CN101484538A - 新型单体材料和聚合材料 - Google Patents

新型单体材料和聚合材料 Download PDF

Info

Publication number
CN101484538A
CN101484538A CNA2007800095334A CN200780009533A CN101484538A CN 101484538 A CN101484538 A CN 101484538A CN A2007800095334 A CNA2007800095334 A CN A2007800095334A CN 200780009533 A CN200780009533 A CN 200780009533A CN 101484538 A CN101484538 A CN 101484538A
Authority
CN
China
Prior art keywords
monomer
inorganic
monomer material
specific refractory
polymer resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800095334A
Other languages
English (en)
Inventor
亨克·舒特
马克·亨佩尼厄斯
吉乌拉·J·范科索
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sparkxis BV
Original Assignee
Sparkxis BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sparkxis BV filed Critical Sparkxis BV
Publication of CN101484538A publication Critical patent/CN101484538A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明描述了包含无机纳米颗粒的单体材料,该无机纳米颗粒具有共价结合到其表面的至少一种可聚合有机部分,优选烯属不饱和有机部分。除具有纳米颗粒的独特性质之外,这些单体材料还结合了所需的无机颗粒材料的性质和有机单体的性质。

Description

新型单体材料和聚合材料
发明领域
本发明涉及新型单体材料和包含该新型单体材料的聚合材料。
背景技术
包含无机颗粒和聚合树脂的复合材料是已知的。特别是所谓的“混合有机-无机纳米复合物(hybrid organic-inorganic nanocomposite)”正属于研究的热点。其制备方法涉及把有机部分(organic moieties)连接到无机纳米颗粒的表面。这可以通过将有机部分接枝到预成型纳米颗粒上(称为合成后修饰)、或者通过在纳米颗粒合成过程中引入有机部分(原位修饰)来实现。
Niederberger等人在Chem.Mater.2004,16,1202-1208中描述了一种用于对二氧化钛颗粒的表面进行原位修饰的方法。该方法涉及向苯甲醇与多巴胺或4-叔丁基邻苯二酚的混合物中添加四氯化钛。官能化的颗粒可溶于多种溶剂,并且适于方便地测量物理性质,如带隙能(band gap energies)。
Tahir等人在Angew.Chem.Int.Ed.2006,45,908-912中公开了一种既能用于原位官能化也能用于合成后官能化的活性聚合酯。对于二氧化钛纳米晶体的原位官能化,将TiCl4注入聚合配体的苯甲醇溶液中。将该溶液在80℃和氩气氛条件下搅拌2天。通过将TiO2纳米丝(nanowire)与10mL聚合配体的混合物密封在苯甲醇中来实现后官能化(post-functionlization)。
Lee等人在Chem.Mater.2001,13,1137-1142中公开了一种混合光学薄膜材料,其包含用三烷氧基硅烷封端的PMMA(聚甲基丙烯酸甲酯)-二氧化钛。该材料具有高折射率。在作为引发剂的过氧化苯甲酰(BPO)的存在下,使甲基丙烯酸甲酯(MMA)和3-(三甲氧基甲硅烷基)丙醇甲基丙烯酸酯(MSMA)聚合,从而制备该材料。在60℃进行2小时聚合后,滴加去离子水和Ti(OBu)4的均匀的四氢呋喃(THF)溶液。混合物在60℃继续反应2小时。
现有技术的材料是表面修饰的无机纳米颗粒或者无机纳米颗粒在有机树脂中的分散体。
本发明的一个目的是提供包含无机纳米颗粒的单体材料,该无机纳米颗粒具有共价结合至其表面的至少一种烯属(ethylenically)不饱和有机部分。
本发明的另一个目的是提供本发明的新型单体的均聚物。
本发明的又一个目的是提供包含本发明的单体作为第一单体和常规有机单体作为第二单体的杂聚物(heteropolymers)。
本发明的再一个目的是提供一种制备本发明的混合单体的方法。
发明内容
在第一实施方案中,本发明提供了一种包含无机纳米颗粒的混合有机-无机单体材料,该无机纳米颗粒具有共价结合到其表面的至少一种可聚合部分,优选烯属不饱和有机部分。
在第二实施方案中,本发明涉及一种聚合材料,其包含第一实施方案中所述的混合有机-无机材料。该聚合材料可以是混合单体材料的均聚物,也可以是混合单体与常规有机单体的杂聚物。
在第三实施方案中,本发明涉及一种制备混合有机-无机单体材料的方法,该方法包括如下步骤:
a)使无机颗粒材料在无机酸中形成胶体溶液,以提供无机颗粒材料的溶液;
b)将在步骤a)中得到的溶液分级(fractionating),以提供粒径为5-100nm的无机颗粒的溶液;
c)将在步骤b)中得到的分级溶液(fractionated solution)与有机溶剂S1混合;和
d)将在步骤c)中得到的混合物与反应性硅烷-官能有机单体(silane-functional organic monomer)在有机溶剂S2中的溶液反应。
并非每种无机材料自身都能形成纳米颗粒或者适用于本发明。适合的例子包括非贵金属的氧化物、硫化物、硫酸盐、磷酸盐、砷化物和砷酸盐,它们能够通过反应性部分而在颗粒表面进行共价官能化。
无机颗粒可以是无定形的,或者它们可以是晶体。在许多情况下,优选晶体材料,因为这些材料比无定形材料具有更优异的物理性质。
已经发现,本发明的材料特别适用于制备在透明度和折射率方面具有优异光学性质的聚合树脂。在本文中,优选的无机材料是那些具有高折射率(即折射率至少为2)的材料。适合的例子包括二氧化钛、氧化锌、硫化锌、硫化铅等。在本文中,二氧化钛是优选的材料,特别是晶体形式的锐钛矿和金红石。
本文所用的术语“折射率”或“RI”指材料在钠发射的光波长(589nm)下的折射率。
在本发明的单体中,常规有机单体通过共价键结合到无机颗粒的表面。优选该共价键是硅原子与无机颗粒表面的化学键。通过使无机颗粒与反应性硅烷官能单体反应来形成该键。优选具有烯属不饱和双键的单体。
可通过使反应性硅烷官能单体与预成型无机颗粒反应(合成后),或者通过在反应性硅烷官能单体存在下生成无机颗粒(原位),来实现无机颗粒和反应性硅烷官能单体之间的反应。优选合成后反应。
本发明的混合无机-有机单体在构成混合无机-有机聚合物的嵌段时特别受关注。为进行聚合反应,混合单体具有作为其衍生来源的有机单体的性质,并且可以使用本领域技术人员所熟知的反应条件、聚合催化剂、聚合引发剂和交联剂来形成聚合物。
混合单体可以与其自身反应形成均聚物,或者可以与其他单体反应形成杂聚物。杂聚物中各单体可无规分布,或者它们可以是所谓嵌段共聚物的形式,即所得聚合物链包含均聚物型的低聚片段。
相信所得聚合物树脂,尤其是透明的聚合物树脂,形成了一类新的化合物,因此本发明人将其总名称定为“纳聚体(naptomer)”,以反映它们具有纳米颗粒和聚合材料的双重性质。纳聚体材料的一个具体子类(subclass)通过基于晶体无机颗粒的材料形成。对于该子类的材料,本发明人将其命名为晶聚体(crystamer)。另一个重要子类的材料是那些具有所需光学性质的材料;对于该子类,本发明人将其命名为光聚体(optopoly)。应当理解,光聚体材料可以属于也可以不属于晶聚体材料子类。
具体实施方式
通过详细描述具有优异光学性质(包括高透明度和高折射率)的二氧化钛基晶聚体材料的制备来进一步阐述本发明。可以理解,可通过使用不同的无机原材料、使用不同的反应性硅烷官能单体、使用不同溶剂等来改变所描述的方法。
优选的二氧化钛原材料是一种晶体尺寸在纳米范围内的市售二氧化钛。然而,这类材料通常包括尺寸远大于生产商说明书所述的颗粒,这可能是结块的结果。还认为在这些二氧化钛材料的生产过程中形成了无定形材料,这些无定形材料结合到二氧化钛材料中的纳米二氧化钛晶体上。
为形成纳聚体,通常有必要将二氧化钛原材料溶解在强酸中来使其解聚。酸应该足够强,以便不仅能使颗粒形成胶体,还能溶解与纳米晶体结合在一起的无定形二氧化钛。
用强酸处理也可能导致一定量的纳米晶体颗粒重结晶。
对于二氧化钛,只有极少数酸强到可以满足上述要求。合适的酸包括氟酸和无水硫酸,优选无水硫酸。
将二氧化钛材料与浓硫酸混合,并将混合物加热至约200℃。保持该温度约5分钟。然后将溶液冷却到室温,优选借助冰浴。将冷却的溶液与水混合。将所得悬浮液通过一系列孔径不断减小的过滤介质过滤,以去除微米尺寸的颗粒。得到澄清的溶液。
对该澄清的溶液进行渗析(dialysis),以除去硫酸根阴离子、溶解的Ti4+阳离子和小于5nm的TiO2颗粒。优选渗析去除了所有小于15nm的TiO2颗粒。在渗析过程中,使用0.1N的HCL水溶液来使pH值保持在约1。
通过蒸发出溶液中大部分的水,将渗析溶液减少到原体积的1/3。蒸发后,TiO2浓度优选为约5g/100ml。此时,加入浓HCl以形成3M溶液。
然后将酸化的溶液与有机溶剂S1混合。该溶剂必须能与水混溶,并且是反应性硅烷官能单体的合适溶剂。在这个例子中,使用N,N-二甲基乙酰胺(DMAC)。通常,将酸化的水溶液用有机溶剂稀释2-6倍。
将二氧化钛纳米颗粒的DMAC溶液与3-(三甲氧基甲硅烷基)丙醇甲基丙烯酸酯(CAS号2530-85-0)的DMAC溶液混合。反应温度为80℃,且反应时间为约1小时。使用超声浴来促进反应,尽管该反应在澄清溶液中进行,但实际上是多相反应。
硅烷化反应结束后,向反应产物中加水,迫使硅烷化的二氧化钛颗粒从溶液中析出。将所得悬浮液以5,000rpm离心10分钟。将所得颗粒溶解在DMAC中,蒸发溶液以去除任何残留的水。硅烷化的颗粒也可以与诸如N,N-二甲基甲酰胺(DMF)和乙腈之类的其他溶剂,以及与诸如N,N-二甲基丙烯酰胺之类的单体形成澄清溶液。其他适合的单体包括N,N-二甲基甲基丙烯酰胺,及这种丙烯酰胺和相应的甲基丙烯酰胺的混合物。
任选地,通过搅拌硅烷化颗粒在含有三辛基氧膦(TOPO,CAS号78-50-2)(相对于TiO2为5wt%)的DMF中的溶液,可以进一步提高溶解度。可用反应性聚合物来进一步稳定纳米颗粒,该反应性聚合物例如上述丙烯酰胺和甲基丙烯酰胺单体的低聚物和聚合物。
为进行聚合反应,将硅烷化的颗粒溶解在合适的单体中。可以将离心颗粒直接溶解在单体中,或可以先将其溶解在非单体溶剂如DMAC中。在后一情况下,随后将该溶液与所选单体混合,然后去除溶剂,例如通过蒸发。重要的是,在聚合反应开始时,单体混合物中应当基本不含溶剂。
通过添加光引发剂(Darocur 4265,Ciba-Geigy)、或热引发剂偶氮二异丁腈(AIBN)或另一种自由基引发剂来使在N,N-二甲基丙烯酰胺中的硅烷化颗粒的溶液聚合。形成粘稠的澄清溶液,该溶液在用紫外线辐射时硬化为塑性树脂。
用N,N-二甲基丙烯酰胺和甲基丙烯酸的树脂修饰的二氧化钛纳米颗粒在透明度和高折射率方面具有优异的光学性质。为得到最佳的折射率结果,晶体二氧化钛颗粒比无定形颗粒更优选,且金红石颗粒比锐钛矿颗粒更优选。
可以通过原子力显微镜(AFM)来测定胶体化颗粒的粒径。研究者相信,小于约20nm的颗粒对树脂的高折射率贡献较小(参见W.Caseri,Macromol.Rapid.Commun.21,705-722(2000))。因此,单体优选不包含大量尺寸小于20nm的二氧化钛颗粒。
在光学树脂中,尺寸远大于20nm的二氧化钛颗粒不是优选的,因为这类颗粒导致光吸收和Raleigh散射。已经发现,上述方法所产生的二氧化钛颗粒溶液几乎不含大于20nm的二氧化钛晶体。当用孔径为0.2微米(200nm)的过滤介质来进行最后的过滤步骤时,这一结果令人惊讶。平均计算,占原始量的约10%的二氧化钛被保留在滤纸上。
渗析步骤用于去除溶解的离子(Ti4+和SO4 2-)和小于约5nm的二氧化钛颗粒。使用得自美国加州Gardenia的Spectrum公司的Spectra/Por 7型渗析管可以得到良好的结果。通过选择基本去除所有小于10nm的二氧化钛颗粒、优选基本去除所有小于15nm的二氧化钛颗粒的介质,来进一步优化渗析。
通过上述方法制备的光学树脂的折射率是树脂中二氧化钛颗粒的体积百分比的函数。本发明的树脂可以包含高达50%(体积)的二氧化钛,这相当于约80wt%。
本发明的光学树脂的高透明度和高折射率使得这些材料特别适用于诸多光学用途,例如透镜、折射计等。一种特别重要的应用是使用这些树脂来封装发光二极管(LED)芯片。
在两种折射率不同的光学材料的界面,会发生两种类型的反射。第一种是公知的全反射,当入射光的角度超出所谓的Snellius锥体时,发生这种反射。这种类型的反射被称为经典反射或Snellius反射。此外,还存在第二种形式的反射,其发生在Snellius锥体范围内。这是一种部分反射,其与各折射率的平方之比成正比。
由于LED芯片中所用的半导体材料,这些芯片或模具(dies)具有很高的折射率:绿色和蓝色LED的折射率通常为约2.2,且红色LED的折射率为约3.4。这些芯片的生产方法不可避免地产生在发光侧具有平整表面的LED。与周围空气接触的平整表面使LED发出的光大部分被反射回LED芯片中。另一方面,LED/空气界面具有较小的Snellius锥体,这导致发光效率很差。
标准LED封装在透明树脂的半球中。球形的树脂-空气界面导致低得多的反射。然而,用于这些团块顶部的材料的折射率通常为约1.5,这使得平面LED/圆盖(dome)界面处的折射率显著下降。结果,由于反射的作用,封装仅仅稍微降低了发射光的损失。
本发明的光学树脂可以配制成具有非常高的折射率。例如,在RI=1.5的有机基体中包含50%(体积)的PbS(RI=4.0)的树脂具有2.75的折射率。可以将二氧化钛基树脂配制成RI为至多约2.2。这些材料的流变性质使得可以将它们形成为所需的球形。这样的组件(assembly)的Snellius反射大大降低。
虽然由高RI的光学树脂制造的LED圆盖大大降低了LED/圆盖界面上的反射损失,但是部分增益被圆盖/空气界面上增强的部分反射抵消了。这是由于在后一界面上的RI大大降低。已经发现,可以通过提供RI降低的圆盖层来进一步减少反射损失,尽管通过这种措施增加了反射表面的量。
对于RI为2.2的绿色或蓝色LED,最佳封装组件包括RI为2.2的圆盖形核心(即,与LED芯片的RI相同)、RI为1.81的第一半球型壳体、以及RI为1.22的第二半球型壳体。与RI为2.2的单片圆盖中14%的反射损失相比,分层圆盖的反射损失为3.8%。借助RI至少为2的材料,已经取得了增益中的大部分。
基于部分反射与各折射率的平方之比成正比这一事实,借助这种分层圆盖管座(stem)获得了光效率的增益。
用上文所述的方法可以配制反射率为2.2和1.81的树脂。目前不能得到RI为约1.22的透明树脂。可用的最佳现行选择是将RI为约1.3-1.4的树脂用做外壳,这些树脂是本领域所公知的。
相同的核心/壳体/壳体设计封装组件可以用来封装RI为3.4的红色LED。虽然对于这种构造而言不是最佳的(圆盖的RI大大低于LED芯片的RI),但反射损失的降低仍然相当大(30%)。

Claims (49)

1、一种包含无机纳米颗粒的混合有机-无机单体材料,所述无机纳米颗粒具有共价结合到其表面的至少一种可聚合部分。
2、根据权利要求1所述的单体材料,其中所述可聚合部分为烯属不饱和有机部分。
3、根据权利要求1或2所述的单体材料,其中所述无机纳米颗粒是选自非贵金属的氧化物、硫化物、硫酸盐、磷酸盐、砷化物、砷酸盐及其混合物的无机材料的纳米颗粒。
4、根据权利要求3所述的单体材料,其中所述无机材料的折射率至少为1.6,优选至少为2。
5、根据权利要求4所述的单体材料,其中所述无机材料选自二氧化钛、氧化锌、硫化锌、硫化铅及其混合物。
6、根据权利要求5所述的单体材料,其中所述无机材料为二氧化钛。
7、根据前述权利要求中任一项所述的单体材料,其中所述纳米颗粒的平均粒径为5-100nm。
8、根据权利要求7所述的单体材料,其中所述纳米颗粒的平均粒径为15-50nm。
9、根据权利要求8所述的单体材料,其中所述纳米颗粒的平均粒径为约20nm。
10、根据前述权利要求中任一项所述的单体材料,其中所述无机纳米颗粒为晶体形式。
11、根据权利要求6-10中任一项所述的单体材料,其中所述无机纳米颗粒为锐钛矿或金红石颗粒或它们的混合物。
12、根据权利要求11所述的单体材料,其中所述无机颗粒为金红石颗粒。
13、根据前述权利要求中任一项所述的单体材料,其中所述可聚合部分为丙烯酸酯部分或者甲基丙烯酸酯部分。
14、根据前述权利要求中任一项所述的单体材料,其溶解在有机溶剂中。
15、根据权利要求14所述的单体材料,其中所述有机溶剂为可聚合材料。
16、根据前述权利要求中任一项所述的单体材料,其中所述可聚合部分通过至少一个硅原子而共价地结合到所述无机纳米颗粒的表面。
17、包含前述权利要求中任一项所述的单体材料的聚合树脂。
18、根据权利要求17所述的聚合树脂,其为权利要求1-16中任一项所述的单体材料的均聚物。
19、根据权利要求17所述的聚合树脂,其为第一单体与第二单体的杂聚物,其中所述第一单体为权利要求1-16中任一项所述的单体材料。
20、根据权利要求19所述的聚合树脂,其中所述第二单体这样选择:使所述第一单体能溶于所述第二单体。
21、根据权利要求20所述的聚合树脂,其中所述第二单体选自N,N-二甲基丙烯酰胺、N,N-二甲基甲基丙烯酰胺及其混合物。
22、根据权利要求17-21中任一项所述的聚合树脂,其为光学透明的。
23、根据权利要求22所述的聚合树脂,其折射率至少为1.6。
24、根据权利要求23所述的聚合树脂,其折射率至少为1.8。
25、根据权利要求24所述的聚合树脂,其折射率至少为2.0。
26、根据权利要求25所述的聚合树脂,其折射率至少为2.2。
27、一种制备混合有机-无机单体材料的方法,所述方法包括以下步骤:
a)使无机颗粒材料在无机酸中形成胶体溶液,以提供所述无机颗粒材料的溶液;
b)将在步骤a)中得到的溶液分级,以提供粒径范围在5-100nm的无机颗粒的溶液;
c)将在步骤b)中得到的分级溶液与有机溶剂S1混合;和
d)将在步骤c)中得到的混合物与反应性硅烷-官能有机单体在有机溶剂S2中的溶液反应。
28、根据权利要求27所述的方法,其中溶剂S1与溶剂S2相同。
29、根据权利要求27或28所述的方法,其中所述无机材料选自折射率至少为1.6、优选至少为2.0的材料。
30、根据权利要求29所述的方法,其中所述无机材料选自非贵金属的氧化物、硫化物、硫酸盐、磷酸盐、砷化物、砷酸盐及其混合物。
31、根据权利要求30所述的方法,其中所述无机材料选自二氧化钛、氧化锌、硫化锌、硫化铅及其混合物。
32、根据权利要求31所述的方法,其中所述无机材料为二氧化钛。
33、根据权利要求32所述的方法,其中所述无机材料为锐钛矿、金红石或其混合物。
34、根据权利要求33所述的方法,其中所述无机材料为金红石。
35、根据权利要求27-34中任一项所述的方法,其中步骤a)中的所述无机酸为无水硫酸或氢氟酸。
36、根据权利要求27-35中任一项所述的方法,其中步骤b)包括过滤。
37、根据权利要求27-36中任一项所述的方法,其中步骤b)包括渗析。
38、根据权利要求27-37中任一项所述的方法,其中在步骤b)中得到的溶液包含粒径为15-50nm的无机颗粒。
39、根据权利要求38所述的方法,其中在步骤b)中得到的溶液包含粒径为约20nm的无机颗粒。
40、根据权利要求27-39中任一项所述的方法,其中溶剂S1与水混溶。
41、根据权利要求40所述的方法,其中溶剂S1选自N,N-二甲基乙酰胺、N,N-二甲基甲酰胺(DMF)和乙腈。
42、根据权利要求27-41中任一项所述的方法,其中所述反应性硅烷官能有机单体包含烯属不饱和部分。
43、根据权利要求42所述的方法,其中所述反应性硅烷官能有机单体包含丙烯酰胺或甲基丙烯酰胺部分。
44、一种光源,其包含封装在如权利要求17-26中任一项所述的聚合树脂中的至少一个发光二极管。
45、根据权利要求44所述的光源,其中所述聚合树脂制成半球形。
46、一种发光二极管的封装组件,其包括:
a)折射率至少为2.0的聚合树脂半球形圆盖;
b)覆盖所述半球形圆盖的第一层,所述第一层的折射率至少为1.7;和
c)覆盖所述第一层的第二层,所述第二层的折射率不大于1.5。
47、根据权利要求46所述的封装组件,其中所述半球形圆盖的折射率为约2.2。
48、根据权利要求46或47所述的封装组件,其中所述第一层的折射率为约1.8。
49、根据权利要求46-48中任一项所述的封装组件,其中所述第二层的折射率为约1.3-1.4。
CNA2007800095334A 2006-01-18 2007-01-18 新型单体材料和聚合材料 Pending CN101484538A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75958506P 2006-01-18 2006-01-18
US60/759,585 2006-01-18

