Alan L. Glass matrix doped with activated luminescent nanocrystalline particles
AU6774996A (en) 1995-08-18 1997-03-12 President And Fellows Of Harvard College Self-assembled monolayer directed patterning of surfaces
GB9518910D0 (en) 1995-09-15 1995-11-15 Imperial College Process
US5897945A (en) 1996-02-26 1999-04-27 President And Fellows Of Harvard College Metal oxide nanorods
US6506564B1 (en) 1996-07-29 2003-01-14 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6103868A (en) 1996-12-27 2000-08-15 The Regents Of The University Of California Organically-functionalized monodisperse nanocrystals of metals
US5958573A (en) 1997-02-10 1999-09-28 Quantum Energy Technologies Electroluminescent device having a structured particle electron conductor
JP4071360B2 (ja) 1997-08-29 2008-04-02 株式会社東芝 半導体装置
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US6607829B1 (en) 1997-11-13 2003-08-19 Massachusetts Institute Of Technology Tellurium-containing nanocrystalline materials
US6236060B1 (en) 1997-11-19 2001-05-22 International Business Machines Corporation Light emitting structures in back-end of line silicon technology
US6501091B1 (en) 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
US6864626B1 (en) 1998-06-03 2005-03-08 The Regents Of The University Of California Electronic displays using optically pumped luminescent semiconductor nanocrystals
US6294401B1 (en) 1998-08-19 2001-09-25 Massachusetts Institute Of Technology Nanoparticle-based electrical, chemical, and mechanical structures and methods of making same
US6169359B1 (en) * 1998-09-14 2001-01-02 Planar Systems, Inc. Electroluminescent phosphor thin films with increased brightness that includes an alkali halide
US6617583B1 (en) 1998-09-18 2003-09-09 Massachusetts Institute Of Technology Inventory control
US6251303B1 (en) 1998-09-18 2001-06-26 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
US6608439B1 (en) 1998-09-22 2003-08-19 Emagin Corporation Inorganic-based color conversion matrix element for organic color display devices and method of fabrication
JP2000104058A (ja) 1998-09-28 2000-04-11 Sony Corp 発光体の製造方法
US6797412B1 (en) * 2000-04-11 2004-09-28 University Of Connecticut Full color display structures using pseudomorphic cladded quantum dot nanophosphor thin films
US6576291B2 (en) 2000-12-08 2003-06-10 Massachusetts Institute Of Technology Preparation of nanocrystallites
US6706551B2 (en) * 2001-02-07 2004-03-16 Agfa-Gevaert Thin film inorganic light emitting diode
US6846565B2 (en) 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
CA2453450A1 (en) 2001-07-20 2003-11-06 Quantum Dot Corporation Luminescent nanoparticles and methods for their preparation
WO2003021694A2 (en) 2001-09-04 2003-03-13 Koninklijke Philips Electronics N.V. Electroluminescent device comprising quantum dots
ATE431567T1 (de) 2001-09-17 2009-05-15 Massachusetts Inst Technology Halbleiternanokristall-verbundstoff
US7150910B2 (en) 2001-11-16 2006-12-19 Massachusetts Institute Of Technology Nanocrystal structures
JP2003217861A (ja) 2002-01-22 2003-07-31 Matsushita Electric Ind Co Ltd 電界発光素子
CA2934970C (en) * 2002-03-29 2019-04-30 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US7319709B2 (en) 2002-07-23 2008-01-15 Massachusetts Institute Of Technology Creating photon atoms
AU2003304433A1 (en) 2002-08-02 2005-03-07 Ultradots, Inc. Quantum dots, nanocomposite materials with quantum dots, optical devices with quantum dots, and related fabrication methods
CN1219333C (zh) * 2002-08-09 2005-09-14 中国科学院半导体研究所 一种制作白光发光二极管的方法
CA2495309C (en) 2002-08-13 2011-11-08 Massachusetts Institute Of Technology Semiconductor nanocrystal heterostructures
AU2003301769A1 (en) 2002-08-15 2004-06-07 Moungi G. Bawendi Stabilized semiconductor nanocrystals
CA2496290A1 (en) 2002-10-18 2004-04-29 Ifire Technology Corp. Color electroluminescent displays
JP2006520077A (ja) * 2003-03-11 2006-08-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 量子ドットを含むエレクトロルミネセントデバイス
JP2004296950A (ja) 2003-03-27 2004-10-21 Quantum 14:Kk 発光素子と発光装置並びに情報ディスプレイ装置
JP2004303592A (ja) 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp 電界発光素子及び電界発光素子の製造方法
US20040265622A1 (en) 2003-06-24 2004-12-30 Eastman Kodak Company Light emitting display
JP2005038634A (ja) 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd 電流注入型発光素子
JP4997688B2 (ja) * 2003-08-19 2012-08-08 セイコーエプソン株式会社 電極、薄膜トランジスタ、電子回路、表示装置および電子機器
EP1665396A1 (en) * 2003-09-08 2006-06-07 Group IV Semiconductor Inc. Solid state white light emitter and display using same
US20050069726A1 (en) * 2003-09-30 2005-03-31 Douglas Elliot Paul Light emitting composite material and devices thereof
US7880377B2 (en) * 2004-01-23 2011-02-01 Hoya Corporation Quantum dot-dispersed light emitting device, and manufacturing method thereof
US7253452B2 (en) 2004-03-08 2007-08-07 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystal materials
EP1578173A1 (en) 2004-03-18 2005-09-21 C.R.F. Società Consortile per Azioni Light emitting device comprising porous alumina and manufacturing process thereof
WO2005094271A2 (en) 2004-03-25 2005-10-13 The Regents Of The University Of California Colloidal quantum dot light emitting diodes
EP1731583A4 (en) * 2004-03-30 2008-12-03 Idemitsu Kosan Co FLUORESCENT CONVERSION MEDIUM AND COLOR LIGHT EMITTING DEVICE
JP4642527B2 (ja) * 2004-04-12 2011-03-02 キヤノン株式会社 積層型3次元フォトニック結晶及び発光素子及び画像表示装置
US7326908B2 (en) 2004-04-19 2008-02-05 Edward Sargent Optically-regulated optical emission using colloidal quantum dot nanocrystals
US7625501B2 (en) 2004-05-18 2009-12-01 Ifire Ip Corporation Color-converting photoluminescent film
US7229690B2 (en) 2004-07-26 2007-06-12 Massachusetts Institute Of Technology Microspheres including nanoparticles
US7750352B2 (en) * 2004-08-10 2010-07-06 Pinion Technologies, Inc. Light strips for lighting and backlighting applications
KR20060018583A (ko) * 2004-08-25 2006-03-02 삼성전자주식회사 반도체 나노결정을 함유하는 백색 발광 유·무기하이브리드 전기 발광 소자
US20060043372A1 (en) * 2004-08-30 2006-03-02 Qiu Cindy X Light emitting devices and arrays with reduced electrode resistance
US20060065943A1 (en) * 2004-09-16 2006-03-30 Group Iv Semiconductor Inc. Thin film alternating current solid-state lighting
US10225906B2 (en) 2004-10-22 2019-03-05 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US7799422B2 (en) 2004-11-03 2010-09-21 Massachusetts Institute Of Technology Absorbing film
WO2006137924A2 (en) * 2004-11-03 2006-12-28 Massachusetts Institute Of Technology Light emitting device
US8569948B2 (en) * 2004-12-28 2013-10-29 Samsung Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including an optical spacer
US8134175B2 (en) 2005-01-11 2012-03-13 Massachusetts Institute Of Technology Nanocrystals including III-V semiconductors
EP2546192B1 (en) * 2005-02-16 2019-12-18 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US20070001581A1 (en) * 2005-06-29 2007-01-04 Stasiak James W Nanostructure based light emitting devices and associated methods
US7615800B2 (en) 2005-09-14 2009-11-10 Eastman Kodak Company Quantum dot light emitting layer
US8089080B2 (en) * 2005-12-28 2012-01-03 Group Iv Semiconductor, Inc. Engineered structure for high brightness solid-state light emitters
US7791271B2 (en) * 2006-02-24 2010-09-07 Global Oled Technology Llc Top-emitting OLED device with light-scattering layer and color-conversion
US20070222371A1 (en) * 2006-03-21 2007-09-27 Eastman Kodak Company Top-emitting OLED device with improved stability