Publications (1)

Publication Number Publication Date
CN101484538A true CN101484538A (zh) 2009-07-15

Family

ID=38179524

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800095334A Pending CN101484538A (zh) 2006-01-18 2007-01-18 新型单体材料和聚合材料

Country Status (13)

Country Link
US (1) US8323594B2 (zh)
EP (3) EP1976938B1 (zh)
JP (1) JP2009523878A (zh)
KR (1) KR20080104268A (zh)
CN (1) CN101484538A (zh)
AT (1) ATE526371T1 (zh)
AU (1) AU2007206898B2 (zh)
BR (1) BRPI0706644A2 (zh)
CA (1) CA2637460A1 (zh)
ES (1) ES2374438T3 (zh)
RU (1) RU2440389C2 (zh)
WO (1) WO2007082919A2 (zh)
ZA (1) ZA200806372B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI645022B (zh) * 2018-02-13 2018-12-21 國立高雄大學 應用於量子點發光二極體之高折射率有機無機混成膠及其製備方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357628B2 (en) * 2008-08-29 2013-01-22 Agilent Technologies, Inc. Inorganic/organic hybrid totally porous metal oxide particles, methods for making them and separation devices using them
WO2014165516A1 (en) 2013-04-01 2014-10-09 Rensselaer Polytechnic Institute Organic phosphor-functionalized nanoparticles and compositions comprising the same
CN112608644A (zh) * 2020-12-02 2021-04-06 浙江万丰摩轮有限公司 一种多色涂层的摩托车轮毂及其制备方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2448683A (en) * 1944-02-09 1948-09-07 Du Pont Titanium oxide production
DE3777931D1 (de) * 1986-09-22 1992-05-07 Ishihara Sangyo Kaisha Titandioxydsol und verfahren zur seiner herstellung.
US5198479A (en) * 1990-08-24 1993-03-30 Shin-Etsu Chemical Company Limited Light transmissive epoxy resin compositions and optical semiconductor devices encapsulated therewith
MY122234A (en) * 1997-05-13 2006-04-29 Inst Neue Mat Gemein Gmbh Nanostructured moulded bodies and layers and method for producing same
US6358601B1 (en) * 1997-07-11 2002-03-19 3M Innovative Properties Company Antistatic ceramer hardcoat composition with improved antistatic characteristics
DE19826624A1 (de) * 1998-06-18 1999-12-23 Merck Patent Gmbh Pigmentpräparation
US6329058B1 (en) * 1998-07-30 2001-12-11 3M Innovative Properties Company Nanosize metal oxide particles for producing transparent metal oxide colloids and ceramers
DE19955816A1 (de) 1999-11-19 2001-05-23 Cognis Deutschland Gmbh Verwendung
US6507049B1 (en) * 2000-09-01 2003-01-14 General Electric Company Encapsulants for solid state devices
JP3709929B2 (ja) * 2002-01-25 2005-10-26 平岡織染株式会社 防汚性膜体及びその製造方法
US6717362B1 (en) * 2002-11-14 2004-04-06 Agilent Technologies, Inc. Light emitting diode with gradient index layering
JP2005043400A (ja) * 2003-07-22 2005-02-17 Konica Minolta Opto Inc 反射防止フィルム、偏光板および表示装置
US7303821B1 (en) * 2003-07-24 2007-12-04 Sepax Technologies, Inc. Material and process for precisely controlled polymeric coatings
US7282272B2 (en) 2003-09-12 2007-10-16 3M Innovative Properties Company Polymerizable compositions comprising nanoparticles
JP2005167091A (ja) * 2003-12-04 2005-06-23 Nitto Denko Corp 光半導体装置
US20050154086A1 (en) * 2003-12-26 2005-07-14 Fuji Photo Film Co., Ltd. Fine inorganic oxide dispersion, coating composition, optical film, antireflection film, polarizing plate, and image display device
JP5046482B2 (ja) * 2003-12-26 2012-10-10 富士フイルム株式会社 無機酸化物微粒子分散物の製造方法、無機酸化物微粒子分散物、コーティング組成物、光学フィルム、反射防止フィルム、偏光板、及び液晶表示装置
JP4789809B2 (ja) 2004-01-15 2011-10-12 サムスン エレクトロニクス カンパニー リミテッド ナノ結晶をドーピングしたマトリックス
JP2005310756A (ja) * 2004-03-26 2005-11-04 Koito Mfg Co Ltd 光源モジュールおよび車両用前照灯
US20050239921A1 (en) * 2004-04-27 2005-10-27 Birmingham John N Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles
CN100572285C (zh) * 2004-06-29 2009-12-23 三井化学株式会社 锡修饰金红石型氧化钛微粒
US7579081B2 (en) * 2004-07-08 2009-08-25 Rohm And Haas Company Opacifying particles
US7396118B2 (en) * 2004-07-09 2008-07-08 Canon Kabushiki Kaisha Cartridge for ink jet recording and method for producing the same
WO2006060141A2 (en) 2004-11-16 2006-06-08 Nanocrystal Lighting Corporation Optically reliable nanoparticle based nanocomposite hri encapsulant and photonic waveguiding material
DE102004061324A1 (de) 2004-12-20 2006-06-22 Epg (Engineered Nanoproducts Germany)Gmbh Optische Komponente aus einem anorganisch-organischen Hybridmaterial zur Herstellung von Brechzahlgradientenschichten mit schneller Kinetik und Verfahren zu ihrer Herstellung
US7264872B2 (en) * 2004-12-30 2007-09-04 3M Innovative Properties Company Durable high index nanocomposites for AR coatings
US8026115B2 (en) 2006-11-17 2011-09-27 3M Innovative Properties Company Optical bonding composition for LED light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI645022B (zh) * 2018-02-13 2018-12-21 國立高雄大學 應用於量子點發光二極體之高折射率有機無機混成膠及其製備方法

Also Published As

Publication number Publication date
EP1976938A2 (en) 2008-10-08
RU2440389C2 (ru) 2012-01-20
US8323594B2 (en) 2012-12-04
ZA200806372B (en) 2009-05-27
CA2637460A1 (en) 2007-07-26
ES2374438T3 (es) 2012-02-16
EP2327745A1 (en) 2011-06-01
AU2007206898B2 (en) 2011-04-07
RU2008133662A (ru) 2010-02-27
BRPI0706644A2 (pt) 2011-04-05
KR20080104268A (ko) 2008-12-02
WO2007082919A2 (en) 2007-07-26
JP2009523878A (ja) 2009-06-25
ATE526371T1 (de) 2011-10-15
AU2007206898A1 (en) 2007-07-26
EP2322582A1 (en) 2011-05-18
WO2007082919A3 (en) 2008-04-17
US20080318047A1 (en) 2008-12-25
EP1976938B1 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
US8088839B2 (en) Method of producing hybrid polymer-inorganic materials
US7241502B2 (en) Moulded bodies consisting of core-shell particles
Zhang et al. Photopolymerization of zeolite/polymer-based composites: Toward 3D and 4D printing applications
JP2005516083A (ja) コア/シェル粒子からなる成形体
WO2000034396A1 (fr) Materiau de revetement dur et film obtenu au moyen de celui-ci
JP2006501124A (ja) 逆オパール様構造体の製造方法
Maeda et al. Preparation of transparent bulk TiO2/PMMA hybrids with improved refractive indices via an in situ polymerization process using TiO2 nanoparticles bearing PMMA chains grown by surface-initiated atom transfer radical polymerization
WO2007125966A1 (ja) 重合性組成物、高屈折率樹脂組成物及びそれを用いた光学部材
CN101484538A (zh) 新型单体材料和聚合材料
CN104540862B (zh) 有机无机复合颗粒、含有该颗粒的分散液及树脂组合物、以及有机无机复合颗粒的制造方法
KR100913272B1 (ko) 초임계 이산화탄소를 이용한 중심-껍질 구조의나노컴포지트 입자 제조방법
Son et al. Highly transparent and wide viewing optical films using embedded hierarchical double-shell layered nanoparticles with gradient refractive index surface
KR101991232B1 (ko) 지르코니아 필러의 표면개질방법 및 이를 함유하는 임시치아용 광경화수지 조성물
CN111491997A (zh) 包含具有不同折射率的颗粒的聚合物复合材料
AU2011203322A1 (en) Novel monomeric and polymeric materials
JP7288353B2 (ja) 屈折率が制御されておりシリカフィラーを含有するメタクリル酸メチル(mma)組成物及びその製造方法、透明アクリル樹脂組成物
KR101280018B1 (ko) 고굴절률 티타니아 미세입자 제조방법
Ji et al. Reparation of silica/poly (methacrylic acid)/poly (divinylbenzene-co-methacrylic acid) tri-layer microspheres and the corresponding hollow polymer microspheres with movable silica core
Tao et al. Refractive index engineering of polymer nanocomposites prepared by end-grafted polymer chains onto inorganic nanoparticles
Joshi Synthesis of Hybrid Inorganic-Organic Microparticles
KR102357623B1 (ko) 다중 코팅 구조를 갖는 고반사 입자 및 그의 제조방법
TWI645022B (zh) 應用於量子點發光二極體之高折射率有機無機混成膠及其製備方法
CN116997528A (zh) 具有金红石型晶体结构的粒子及其制造方法以及粒子的分散液、涂布液、带膜基材的制造方法
CN115894795A (zh) 一种含锆纳米有机溶胶的制备方法及应用
Barari et al. Encapsulation of silica nanoparticles by poly (methyl methacrylate-co-styrene) via emulsion polymerization using dimethylaminoethyl methacrylate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1127780

Country of ref document: HK

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20090715

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1127780

Country of ref document: HK