Also Published As

Publication number Publication date
WO2008088367A3 (en) 2008-10-02
KR20090023397A (ko) 2009-03-04
CN101490785B (zh) 2011-04-20
EP2038908A4 (en) 2010-09-01
EP2038908B1 (en) 2021-07-07
JP5452218B2 (ja) 2014-03-26
US20080074050A1 (en) 2008-03-27
WO2008088367A2 (en) 2008-07-24
KR101396101B1 (ko) 2014-05-15
US8941299B2 (en) 2015-01-27
JP2009537965A (ja) 2009-10-29
EP2038908A2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
CN101490785B (zh) 包含半导体纳米晶体的发光器件
US10164205B2 (en) Device including quantum dots
US9574134B2 (en) Light emitting device including semiconductor nanocrystals
US10014438B2 (en) Light emitting device including semiconductor nanocrystals
US8835941B2 (en) Displays including semiconductor nanocrystals and methods of making same
US8536776B2 (en) Light emitting device including semiconductor nanocrystals
EP2254393B1 (en) Light emitting device including semiconductor nanocrystals
US20170327740A1 (en) Blue light emitting semiconductor nanocrystals and devices
KR20150017697A (ko) 평탄한 이방성의 콜로이드성 반도체 나노결정들을 포함하는 발광 디바이스 및 이러한 디바이스의 제조 방법
VanWie et al. Bright cool white emission from ultrasmall CdSe quantum dots

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant