CN101453885B - Nap基因在控制植物中叶子衰老中的应用 - Google Patents

Nap基因在控制植物中叶子衰老中的应用 Download PDF

Info

Publication number
CN101453885B
CN101453885B CN200780019749.9A CN200780019749A CN101453885B CN 101453885 B CN101453885 B CN 101453885B CN 200780019749 A CN200780019749 A CN 200780019749A CN 101453885 B CN101453885 B CN 101453885B
Authority
CN
China
Prior art keywords
plant
ser
pro
leu
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200780019749.9A
Other languages
English (en)
Other versions
CN101453885A (zh
Inventor
S·甘
Y·郭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cornell Research Foundation Inc
Original Assignee
Cornell Research Foundation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cornell Research Foundation Inc filed Critical Cornell Research Foundation Inc
Publication of CN101453885A publication Critical patent/CN101453885A/zh
Application granted granted Critical
Publication of CN101453885B publication Critical patent/CN101453885B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8266Abscission; Dehiscence; Senescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了与非转基因植物的NAP蛋白质水平相比,具有改变的NAP蛋白质水平的转基因植物,其中相对于非转基因植物,转基因植物表现改变的叶子衰老表型,以及包含失活NAP基因的突变植物,其中与非突变植物的叶子衰老表型相比,突变植物表现出延迟的叶子衰老表型。本发明还公开延迟植物中叶子衰老的方法,以及产生与非突变植物的NAP蛋白质水平相比,具有降低的NAP蛋白质水平的突变植物的方法,其中相对于非突变植物,突变植物表现出延迟的叶子衰老表型。还公开导致植物中叶子早衰或促进叶子衰老的方法。还公开鉴定适于育种的表现延迟的叶子衰老和/或增加产量表型的候选植物的方法。

Description

NAP基因在控制植物中叶子衰老中的应用
本申请要求美国临时专利申请系列No.60/786,602(2006年3月28日提交)的优先权,其中所述美国临时专利申请系列No.60/786,602在此以其整体引入作为参考。 
本发明产生于由美国能源部基础能源科学(U.S.Departmentof Energy Basic Energy Sciences)(批准No.DE-FG02-02ER 15341)和美国-以色列双边农业研究与开发(BARD)基金(U.S.-Israel BinationalAgricultural Research and Development(BARD)Fund)(批准No.IS-3645-04)资助的研究。美国政府可拥有本发明中的某些权利。 
发明领域
本发明涉及与非转基因植物的NAP蛋白质水平相比,具有改变的NAP蛋白质水平的转基因植物,其中相对于非转基因植物,转基因植物显示改变的叶子衰老表型。本发明还涉及含有非活化NAP基因的突变植物,其中与非突变植物的叶子衰老表型相比,突变植物显示延迟的叶子衰老表型。此外,本发明涉及在植物中推迟叶子衰老的方法,以及在植物中引起叶子早衰或促进叶子衰老的方法。本发明还涉及确定适于育种的候选植物(其显示延迟叶子衰老和/或提高产量的表型)的方法。 
发明背景 
在叶子生活周期中,从功能性光合器官到主动衰退和营养再循环组织的转变代表叶子衰老的开始。这种开始是涉及显著差异基因表达的发育转变。认为差异基因表达在叶子衰老中发挥重要的作用。在开始衰老的叶子中,许多在绿叶中表达的基因(包括参与光合作用的基因)下调,而基因子集(通常指衰老相关基因(SAGs))上调。叶子衰老直接受核控制,并且SAG的表达对衰老的进行是必需的。转录和翻译的抑制剂阻止叶子开始衰老(Buchanan-Wollaston等,"The MolecularAnalysis of Leaf Senescence-A Genomics Approach,"PlantBiotechnology Journal 1:3-22(2003);Guo等,“Leaf Senescence:Signals, Execution,and Regulation,”Current Topics in Developmental Biology71:82-1 12(2005);Hadfield等,“Programmed Senescence of PlantOrgans,”Cell Death Differ.4:662-670(1997);Lim等,“The Molecularand Genetic Control of Leaf Senescence and Longevity in Arabidopsis,”Current Topics in Developmental Biology 67:49-83(2005);Smart,“GeneExpression During Leaf Senescence,”New Phytologist 126:419-448(1994))。在过去的十年,为分离SAG基因做了大量的努力,已经从多种植物物种中(包括拟南芥(Arabidopsis)、大麦、芸苔(Brassica)、玉米、黄瓜、稻、烟草、萝卜、芦笋(asparagus)和大豆)克隆了数百SAG(Buchanan-Wollaston等,“The Molecular Analysis of Leaf Senescence-AGenomics Approach,”Plant Biotechnology Journal 1:3-22(2003);Gepstein等,“Large-Scale Identification of Leaf Senescence-AssociatedGenes,”Plant Journal 36:629-642(2003);He等,“MolecularCharacteristics of Leaf Senescence,”In Recent Research Developments inPlant Molecular Biology,Kerala,India:Research Signpost,1-17页(2003))。近来应用基因组学技术导致鉴定数千潜在的SAG(Andersson等,“A Transcriptional Timetable of Autumn Senescence,”GenomeBiology 5:R24(2004);Bhalerao等,“Gene Expression in Autumn Leaves,”Plant Physiology 131:430-442(2003);Buchanan-Wollaston等,“TheMolecular Analysis of Leaf Senescence-A Genomics Approach,”PlantBiotechnology Journal 1:3-22(2003);Buchanan-Wollaston等,“Comparative Transcriptome Analysis Reveals Significant Differences inGene Expression and Signalling Pathways Between Developmental andDark/Starvation-Induced Senescence in Arabidopsis,”The Plant Journal42:567-585(2005);Guo等,“Transcriptome of Arabidopsis LeafSenescence,”Plant Cell and Environment 27:521-549(2004);Lin等,“Molecular Events in Senescing Arabidopsis Leaves,”Plant Journal39:612-628(2004);Zentgraf等,“Senescence-Related Gene ExpressionProfiles of Rosette Leaves of Arabidopsis Thaliana:Leaf Age Versus PlantAge,”Plant Biology 6:178-183(2004))。叶子衰老EST数据库(dbEST)的分析表明大约10%(大约2500)的拟南芥基因在衰老的叶子中表达(Guo等,“Transcriptome of Arabidopsis Leaf Senescence,”Plant Cell and Environment 27:521-549(2004))。在拟南芥的叶子衰老发展过程中,全部基因表达变化的微阵列分析导致鉴定了800种以上的基因,其表现出在转录丰度中可再生的增加(Buchanan-Wollaston等,“ComparativeTranscriptome Analysis Reveals Significant Differences in GeneExpression and Signalling Pathways Between Developmental andDark/Starvation-Induced Senescence in Arabidopsis,”The Plant Journal42:567-585(2005))。 
基因表达的变化通常受与靶基因启动子的特异cis原件结合的转录因子的调控,导致靶基因的活化和/或抑制。在拟南芥基因组中有大约1500个转录因子基因,基于它们结合DNA的结构域,属于30种以上的基因家族(Riechmann等,“Arabidopsis Transcription Factors:Genome-Wide Comparative Analysis Among Eukaryotes,”Science290:2105-2110(2000))。微阵列分析鉴定了在叶子衰老过程中至少三倍上调的96个转录因子基因(Buchanan-Wollaston等,“ComparativeTranscriptome Analysis Reveals Significant Differences in GeneExpression and Signalling Pathways Between Developmental andDark/Starvation-Induced Senescence in Arabidopsis,”The Plant Journal42:567-585(2005)),并且叶子衰老dbEST的分析显示134个独特的编码转录因子的基因,所述转录因子代表20个不同的基因家族(Guo等,“Transcriptome of Arabidopsis LeafSenescence,”Plant Cell andEnvironment 27:521-549(2004))。NAC、WRKY、C2H2型锌指、AP2/EREBP和MYB蛋白质是最大的转录因子群(Buchanan-Wollaston等,“Comparative Transcriptome Analysis Reveals Significant Differencesin Gene Expression and Signalling Pathways Between Developmental andDark/Starvation-Induced Senescence in Arabidopsis,”The Plant Journal42:567-585(2005);Chen等,“Expression Profile Matrix of ArabidopsisTranscription Factor Genes Suggests Their Putative Functions in Responseto Environmental Stresses”,Plant Cell 14:559-574(2002);Guo等,“Transcriptome of Arabidopsis Leaf Senescence,”Plant Cell andEnvironment 27:521-549(2004);Lin等,“Molecular Events in SenescingArabidopsis Leaves,”Plant Journal 39:612-628(2004))。已研究两个WRKY转录因子基因:WRKY53在控制叶子衰老中发挥重要的作用 (Hinderhofer等,“Identification of a Transcription Factor SpecificallyExpressed at the Onset of Leaf Senescence,”Planta 213:469-473(2001);Miao等,“Targets of the WRKY53 Transcription Factor and Its RoleDuring Leaf Senescence in Arabidopsis,”Plant Mol Biol55:853-867(2004);Robatzek等,“Targets of AtWRKY6 Regulation DuringPlant Senescence and Pathogen Defense,”Genes Dev 16:1139-1149(2002)),而抑制WRKY6的表达无论对叶子衰老的开始还是叶子衰老的发展都几乎没有影响(Hinderhofer等,“Identification of a TranscriptionFactor Specifically Expressed at the Onset of Leaf Senescence,”Planta213:469-473(2001);Miao等,“Targets of the WRKY53 TranscriptionFactor and Its Role During Leaf Senescence in Arabidopsis,”Plant MolBiol 55:853-867(2004);Robatzek等,“Targets of AtWRKY6 RegulationDuring Plant Senescence and Pathogen Defense,”Genes Dev16:1139-1149(2002))。大多数叶子衰老相关转录因子的潜在功能仍未阐明。 
在叶子衰老dbEST中总计20个编码NAC转录因子的基因(Guo等,“Transcriptome of Arabidopsis Leaf Senescence,”Plant Cell andEnvironment 27:521-549(2004)),几乎代表了拟南芥中NAC超家族所有预测的109个成员的五分之一(Riechmann等,“ArabidopsisTranscription Factors:Genome-Wide Comparative Analysis AmongEukaryotes,”Science 290:2105-2110(2000))。最初通过牵牛花NAM(非顶端分生组织)以及拟南芥ATAF1和CUC2(杯状子叶)基因高度保守的N-末端确定NAC结构域。它广泛存在于植物中,但在其他真核细胞中不存在。NAC家族基因的作用包括胚胎和芽分生组织发育、侧根形成、植物生长素信号转导、防御和非生物胁迫应答(Olsen等,“NACTranscription Factors:Structurally Distinct,Functionally Diverse,”TrendsPlant Sci 10:79-87(2005))。几个小组已报道NAC家族基因在开始衰老的叶子中表达(Andersson等,“A Transcriptional Timetable of AutumnSenescence,”Genome Biology 5(2004);Buchanan-Wollaston等,“Comparative Transcriptome Analysis Reveals Significant Differences inGene Expression and Signalling Pathways Between Developmental andDark/Starvation-Induced Senescence in Arabidopsis,”The Plant Journal 42:567-585(2005);Guo等,“Transcriptome of Arabidopsis LeafSenescence,”Plant Cell and Environment 27:521-549(2004);John等,“Cloning and Characterization of Tomato Leaf Senescence-RelatedcDNAs,”Plant Molecular Biology 33:641-651(1997);Lin等,“MolecularEvents in Senescing Arabidopsis Leaves,”Plant Journal 39:612-628(2004)),但是这些基因是否对叶子衰老有影响仍未知。 
本发明针对解决本领域中的这些不足。 
发明概述 
本发明涉及转基因植物,其中与非转基因植物的NAP蛋白质水平相比,所述转基因植物具有改变的能够引起植物中叶子衰老的NAP蛋白质水平,其中所述转基因植物相对于非转基因植物表现出改变的叶子衰老表型。 
本发明另一方面涉及含有非活化NAP基因的突变植物,其中相对于非突变植物,突变植物显示延迟的叶子衰老表型。 
本发明还涉及在植物中推迟叶子衰老的方法。所述方法包括提供用可有效沉默NAP蛋白质表达的核酸构建体转化的转基因植物或植物种子,所述NAP蛋白质能在植物中引起叶子衰老。然后,转基因植物或由转基因植物种子长出的植物在可在转基因植物或由转基因植物种子长出的植物中有效推迟叶子衰老的条件下生长。 
本发明另一方面涉及在植物中推迟叶子衰老的方法。所述方法包括用可操纵地连接启动子的编码NAP蛋白质的核酸分子转化植物细胞以获得转化的植物细胞,其中在植物细胞中核酸分子的表达以转录后基因沉默的方式引起延迟的叶子衰老,所述NAP蛋白质能在植物中引起叶子衰老。然后,在有效推迟植物叶子衰老的条件下从转化的植物细胞中再生出植物。 
本发明另一方面涉及产生突变植物的方法,所述突变植物具有的NAP蛋白质水平低于非突变植物,其中相对于非突变植物,突变植物显示延迟的叶子衰老表型。方法包括提供至少一个非突变植物的细胞,其含有编码功能性NAP蛋白质的基因。然后,在有效使基因失活的条件下处理至少一个非突变植物的细胞,由此产生至少一个含有非活化NAP基因的突变植物细胞。然后,至少一个突变植物细胞繁 殖成突变植物,其中突变植物的NAP蛋白质水平低于非突变植物,并且相对于非突变植物表现出延迟的叶子衰老表型。 
本发明另一方面涉及在植物中引起叶子早衰或促进叶子衰老的方法。所述方法包括用可操纵地连接启动子的编码NAP蛋白质的核酸分子转化植物细胞以获得转化的植物细胞,所述NAP蛋白质能在植物中引起叶子衰老。然后,从转化的植物细胞中再生出植物。然后,在有效引起植物早熟或叶子早衰的条件下诱导启动子。 
本发明还涉及鉴定适于育种的候选植物(其显示延迟叶子衰老和/或提高产量的表型)的方法。所述方法包括分析候选植物基因组中失活NAP基因的存在。 
叶子衰老是独特的发育过程,其特征在于大量的程序性细胞死亡和营养物再循环。在叶子衰老过程中,叶绿素和其他的大分子(如蛋白质、脂类和核酸)被降解,导致叶子光合作用活性急剧降低。因此叶子衰老可极大限制作物产量和森林生物量积累。在采后储藏、运输和销售期间,收获后发生的衰老使蔬菜作物和观赏植物贬值。推迟叶子衰老的技术具有农业重要性。叶子衰老根本的分子调节机制仍未透彻了解。 
本申请描述AtNAP的功能性分析,所述AtNAP是编码NAC转录因子家族的基因。该基因的表达与拟南芥莲座叶的衰老进程紧密关联。在两个该基因的T-DNA插入株系中,显著推迟叶子衰老。另外T-DNA剔除植物是正常的。通过完整的AtNAP及其在稻、菜豆、大豆和玉米中的同系物,突变表型可恢复成野生型,所述在稻、菜豆(kidneybean)、大豆和玉米中的AtNAP同系物在叶子衰老期间也上调。此外,诱导AtNAP过表达引起早衰。这些数据强有力地表明AtNAP及其同系物在拟南芥和其他植物物种叶子衰老中发挥重要的作用。 
附图简述 
图1显示来自多种植物的NAP蛋白质CLUSTAL W(1.82)多重序列比对,即菜豆(SEQ ID NO:1)、苜蓿属(Medicago)(SEQ ID NO:2)、大豆(SEQ ID NO:3)、杨木(Populus)(SEQ ID NO:4)、茄属(nightshade)(SEQ ID NO:5)、拟南芥(Arabidopsis)(SEQ ID NO:6)、小麦(SEQ ID NO:7)、稻(rice)(SEQ ID NO:8)、玉米(maize)(SEQ ID NO: 9)、桃(peach)(SEQ ID NO:10)、番茄(SEQ ID NO:11)、矮牵牛花(petunia)(SEQ ID NO:12)和马铃薯(SEQ ID NO:13)。 
图2(a)-(c)显示在拟南芥叶子衰老期间AtNAP表达的RNA凝胶印迹分析。图2(a)描绘在不同发育阶段的叶子中AtNAP的表达。YL,具有全部展开叶子一半大小的嫩叶;NS,全部展开未衰老的叶子;ES,早期衰老的叶子,发黄的叶子面积小于25%;LS,晚期衰老的叶子,50%以上的叶子面积发黄。图2(b)描绘在一株30天龄植物的叶子1-12中AtNAP的表达。叶子从莲座底部计数。图2(c)描绘在开始衰老叶子的不同部分AtNAP的表达。B,底部;M,中部;T,尖部。18S rRNA的放射自显影(图2(a)和2(c))和溴化乙锭染色的凝胶(图2(b))表明在各个泳道上样的总RNA的相对量。 
图3(a)-(d)表明GFP-AtNAP融合蛋白的核定位。图3(a)和3(b)是在活的洋葱表皮细胞中表达的GFP-AtNAP融合蛋白的荧光图像。图3(c)和3(d)描绘用DAPI(4′,6′-二脒基-2-苯基吲哚)染色的相同图像来显示核的位置(用箭头标示)。 
图4(a)-(b)表明在两个T-DNA插入株系中AtNAP的表达。图4(a)描绘AtNAP的基因结构以及T-DNA插入物的位置。图4(b)显示在野生型、株系1和株系2植物开始衰老的叶子中(大约50%变黄),AtNAP表达的RNA凝胶印迹分析。 
图5(a)-(d)表明与同龄的野生型(WT)植物的叶子衰老表型相比,T-DNA插入株系为延迟的叶子衰老表型。图5(a)显示无效突变体(株系1)和WT植株植物发育的早期阶段。图5(b)和5(c)显示突变株系和WT植物的衰老(注意:无效植物在其他方面发育正常)。图5(d)显示从图5(c)同龄植物剪下的叶子。从底部到顶部对叶子编号。在公开的生长条件下,成熟的拟南芥(accession Columbia)植物通常产生12个莲座叶。 
图6(a)-(e)显示atnap无效突变植物(株系1)的生理和分子分析。图6(a)描绘野生型(WT,n=27)和株系1(n=22)的叶子存活曲线(叶子9和10的组合)。图6(b)-6(d)显示在同龄WT和株系1植物各自的莲座叶中叶绿素含量(图6(b))、Fv/Fm比值(图6(c))和离子泄漏(图6(d))。图6(e)显示在同龄WT和株系1植物12个莲座叶中,SAG12和RBCS的RNA凝胶印迹分析。
图7(a)-(d)表明用AtNAP、OsNAP(稻)和PvNAP(菜豆)互补拟南芥atnap无效植物。图7(a)显示在野生型(WT)、atnap无效突变体和用AtNAP、OsNAP或PvNAP转化的atnap无效突变体中,AtNAP(左边泳道)、OsNAP(中间泳道)和PvNAP(右边泳道)表达的RT-PCR分析。18s rRNA作为等量上样的内标。图7(b)显示从WT、无效突变体和多种互补株系分离的叶子的表型。叶子在黑暗中保存4天。图7(c)描绘图7(b)中所示叶子的Fv/Fm比值。图7(d)显示在WT、无效突变体和多种互补株系的完整植物中叶子衰老。植物在拟南芥生长室中并排种植。 
图8(a)-(d)表明诱导AtNAP过表达引起早衰。图8(a)描绘由pTA7001和pGL1167组成、改良的糖皮质激素诱导的基因表达系统。pTA7001提供重组转录因子GVG(GAL4结合结构域+VP16激活结构域+GR或糖皮质激素受体),并且pGL1167包括GAL4顺式元件和AtNAP编码区。图8(b)显示WT和含有不同构建体的转基因植物的表型。用30μM DEX诱导剂处理之后4天照像。图8(c)描绘叶子的Fv/Fm比值,所述叶子来自用或不用DEX处理的不同植物。图8(d)显示在用或不用DEX处理的植物的叶子中,AtNAP、SAG12、SAG13和RBCS表达的RNA凝胶印迹分析。C,没有处理的对照;D,DEX处理。 
图9(a)-(d)显示在菜豆(Phaseolus vulgaris)和稻(Oryza sativajaponica栽培群)中的AtNAP同系物以及它们衰老特异性的表达模式。图9(a)显示来自不同植物物种的NAP蛋白质的系统发生树。图9(b)是来自拟南芥、菜豆和稻的NAP蛋白质的氨基酸序列比对。图9(c)显示PvNAP在菜豆开始衰老的叶子中的表达。图9(d)显示OsNAP在稻开始衰老的叶子中的表达。Y,嫩叶;S,开始衰老的叶子。 
图10(a)-(b)表明在叶子衰老期间,大豆GmNAP(图10(a))和玉米ZmNAP(图10(b))表达的RT-PCR分析。18S rRNA作为每个泳道总RNA相对量的内标。 
图11(a)-(b)描绘用于抑制GmNAP(图11(a))和ZmNAP(图11(b))的RNAi构建体。 
图12(a)-(b)表明用ZmNAP(玉米)和GmNAP(大豆)互补拟南芥无效植物。图12(a)显示在WT、atnap无效突变体和用ZmNAP转化的atnap无效突变体的完整植物中叶子衰老,而图12(b)显示在WT、atnap无效突变体和用GmNAP转化的atnap无效突变体的完整植物中 叶子衰老。 
图13(a)-(b)显示AtNAP表达谱的微阵列分析。图13(a)显示在不同植物组织中AtNAP的表达水平。在“44衰老叶子”中所示的最高值是21790±391。图13(b)表明多种处理对AtNAP表达的作用。显示不同处理后表达变化(阴影正方形中的数字)和表达水平的比值。在“PCD:衰老”中所示的最高值是26597±1957。数据引自Genevestigator微阵列数据库(Zimmermann等,“GENEVESTIGATOR.Arabidopsis MicroarrayDatabase and Analysis Toolbox,”Plant Physiol 136:2621-2632(2004),所述数据库在此以其整体引入作为参考。 
发明详述 
本发明涉及转基因植物,其中与非转基因植物的NAP蛋白质水平相比,所述转基因植物具有改变的能够引起植物中叶子衰老的NAP蛋白质水平,其中所述转基因植物相对于非转基因植物表现出改变的叶子衰老表型。 
在本发明的一个实施方案中,转基因植物具有减少的NAP蛋白质水平并表现出延迟的叶子衰老表型。可用含有设定为沉默NAP蛋白质表达的核酸分子的核酸构建体转化植物。 
在另一实施方案中(如下文更详细地描述),用含有核酸分子的核酸构建体转化转基因植物,所述核酸分子包含显性失活突变并编码非功能性NAP蛋白质。该构建体适于抑制或干扰编码NAP蛋白质的内源性mRNA。 
在另一实施方案中(如下文更详细地描述),用含有核酸分子的核酸构建体转化转基因植物,所述核酸分子定位于构建体中导致抑制或干扰编码NAP蛋白质的内源性mRNA。 
在另一实施方案中(如下文更详细地描述),用含有核酸分子的核酸构建体转化转基因植物,所述核酸分子编码NAP蛋白质并在有义方向。 
在另一实施方案中(如下文更详细地描述),用含有核酸分子的核酸构建体转化转基因植物,所述核酸分子是编码NAP蛋白质核酸分子的反义形式。 
在另一实施方案中(如下文更详细地描述),用第一个和第二 个核酸构建体转化转基因植物,所述第一个核酸构建体编码有义方向的NAP蛋白质且第二个核酸构建体编码反义形式的NAP蛋白质。 
在另一实施方案中(如下文更详细地描述),用含有核酸分子的核酸构建体转化转基因植物,所述核酸分子包含编码NAP蛋白质的第一个片段、编码NAP蛋白质核酸分子的反义形式的第二个片段和连接第一个和第二个片段的第三个片段。 
在本发明另一实施方案中,转基因植物具有增加的NAP蛋白质水平并表现出早熟或叶子早衰的表型。可用设定为过表达NAP蛋白质的核酸构建体转化植物。在另一实施方案中(如下文更详细地描述),核酸构建体可含有植物特异性启动子,如诱导型植物启动子。本发明还涉及从本发明转基因植物产生的种子。 
本发明另一方面涉及含有非活化NAP基因的突变植物,其中突变植物相对于非突变植物,表现出延迟的叶子衰老表型。本发明还涉及突变植物种子,所述突变植物种子通过本发明突变植物在有效引起突变植物产生种子的条件下生长产生。 
本发明的转基因植物和突变植物可以是具有NAP基因的任一植物,包括作物植物和观赏植物。合适的作物植物包括,但不局限于,苜蓿(alfalfa)、稻(rice)、小麦(wheat)、大麦(barley)、黑麦(rye)、棉花(cotton)、向日葵(sunflower)、花生(peanut)、玉米(corn)、马铃薯(potato)、甘薯(sweet potato)、菜豆(kidney bean)、豌豆(pea)、菊苣(chicory)、生菜(lettuce)、苣荬菜(endive)、卷心菜(cabbage)、白菜(bokchoy)、抱子甘蓝(brussel sprout)、甜菜(beet)、荷兰防风草(parsnip)、芜青(turnip)、花椰菜(cauliflower)、西兰花(broccoli)、小罗卜(radish)、菠菜(spinach)、洋葱(onion)、大蒜(garlic)、茄子(eggplant)、胡椒(pepper)、芹菜(celery)、胡萝卜(carrot)、南瓜(squash)、西葫芦(pumpkin)、美洲南瓜(zucchini)、黄瓜(cucumber)、苹果(apple)、梨(pear)、甜瓜(melon)、柑橘(citrus)、桃(peach)、草莓(strawberry)、葡萄(grape)、覆盆子(raspberry)、菠萝(pineapple)、大豆(soybean)、苜蓿属(Medicago)、烟草(tobacco)、番茄(tomato)、高粱(sorghum)和甘蔗(sugarcane)。合适的观赏植物包括,但不局限于,拟南芥(Arabidopsis thaliana)、非洲堇(Saintpaulia)、杨木(Populus)、矮牵牛花(petunia)、天竺葵(pelargonium)、一品红(poinsettia)、菊花(chrysanthemum)、康乃馨(carnation)、百日草 (zinnia)、草坪草(turfgrass)、百合(lily)和茄属(nightshade)。 
本发明还涉及推迟植物中叶子衰老的方法。所述方法包括提供用核酸构建体转化的转基因植物或植物种子,所述核酸构建体有效沉默能引起植物叶子衰老的NAP蛋白质表达。然后,在有效推迟转基因植物或从转基因植物种子生长的植物叶子衰老的条件下,转基因植物或从转基因植物种子长出的植物进行生长。可在收获前或后推迟植物中叶子衰老。 
在一个实施方案中,上述提供的步骤包括提供具有设定为沉默NAP蛋白质表达的核酸分子的核酸构建体。构建体还包括5’DNA启动子序列和3’终止子序列。将核酸分子、启动子和终止子有效连接以允许核酸分子表达。然后用核酸构建体转化植物细胞。方法还可包括从转化的植物细胞繁殖植物。用于转化植物的合适方法包括,例如农杆菌(Agrobacterium)介导的转化、真空渗入、基因枪(biolistic)转化、电穿孔、微注射、化学品介导的转化(例如聚乙烯介导的转化)和/或激光束转化。下文更详细地描述此方法的多个方面。 
在本发明的一个方面,核酸构建体通过构建体的核酸分子含有显性失活突变并编码非功能性NAP蛋白质,导致抑制或干扰NAP蛋白质表达。 
在本发明的另一方面,核酸构建体通过有义或共抑制导致干扰NAP蛋白质表达,其中构建体的核酸分子为有义方向(5’→3’)。在许多植物物种中已观察和报道共抑制,也许归因于转基因剂量效应或另一个模式,即内源性和转基因转录本相互作用导致异常mRNAs(Senior,“Uses of Plant Gene Silencing,”Biotechnology and GeneticEngineering Reviews 15:79-119(1998);Waterhouse等,“Exploring PlantGenomes by RNA-Induced Gene Silencing,”Nature Review:Genetics 4:29-38(2003),参考文献在此以其整体引入作为参考)。如下文所述,当连同具有有义和反义两个核酸方向的构建体一起插入载体时,具有有义方向核酸分子的构建体也可产生序列特异性以沉默RNA(Wesley等,“Construct Design for Efficient,Effective and High-Throughput GeneSilencing in Plants,”Plant Journal 27(6)581-590(2001),参考文献在此以其整体引入作为参考)。 
在本发明另一实施方案中,核酸构建体通过使用反义抑制导致干扰NAP蛋白质表达,其中构建体核酸分子为反义方向(3’→5’)。众所周知使用反义RNA下调特异植物基因的表达(van der Krol等,Nature,333:866-869(1988)和Smith等人,Nature,334:724-726(1988),参考文献在此以其整体引入作为参考)。反义核酸是与特定mRNA分子的至少一部分互补的DNA或RNA分子(Weintraub,“Antisense RNA and DNA,”Scienti加American262:40(1990),参考文献在此以其整体引入作为参考)。在靶细胞中,反义核酸与靶核酸杂交并干扰转录和/或RNA加工、运输、翻译和/或稳定性。这种干扰靶核酸功能的全部作用是破坏蛋白质的表达(Baulcombe,“Mechanisms of Pathogen-Derived Resistance to Viruses in Transgenic Plants,”Plant Cell8:1833-44(1996);Dougherty等,“Transgenes and Gene Suppression:Telling us Something New?,”Current Opinion inCell Biology7:399-05(1995);Lomonossoff,“Pathogen-Derived Resistance to Plant Viruses,”Ann.Rev.Phytopathol.33:323-43(1995),参考文献在此以其整体引入作为参考)。相应地,本发明的一个方面包括含有编码NAP蛋白质核酸分子的核酸构建体插入反义方向的构建体。 
在本发明中,通过利用反向重复(在有义和反义两个方向定向的基因特异性序列片段)产生的双链RNA(“dsRNA”),也可达到干扰NAP蛋白质表达的目的。在本发明此方面的一个实施方案中,有义和反义方向的序列由第三个片段连接,并插入合适的表达载体中,所述表达载体具有正确的有效连接的5’和3’调节核苷酸序列用于转录。然后将具有改良的核酸分子的表达载体插入合适的宿主细胞或研究对象中。在本发明中,连接有义和反义方向两个片段的第三个片段可为任一核苷酸序列如β-葡糖醛酸糖苷酶(‘GUS”)基因片段。在本发明此方面的另一实施方案中,NAP基因的功能性(剪切)内含子可用于第三个(连接)片段,或者,在本发明另一方面,NAP基因中其他没有互补成分的核苷酸序列可用于连接有义和反义方向的两个片段(Chuang等,“Specific and Heritable Genetic Interference by Double-Stranded RNA in Arabidopsis thaliana,”Proc.Nat’l Academy of Sciences USA97(9):4985-4990(2000);Smith等,“Total Silencing by Intron-Spliced Hairpin RNAs,”Nature407:319-320(2000);WaterhouSe等,“Exploring Plant Genomes by RNA-Induced Gene Silencing,”Nature Review: Genetics 4:29-38(2003);Wesley等,“Construct Design for Efficient,Effective and High-Throughput Gene Silencing in Plants,”Plant Journal27(6):581-590(2001),参考文献在此以其整体引入作为参考)。在任一具有NAP蛋白质反向重复的实施方案中,有义和反义片段可在构建体中头对头或尾对尾定向。 
本发明另一方面包括使用也具有dsRNA特征的发夹RNA(“hpRNA”)。这包括RNA与自身杂交产生包括单链环区和碱基配对茎的发夹结构。尽管在有义和反义序列的反向重复片段之间的连接子可用来产生发夹或双链RNA,还可利用无内含子的hpRNA用于达到沉默NAP蛋白质表达的目的。 
备选地,在本发明的另一方面,可用编码有义和反义两个方向分子(具有各自的启动子)、并且没有第三个片段(连接有义和反义序列)的构建体转化植物(Chuang等,“Specific and Heritable GeneticInterference by Double-Stranded RNA in Arabidopsis thaliana,”Proc.Nat’l Academy of Sciences USA 97(9):4985-4990(2000);Waterhouse等,“Exploring Plant Genomes by RNA-Induced Gene Silencing,”NatureReview:Genetics 4:29-38(2003);Wesley等,“Construct Design forEfficient,Effective and High-Throughput Gene Silencing in Plants,”PlantJournal 27(6):581-590(2001),参考文献在此以其整体引入作为参考)。 
在本发明中,应用的NAP核苷酸序列使用本领域众所周知的试剂,可插到多种有效表达载体和细胞系统的任何一种中。合适的载体包括,但不局限于,下述病毒载体如λ载体系统gt11、gt WES.tB、Charon 4和质粒载体如pG-Cha、p35S-Cha、pBR322、pBR325、pACYC177、pACYC1084、pUC8、pUC9、pUC18、pUC19、pLG339、pR290、pKC37、pKC101、SV40、pBluescript II SK+/-or KS+/-(参阅“Stratagene Cloning Systems”Catalog(1993)Stratagene,La Jolla,CA,参考文献在此以其整体引入作为参考)、pQE、pIH821、pGEX、pET系列(参阅Studier等,“Use of T7 RNA Polymerase to Direct Expression ofCloned Genes,”Gene Expression Technology vol.185(1990),参考文献在此以其整体引入作为参考),以及任何其衍生物。重组分子可通过转化、特别是转导、结合、转移或电穿孔引入细胞。使用本领域标准克隆程序将DNA序列克隆到载体中,如Sambrook等,Molecular Cloning: A Laboratory Manual,Second Edition,Cold Spring Harbor,NY:ColdSpring Harbor Press(1989),和Ausubel等,Current Protocols inMolecular Biology,New York,N.Y:John Wiley & Sons(1989)所述,参考文献在此以其整体引入作为参考。 
制备用于表达的核酸构建体时,通常将多种核酸序列插入或替换进细菌质粒中。可使用任何合适的质粒,所述质粒特征在于具有细菌复制系统、允许在细菌中选择的标记以及通常一个或更多唯一的、方便定位的限制位点。许多质粒,指作为转化载体,可用于植物转化。载体的选择依赖于优选的转化技术和转化的靶物种。使用根癌农杆菌(Agrobacterium tumefaciens)(引起冠瘿的土壤传播细菌),多种载体可用于稳定转化。冠瘿特征在于在被感染植物更低的茎和主要的根上生长的肿瘤或树瘿。这些肿瘤是由于部分细菌质粒DNA转移和结合到植物染色体DNA中。此转化DNA(T-DNA)随同植物细胞正常的基因一起表达。质粒DNA(pTi或Ti-DNA,代表“肿瘤诱导质粒”)含有T-DNA移入植物所必需的vir基因。T-DNA带有编码参与植物光合作用的蛋白质、调节因子以及细菌营养物(冠瘿碱)的基因。T-DNA被两个25bp称为“边界序列”的不完整的正向重复序列定界。通过去除癌基因和冠瘿碱基因并用目的基因代替它们,有可能将外源DNA转移进植物中且没有肿瘤的形成或根癌农杆菌的增殖(Fraley等,“Expression ofBacterial Genes in Plant Cells,”Proc.Nat’l Acad.Sci.80:4803-4807(1983),参考文献在此以其整体引入作为参考)。 
该技术的进一步改良导致二元载体系统的发展(Bevan,“Binary Agrobacterium Vectors for Plant Transformation,”Nucleic AcidsRes.12:8711-8721(1984),参考文献在此以其整体引入作为参考)。在此系统中,从pTi去除所有的T-DNA序列(包括边界),并且将含有T-DNA的第二个载体引入根癌农杆菌中。第二个载体具有可在大肠杆菌以及根癌农杆菌中复制的优点,并包含有助于转基因克隆的多克隆位点。通常使用的载体实例是pBin19(Frisch等,“Complete Sequence of theBinary Vector Bin19,”Plant Molec.Biol.27:405-409(1995),参考文献在此以其整体引入作为参考)。任何目前已知或稍后描述的用于遗传转化的合适载体均适用于本发明使用。 
Cohen和Boyer的美国专利No.4,237,224(在此以其整体引 入作为参考)描述利用限制性内切酶切割和DNA连接酶连接产生重组质粒形式的表达系统。然后这些重组质粒依靠转化引入,并在单细胞培养物中复制,所述单细胞培养物包括在组织培养物中生长的原核生物和真核细胞。 
某些“控制元件”或“调控序列”也结合到载体构建体中。包括载体的非翻译区、启动子以及与宿主细胞蛋白质相互作用实现转录和翻译的5’和3’非翻译区。这些元件可在其强度和特异性上变化。取决于载体系统和利用的宿主,可以使用许多合适的转录和翻译元件,包括组成型和诱导型启动子。也可使用组织特异性和器官特异性启动子。 
组成型启动子是在生物体全部发育和生活周期中控制基因表达的启动子。一些广泛用于诱导转基因表达的组成型启动子的例子包括来自根癌农杆菌的胭脂碱(nopaline)合酶(NOS)基因启动子(Rogers等的美国专利No.5,034,322,在此以其整体引入作为参考)、花椰菜花叶病毒(cauliflower mosaic virus)(CaMV)35S和19S启动子(Fraley等的美国专利No.5,352,605,在此以其整体引入作为参考)、那些来自任何肌动蛋白基因的启动子,所述肌动蛋白基因已知在大多数细胞类型中表达(Privalle等的美国专利No.6,002,068,在此以其整体引入作为参考)以及泛素启动子,所述泛素启动子是已知在许多细胞类型中累积的基因产物。 
诱导型启动子是应答诱导剂可直接或间接活化一个或更多DNA序列或基因转录的启动子。缺乏诱导剂时,不转录DNA序列或基因。诱导剂可为化学试剂,如代谢产物、生长调节剂、除草剂或酚化合物,或者直接强加于植物的生理应激如冷、热、盐、毒素,或者通过病原体或疾病因素的作用如病毒或真菌。将含有诱导型启动子的植物细胞暴露于诱导剂,可通过在外部对细胞或植物施用诱导剂,如喷洒、洒水、加热,或暴露给有效病原体。合适的诱导型启动子的例子是糖皮质激素诱导启动子(Schena等,“A Steroid-Inducible GeneExpression System for Plant Cells,”Proc.Natl.Acad.Sci.88:10421-5(1991),参考文献在此以其整体引入作为参考)。在转化的植物中,当转基因植物开始与纳摩尔浓度的糖皮质激素接触,或与糖皮质激素的类似物地塞米松接触时,转基因编码的蛋白质可被诱导表达(Schena等, “A Steroid-Inducible Gene Expression System for Plant Cells,”Proc.Natl.Acad.Sci.USA 88:10421-5(1991);Aoyama等,“AGlucocorticoid-Mediated Transcriptional Induction System in TransgenicPlants,”Plant J.11:605-612(1997);McNellis等,“Glucocorticoid-Inducible Expression of a Bacterial Avirulence Gene inTransgenic Arabidopsis Induces Hypersensitive Cell Death,Plant J.14(2):247-57(1998),参考文献在此以其整体引入作为参考)。此外,诱导型启动子包括以组织特异性方式在选择的植物组织内调控目的基因中发挥功能的启动子。这种组织特异性或发育调节启动子的例子包括本领域所熟知的种子、花、果实或根特异性启动子(Shewmaker等的美国专利No.5,750,385,在此以其整体引入作为参考)。 
已发展许多组织和器官特异性启动子用于植物遗传工程(Potenza等,“Targeting Transgene Expression in Research,Agricultural,and Environmental Applications:Promoters used in Plant Transformation,”In Vitro Cell.Dev.Biol.Plant 40:1-22(2004),参考文献在此以其整体引入作为参考)。这些启动子的例子包括花特异性启动子(Annadana等,“Cloning of the Chrysanthemum UEP1 Promoter and ComparativeExpression in Florets and Leaves of Dendranthema grandiflora,”Transgenic Res.11:437-445(2002),参考文献在此以其整体引入作为参考)、种子特异性启动子(Kluth等,“5’Deletion of agbssl PromoterRegion Leads to Changes in Tissue and Developmental Specificities,”Plant Mol.Biol.49:669-682(2002),参考文献在此以其整体引入作为参考)、根特异性启动子(Yamamoto等,“Characterization of cis-actingSequences Regulating Root-Specific Gene Expression in Tobacco,”PlantCell 3:371-382(1991),参考文献在此以其整体引入作为参考)、果实特异性启动子(Fraser等,“Evaluation of Transgenic Tomato PlantsExpressing an Additional Phytoene Synthase in a Fruit-Specific Manner,”Proc.Natl.Acad.Sci.USA 99:1092-1097(2002),参考文献在此以其整体引入作为参考)以及块茎/储藏器官特异性启动子(Visser等,“Expressionof a Chimaeric Granule-Bound Starch Synthase-GUS gene in transgemcPotato Plants,”Plant Mol.Biol.17:691-699(1991),参考文献在此以其整体引入作为参考)。如果转基因在整个植物表达有不利作用,则定向表 达引入基因(转基因)是必要的。另一方面,在整个植物沉默基因也有负作用。然而,通过组织特异性启动子将沉默局限到一个区域可避免此问题。 
在本发明中使用的核酸构建体还包括与本发明性质改良的核酸分子有效连接的有效3’调节区,所述有效3’调节区从为了在选择的宿主细胞中表达,能提供正确的转录终止和mRNA多聚腺苷酸化的3’调节区中选择。已知许多3’调节区在植物中有效。典型的3’调节区包括,没有限制,胭脂碱合酶(“nos”)3’调节区(Fraley等,“Expression ofBacterial Genes in Plant Cells,”Proc.Nat’l Acad.Sci.USA 80:4803-4807(1983),参考文献在此以其整体引入作为参考)和花椰菜花叶病毒(“CaMV”)3’调节区(Odell等,“Identification of DNA SequencesRequired for Activity of the Cauliflower Mosaic Virus 35S Promoter,”Nature 313(6005):810-812(1985),参考文献在此以其整体引入作为参考)。事实上任何已知在植物中有效的3’调节区适于与本发明结合使用。 
使用熟知的分子克隆技术如Sambrook等,MolecularCloning:A Laboratory Manual,Second Edition Cold Spring Harbor,NY:Cold Spring Harbor Press(1989)以及Ausubel等,Current Protocols inMolecular Biology,New York,N.Y:John Wiley & Sons(1989)所述(在此以其整体引入作为参考),可将上文所述不同的成分连接在一起产生含有本发明使用的核酸构建体的表达系统。 
核酸构建体一旦制备完成,准备结合到宿主细胞中。基本上,在有效条件下(即核酸分子可在宿主细胞中完成转录),通过用核酸构建体转化宿主细胞完成此步骤。用本领域已知的标准克隆程序达到此目的,如Sambrook等,Molecular Cloning:A Laboratory Manual,Second Edition,Cold Springs Laboratory,Cold Springs Harbor,New York(1989)所述,参考文献在此以其整体引入作为参考。合适的宿主细胞是植物细胞。在启动子的控制下,转化方法能够导致核酸瞬时或稳定表达。尽管瞬时表达可适用于重要的目的,尤其是当研究的植物缓慢生长时,但是优选地,本发明核酸构建体稳定插入重组植物细胞的基因组中作为转化的结果。 
适于转化的植物组织包括叶组织、根组织、分生组织、合子和体细胞胚、愈伤组织、原生质体、雄花穗、花粉、胚、花药等等。 选择的转化方式最适合于转化的组织。 
植物组织中的瞬时表达可通过粒子轰击完成(Klein等,“High-Velocity Microprojectiles for Delivering Nucleic Acids Into LivingCells,”Nature 327:70-73(1987),参考文献在此以其整体引入作为参考),也称为宿主细胞的基因枪转化,如Sanford等的美国专利Nos.4,945,050、5,036,006和5,100,792所公开以及Emerschad等,“Somatic Embryogenesis and Plant Development from Immature ZygoticEmbryos of Seedless Grapes(Vitis vinifera),”Plant Cell Reports 14:6-12(1995)所述,以上参考文献在此以其整体引入作为参考。 
在粒子轰击中,用目的DNA包被钨或金微粒(直径1至2μm),然后使用高压气体将其轰击组织。以这种方式,有可能将外源DNA传递到细胞核中,并在当前的组织条件下获得基因的暂时表达。生物活性微粒(如包含载体和异源DNA的干细菌细胞)也可被推进到植物细胞中。也可使用其他目前已知或今后发展的粒子轰击变种方法。 
将核酸构建体稳定引入植物细胞的合适方法是用先前用核酸构建体转化的根癌农杆菌或毛根农杆菌(Agrobacterium rhizogenes)感染植物细胞。如上文所述,农杆菌的Ti(或RI)质粒能将外源核酸分子高成功率转移到植物细胞中。农杆菌转化的变种方法是使用适用于所有植物的真空渗入(Senior,“Uses of Plant Gene Silencing,”Biotechnology and Genetic Engineering Reviews 15:79-119(1998),参考文献在此以其整体引入作为参考)。 
然而引入的另一方法是原生质体与其他实体(或小细胞、细胞、溶酶体或其他易融合的表面脂质体)融合(Fraley等,Proc.Natl.Acad.Sci.USA 79:1859-63(1982),参考文献在此以其整体引入作为参考)。通过电穿孔也可将核酸分子引入植物细胞(Fromm等,Proc.Natl.Acad.Sci.USA 82:5824(1985),参考文献在此以其整体引入作为参考)。在此技术中,当含有表达盒的质粒存在的情况下,对植物原生质体进行电穿孔。高磁场强度的电脉冲可逆性透化处理生物膜使得质粒引入。被电穿孔的植物原生质体重新形成细胞壁、分裂并再生。其他转化方法包括化学品介导的植物转化、微注射、物理磨粉和激光束(Senior,“Uses of Plant Gene Silencing,”Biotechnology and Genettc EngineeringReviews 15:79-119(1998),参考文献在此以其整体引入作为参考)。精确 的转化方法对本发明的实施不是关键性的。任何导致所选宿主细胞有效转化的方法适于本发明的实施。 
转化后,转化的植物细胞必须再生。在Evans等,Handbookof Plant Cell Cultures,Vol.1,New York,New York:MacMillan PublishingCo.(1983);Vasil,编辑,Cell Culture and Somatic Cell Genetics of Plants,Vol.I(1984)and Vol.III(1986),Orlando:Acad.Press;和Fitch等,“Somatic Embryogenesis and Plant Regeneration from Immature ZygoticEmbryos of Papaya(Carica papaya L.),”Plant Cell Rep.9:320(1990)中描述从培养的原生质体再生植物,所述参考文献在此以其整体引入作为参考。 
再生的方法随不同的植物物种变化,但是通常首先提供转化的原生质体悬浮液或含有外植体的皮氏平板。形成愈伤组织,接着从愈伤组织可诱发芽,随后生根。备选地,在愈伤组织中可诱导形成胚。这些胚作为自然胚萌发形成植物。培养基一般包含多种氨基酸和激素,如植物生长素和细胞分裂素。有效的再生依赖于培养基、基因型以及培养历史。如果这三个变量可控制,那么再生通常是可重现和可重复的。 
优选地,首先使用连同本发明核酸构建体一起同时引入宿主细胞的选择标记鉴定转化的细胞。合适的选择标记包括,没有限制,编码抗生素抗性的标记,如赋予卡那霉素抗性的新霉素phosphotransferae II(“nptII”)基因(Fraley等,Proc.Natl.Acad.Sci.USA80:4803-4807(1983),参考文献在此以其整体引入作为参考)以及赋予对庆大霉素(gentamycin)、G418、潮霉素(hygromycin)、链霉素、壮观霉素(spectinomycin)、四环素、氯霉素(chloramphenicol)等抗性的基因。细胞或组织在含有适当抗生素的选择培养基上生长,由此通常只有那些表达抗生素抗性标记的转化株继续生长。其他类型的标记也适合包含在本发明的表达盒中。例如,编码除草剂耐性的基因(如对磺酰脲耐性)是有益的,或赋予对氨甲喋呤抗性的dhfr基因(Bourouis等,EMBO J.2:1099-1104(1983),参考文献在此以其整体引入作为参考)。相似地,编码规定产生可识别化合物的酶的“报告基因”是适合的。用于基因融合实验的最广泛使用的报告基因是来自大肠杆菌的uidA,所述基因编码β-葡糖醛酸糖苷酶蛋白质,也称为GUS(Jefferson等,“GUS Fusions: β Glucuronidase as a Sensitive and Versatile Gene Fusion Marker inHigher Plants,”EMBO J.6:3901-3907(1987),参考文献在此以其整体引入作为参考)。相似地,规定用荧光识别所产生化合物的酶(如荧光素酶)是有益的。采用的选择标记依赖于靶物种;对于某些目标物种,优选不同的抗生素、除草剂或生物合成选择标记。 
然后将通过抑制性试剂或其他选择标记挑选的植物细胞和组织用于转基因获得的检验(Sambrook等,Molecular Cloning:ALaboratory Manual,Cold Spring Harbor,New York:Cold Spring HarborPress(1989),参考文献在此以其整体引入作为参考)。 
含有核酸构建体的融合基因稳定结合到转基因植物中之后,通过有性杂交,转基因可转移到其他植物。取决于杂交的物种,可使用许多标准育种技术的任何一种。一旦产生这种类型的转基因植物,植物自身可按照常规程序培养以便核酸构建体存在于产生的植物中。备选地,从转基因植物收回转基因种子。然后这些种子可种植于土壤中,使用产生转基因植物的常规程序进行培养。 
由本发明中使用的核酸分子编码NAP蛋白质的一个例子是来自具有SEQ ID NO:1氨基酸序列的菜豆NAP蛋白质,如图1所示。此外,NAP蛋白质的其他例子包括来自分别具有SEQ ID NO:2、SEQ IDNO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQID NO:12和SEQ ID NO:13氨基酸序列的苜蓿、大豆、杨木、龙葵(nightshade)、拟南芥、小麦、稻、玉米、桃、番茄、矮牵牛花和马铃薯NAP蛋白质,如图1所示。 
如上文所述,来自多种植物的植物细胞可利用本发明方法。如上文所述,本发明还包括本发明方法产生的植物。 
本发明另一方面包括推迟植物叶子衰老的方法。所述方法包括用可操纵地连接启动子的核酸分子转化植物细胞,以获得转化的植物细胞,其中核酸分子在植物细胞中的表达以转录后基因沉默的方式导致延迟的叶子衰老,所述核酸分子编码能引起植物叶子衰老的NAP蛋白质。然后在推迟植物叶子衰老的有效条件下,植物从转化的植物细胞再生。 
本发明的一个方面是期望推迟叶子衰老,干扰内源性NAP 蛋白质表达的方法包括基于RNA形式的基因沉默,称为RNA干扰(RNAi)(由于是短的干扰RNA,最近还称为siRNA)。RNAi是一种转录后基因沉默(PTGS)的形式。PTGS通过引入同源双链RNA(dsRNA)、转基因或病毒导致内源性基因的沉默。在PTGS过程中,被沉默的基因合成转录本,但是由于被降解而不能积累。RNAi是PTGS的特殊形式,其中通过直接引入dsRNA诱导基因沉默。已经发表许多在理解基因沉默和RNAi的生物化学和遗传学方面取得重大进展的报道(Matzke等,“RNA-Based Silencing Strategies in Plants,”Curr OpinGenet Dev 11(2):221-227(2001),Hammond等,“Post-TranscriptionalGene Silencing by Double-Stranded RNA,”Nature Rev Gen 2:110-119(Abstract)(2001);Hamilton等,“A Species of Small Antisense RNA inPosttranscriptional Gene Silencing in Plants,”Science 286:950-952(Abstract)(1999);Hammond等,“An RNA-Directed Nuclease MediatesPost-Transcriptional Gene Silencing in Drosophila Cells,”Nature404:293-298(2000);Hutvagner等,“RNAi:Nature Abhors aDouble-Strand,”Curr Opin Genetics & Development 12:225-232(2002),参考文献在此以其整体引入作为参考)。在RNAi中,双链RNA(dsRNA)引入动物或植物细胞中导致内源性同源mRNA的破坏,得到该特异基因的拟表型无效突变体。在siRNA中,dsRNA在体内被Dicer酶加工成21-、22-或23-核苷酸RNAs的短干扰分子(siRNA),还称为“引导RNAs”(Hammond等,“Post-Transcriptional Gene Silencing byDouble-Stranded RNA,”Nature Rev Gen 2:110-119(Abstract)(2001);Sharp,P.A.,“RNA Interference-2001,”Genes Dev 15:485-490(2001);Hutvagner等,“RNAi:Nature Abhors a Double-Strand,”Curr OpinGenetics & Development 12:225-232(2002),参考文献在此以其整体引入作为参考),所述Dicer酶是dsRNA特异性核糖核酸酶的RNAse III家族的一员(Hutvagner等,“RNAi:Nature Abhors a Double-Strand,”CurrOpin Genetics & Development 12:225-232(2002);Bernstein等,“Role fora Bidentate Ribonuclease in the Initiation Step of RNA Interference,”Nature 409:363-366(2001);Tuschl,T.,“RNA Interference and SmallInterfering RNAs,”Chembiochem 2:239-245(2001);Zamore等,“RNAi:Double Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals,”Cell 101:25-3(2000);Wu等的美国专利No.6,737,512,参考文献在此以其整体引入作为参考)。连续切割作用将RNA降解成19-21 bp的双链,每边具有2-核苷酸的3’突出端(Hutvagner等,“RNAi:Nature Abhors a Double-Strand,”Curr OpinGenetics & Development 12:225-232(2002);Bernstein等,“Role for aBidentate Ribonuclease in the Initiation Step of RNA Interference,”Nature409:363-366(2001),参考文献在此以其整体引入作为参考)。siRNAs结合到称为RNA诱导沉默复合物(RISC)的效应器中,再通过碱基配对相互作用定位到同源的内源性转录本上,并在距离siRNA 3’末端大约12个核苷酸的位置切割mRNA(Hammond等,“Post-Transcriptional GeneSilencing by Double-Stranded RNA,”Nature Rev Gen 2:110-119(Abstract)(2001);Sharp,P.A.,“RNA Interference-2001,”Genes Dev 15:485-490(2001);Hutvagner等,“RNAi:Nature Abhors a Double-Strand,”CurrOpin Genetics & Development 12:225-232(2002);Nykanen等,“ATPRequirements and Small Interfering RNA Structure in the RNAInterference Pathway,”Cell 107:309-321(2001),参考文献在此以其整体引入作为参考)。 
有一些制备siRNA的方法,包括化学合成、体外转录、siRNA表达载体和PCR表达盒。在本发明的一个方面中,作为在本发明中使用的核酸分子,dsRNA可通过体内转录产生。过程包括为了产生dsRNA改良核酸分子,将改良的核酸分子插入合适的表达载体中,再将具有改良核酸分子的表达载体引入合适的宿主或研究对象中,所述表达载体如上文所述,为了转录和翻译,其具有有效连接的正确的5’和3’调节核苷酸序列。使用siRNA用于基因沉默是分子生物学中迅速发展的工具,并且在文献中可得到有关设计高效siRNA靶标以及制作用于抑制内源性蛋白质的反义核酸构建体的指导方针(Wu等的美国专利No.6,737,512;Brown等,“RNA Interference in Mammalian CellCulture:Design,Execution,and Analysis of the siRNA Effect,”AmbionTechNotes 9(1):3-5(2002);Sui等,“A DNA Vector-Based RNAiTechnology to Suppress Gene Expression in Mammalian Cells,”Proc NatlAcad Sci USA 99(8):5515-5520(2002);Yu等,“RNA Interference byExpression of Short-Interfering RNAs and Hairpin RNAs in Mammalian Cells,”Proc Natl Acad Sci USA 99(9):6047-6052(2002);Paul等,“Effective Expression of Small Interfering RNA in Human Cells,”NatureBiotechnology 20:505-508(2002);Brummelkamp等,“A System forStable Expression of Short Interfering RNAs in Mammalian Cells,”Science 296:550-553(2002),参考文献在此以其整体引入作为参考)。还有市售来源的定制siRNAs。 
本发明还包括获得突变植物的方法,所述突变植物与非突变植物的NAP蛋白质水平相比,具有降低的NAP蛋白质水平,其中相对于非突变植物,突变植物表现出延迟的叶子衰老表型。方法包括提供至少一个含有编码功能性NAP蛋白质的基因的非突变植物细胞。然后,在有效使基因失活的条件下处理至少一个非突变植物细胞,因此产生至少一个含有失活NAP基因的突变植物细胞。然后至少一个突变植物细胞繁殖成突变植物,其中与非突变植物的NAP蛋白质水平相比,突变植物具有降低的NAP蛋白质水平并且相对于非突变植物,突变植物表现出延迟的叶子衰老表型。 
在获得突变植物的方法的其他实施方案中,功能性NAP蛋白质可为任何来自如本文上面所述的多种植物的NAP蛋白质。 
在获得突变植物的方法的另一实施方案中,处理步骤包括在有效获得至少一个含有失活NAP基因的突变植物细胞的条件下,至少一个非突变植物细胞接受化学诱变剂的处理。合适的化学诱变剂可包括,例如,甲磺酸乙酯。 
在获得突变植物的方法的另一实施方案中,处理步骤包括在有效获得至少一个含有失活NAP基因的突变植物细胞的条件下,至少一个非突变植物细胞接受辐射源的处理。合适的辐射源可包括,例如,有效产生紫外线、伽马射线或快中子的辐射源。 
在获得突变植物的方法的另一实施方案中,处理步骤包括在有效使基因失活的条件下,将失活的核酸分子插入编码功能性NAP蛋白质的基因或其启动子中。合适的失活核酸分子可包括,例如,转座元件。这种转座元件的例子包括,但不局限于,激活(Activator)(Ac)转座子、解离(Dissociator)(Ds)转座子或Mutator(Mu)转座子。 
在获得突变植物的方法的另一实施方案中,处理步骤包括在可有效将农杆菌T-DNA序列插入基因的条件下,至少一个非突变植 物细胞接受农杆菌转化处理,从而使基因失活。合适的农杆菌T-DNA序列可包括,例如,在pAC106、pAC161、pGABI1、pADIS1、pCSA110、pDAP101、pBIN19衍生物或pCAMBIA质粒系列二元转化载体上携带的那些序列。 
在获得突变植物的方法的另一方面,处理步骤包括在有效获得至少一个含有失活NAP基因的突变植物细胞的条件下,至少一个非突变植物细胞接受NAP基因或其启动子的定点诱变处理。处理步骤还可包括通过NAP基因或其启动子同源重组、部分NAP基因序列或其启动子的靶向性删除和/或将核酸序列定向插入NAP基因或其启动子引起突变。关于转基因植物和突变植物,该方法中可使用的多种植物与上文所述那些植物相同。本发明其他实施方案包括由该方法产生的突变植物,以及在有效导致突变植物产生种子的条件下,从生长的突变植物产生的突变植物种子。 
本发明还包括在植物中引起叶子早衰或促进叶子衰老的方法。所述方法包括用可操纵地连接启动子的核酸分子转化植物细胞以获得转化的植物细胞,所述核酸分子编码能在植物中引起叶子衰老的NAP蛋白质。然后从转化的植物细胞再生植物。然后,在有效引起植物早熟或叶子早衰的条件下诱导启动子。本发明方法可与来自多种植物的植物细胞(如上文所述)结合使用。优选地,此方法用于在棉花中引起早熟或叶子早衰。本发明还包括用本发明此方法产生的植物。 
本发明另一方面包括鉴定适于育种的候选植物的方法,所述候选植物表现延迟的叶子衰老和/或提高产量的表型。方法包括分析候选植物基因组中失活NAP基因的存在。在本发明的一个实施方案中,方法鉴定适于育种的、表现出延迟的叶子衰老表型的候选植物。在本发明的另一实施方案中,方法鉴定适于育种的、表现出提高产量表型的候选植物。在本发明的另一实施方案中,方法鉴定适于育种的、表现出延迟的叶子衰老和提高产量表型的候选植物。由于NAP基因促进叶子衰老,因此如果任何育种株系含有突变的NAP基因,该株系将表现出显著的叶子衰老延迟和/或提高产量的表型。如果该株系作为亲本株系用于育种目的,NAP基因可作为分子标记用于选择含有非功能性NAP基因的子代。相应地,NAP基因可作为分子标记用于培育具有延迟衰老和提高产量表型的农作物。备选地,NAP基因可作为分子标记 用于培育具有延迟衰老(不需考虑产量问题)表型的蔬菜和花卉。 
实施例 
提供以下实施例来说明本发明实施方案,但并不为了限制本发明范围。 
实施例1-植物材料和生长条件 
拟南芥植物在23℃、60%相对湿度和持续光照下(来自荧光和白炽灯泡混合光源的光(150μmol m-2s-1))生长。种子播种于皮氏培养皿中,所述培养皿包含一半强度的Murashige & Skoog盐、0.8%(w/v)phytoagar(Sigma,St.Louis,MO)以及适量抗生素。吸胀后,种子在4℃过夜保存。两周龄的幼苗移植到Cornell混合土壤(3部分泥煤苔:2部分蛭石:1部分珍珠岩;Tower Road温室,康乃尔大学,Ithaca,NY)。 
使用拟南芥(Arabidopsis thaliana)生态型Columbia-0。除非另有说明,否则T-DNA插入株系、诱导过表达株系和互补株系与野生型及其他对照株系并排种植。 
实施例2-分离AtNAP内的T-DNA插入片断 
从Salk T-DNA保藏中心得到两个T-DNA在AtNAP插入的拟南芥株系(SALK_005010(株系1)和SALK_004077(株系2))(Alonso等,“Genome-Wide Insertional Mutagenesis of Arabidopsis Thaliana,”Science 301:653-657(2003),参考文献在此以其整体引入作为参考)。使用基于PCR的方法鉴定纯合的突变植物。使用改良的CTAB方法从一小片叶子制备基因组DNA(Murray等,“Rapid Isolation of HighMolecular Weight Plant DNA,”Nucleic Acids Res 8:4321-4325(1980),参考文献在此以其整体引入作为参考)。简单地说,在1.5ml微量离心管中用精巧的9英寸钻头研磨50-100mg新鲜叶子组织(Sears,Roebuckand Co.,Hoffman Estates,IL)。粉末状的样品加入500μl 2×抽提缓冲液(0.7M NaCl,1% w/v CTAB,50mM Tris(pH8.0),10mM EDTA,1%β-ME新加入的)后,在55℃孵育30分钟。孵育后,加入500μl三氯甲烷:异戊醇(24:1)并混匀,样品13,000g离心10分钟。将水相(大约500μl)转移到新的微量离心管中,加入500μl异丙醇沉淀基因组DNA。PCR 用于扩增基因组DNAs。RCR条件如下:35个循环,每个循环由94℃30秒、55℃30秒和72℃ 1分钟组成。在PCR反应中使用T-DNA左边界引物G1099(5’-GCGTGGACCGC TTGCTGCAACT-3’;SEQ ID NO:14)、株系1的基因特异性引物G1027(5’-ATCAT GGAAGTAACTTCCCAATC-3’;SEQ ID NO:15)和G1028(5’-TTCAGTTCTTCTCTCTGCTTC-3’;SEQ ID NO:16)、株系2的基因特异性引物G1273(5’-GGCCATTTTCTACGCT ACCT-3’;SEQ ID NO:17)和G1123(5’-CTTCCATGGTTTTCAGACAATTTAG-3’;SEQ ID NO:18)。 
实施例3-质粒构建 
通过将AtNAP编码区克隆到pRTL2-S65TGFP产生GFP-AtNAP表达质粒pGL1185(Lin等,“Arabidopsis FHY3/FAR1 GeneFamily and Distinct Roles of Its Members in Light Control of ArabidopsisDevelopment,”Plant Physiol.136:4010-4022(2004),参考文献在此以其整体引入作为参考)。通过PCR反应扩增没有终止密码子的编码区,使用引物G1526(5’-TAGTCGACAGTTCCTG TTCTATTAGATTG-3’;SEQID NO:19;下划线部分是改造的SalI位点)和G1527(5’-TATCATGAACTTAAACATCGCTTGACG-3’;SEQ ID NO:20;下划线部分是改造的BspHI位点)。使用Pfu聚合酶(Stratagene,La Jolla,CA)并对PCR产物测序。将用SalI和BspHI切割的PCR产物克隆到具有XhoI和NcoI位点的pRTL2-S65TGFP中。 
为了诱导过表达AtNAP,将来自pTA7001(Aoyama等,“AGlucocorticoid-Mediated Transcriptional Induction System in TransgenicPlants,”Plant J 11:605-612(1997),参考文献在此以其整体引入作为参考)的6×GAL4 UAS和35S TATA区的320bp片断克隆到命名为pPZP211的二元载体(Hajdukiewicz等,“The Small,Versatile pPZPFamily of Agrobacterium Binary Vectors For Plant Transformation,”PlantMol Biol 25:989-994(1994),参考文献在此以其整体引入作为参考)中形成pGL1152。使用引物G1100(5’-CACTAGTTCCTGTTCTATTAGATTG-3’;SEQ ID NO:21;下划线部分是改造的SpeI位点)和G1101(5’-GCTGCAGTAACTTTTCAAGCACATC-3’;SEQ ID NO:22;下划线 部分是改造的PstI位点)以及Pfu聚合酶扩增AtNAP的全长cDNA(907bp,包括43 bp 5’UTR区和57 bp 3’UTR区)。在生产商(Promega,Madison,WI)所述的加A尾步骤之后,将PCR产物克隆到pGEM-T载体(Promega)中形成pGL1165。然后对质粒测序。用SpeI和PstI酶切pGL1165,将释放的AtNAP编码区亚克隆到pGL1152,生成pGL1167。 
为了包括拟南芥野生型AtNAP的互补试验,使用引物G1628(5’-GCGTCATC TCATCCTAATCCTCAT-3’;SEQ ID NO:23)和G1629(5’-CGTGACTTCGTCT TATCATGCTG-3’;SEQ ID NO:24)以及Pfu聚合酶对包括启动子(1961bp)和AtNAP编码区(1205bp)的3166-bp基因组DNA进行PCR扩增,加A尾后再克隆到pGEM-T中形成pGL1186,随后对pGL1186测序。用SacII酶切pGL1186,然后用T4 DNA聚合酶(NEB,Beverly,MA)处理以去除3’突出末端形成平末端。再用SacI酶切质粒,将释放的AtNAP克隆到二元载体pPZP221(Hajdukiewicz等,“The Small,Versatile pPZP Family of AgrobacteriumBinary Vectors For Plant Transformation,”Plant Mol Biol 25:989-994(1994),参考文献在此以其整体引入作为参考)的SacI和SmaI位点中。将构建体命名为pGL1199。 
当使用AtNAP的稻(Oryza sativa,japonica品种群)同系物(Os NAP)用于互补试验时,使用引物G1807(5’-TTCTGCAGCGTCATCTCATCCTAATCCTCAT-3’;SEQ ID NO:25;下划线部分是改造的PstI位点)和G1808(5’-GTTACTTCCATGGTTTTCAGACAATTTAG-3’;SEQ ID NO:26;下划线部分是改造的NcoI位点)对AtNAP启动子区进行PCR扩增。在加A尾步骤之后,将2kb PCR产物克隆到pGEM-T中形成pGL1193。使用引物G1805(5’-TTCCATGGTTCTGTCGAACCCG-3’;SEQ ID NO:27;下划线部分是改造的NcoI位点)和G1666(5’-GATCTAGACGAAGAACGAGCTATCAG-3’;SEQ ID NO:28)对含有OsNAP编码区(NP_912423)的基因组片断进行PCR扩增。将1.8kb PCR产物克隆到pGEM-T中形成pGL1191。对质粒测序。NcoI酶切从pGL1191释放的OsNAP克隆到pGL1193中形成pGL1195。然后,用SacI和ApaI酶切之后3.8kb嵌合基因从pGL1195释放(通过T4 DNA聚合酶处理去除3’突出末端),再将其克隆到pZP221的SacI和SmaI位点中形成pGL1197。在pGL1197的XbaI 位点将nos终止子加入嵌合基因的末端形成pGL1800。 
为了包括菜豆(Phaseolus vulgaris)NAP同系物(PvNAP)的互补试验,使用引物G1807(参阅上文)和G1809(5’-AAGTCGACGATTTTCAGACAATTTAGAAAACAATC-3’;SEQ IDNO:29;下划线部分是改造的SalI位点)对AtNAP启动子区进行PCR扩增。将2kb PCR产物克隆到pGEM-T中形成pGL1194。使用引物G1806(5’-AAGTCGACATGGATGCTACCACACCC TC-3’;SEQ ID NO:30;下划线部分是改造的SalI位点)和G1668(5’-GATCTAGATGGACGAAGCTTATCGTC-3’;SEQ ID NO:31)对含有PvNAP编码区(AAK84884)的基因组片断进行PCR扩增。将1.3kb PCR产物克隆到pGEM-T中形成pGL1190。对质粒测序用于序列确认。然后将通过SalI从pGL1190释放的PvNAP编码区克隆到pGL1194中形成pGL1196。通过PstI从pGL1196释放的3.1kb嵌合基因,克隆到pPZP221中形成pGL1198。在pGL1198的XbaI位点将nos终止子加入嵌合基因的末端形成pGL1801。 
实施例4-农杆菌和植物转化 
如先前He等,“A Gene Encoding an Acyl Hydrolase isInvolved in Leaf Senescence in Arabidopsis,”Plant Cell 14:805-815(2002)所述(参考文献在此以其整体引入作为参考),将上述二元载体中的构建体(pGL1167、pGL1199、pGL1800和pGL1801)转移到根癌农杆菌菌株ABI中。相似地,将pTA7001转移到根癌农杆菌菌株LBA4404中。然后通过真空渗入,使用包含各个构建体的农杆菌细胞转化拟南芥生态型Columbia-0或atnap无效突变植物(Bechtold等,“In PlantaAgrobacterium-Mediated Gene Transfer by Infiltration of AdultArabidopsis Plants,”C.R.Acad.Sci.Paris 316:1194-1199(1993),参考文献在此以其整体引入作为参考)。在包含50mg/l卡那霉素(用于pGL1167转化子)、80mg/l庆大霉素(pGL1199、pGL1800和pGL1801转化子)或25mg/l潮霉素(pTA7001转化子)的平板上挑选转基因植物。含有pGL1167的拟南芥植物与含有pTA7001的植物杂交,在包含卡那霉素(50mg/l)和潮霉素(25mg/l)的平板上挑选杂交体。
实施例5-RNA凝胶印迹和RT-PCR分析 
如He等,“A Gene Encoding an Acyl Hydrolase is Involved inLeaf Senescence in Arabidopsis,”Plant Cell 14:805-815(2002)所述(参考文献在此以其整体引入作为参考),进行从拟南芥叶子中提取总RNA以及RNA凝胶印迹分析。在65℃进行杂交。根据生产商的说明使用Ambion RetroScript Kit(Ambion,Austin,TX)进行RT-PCR分析。使用QuantumRNATM Universal 18S Internal Standard Kit(Ambion)用于控制相同的上样量。使用以下引物对用于制作相关杂交探针的DNA片断进行PCR扩增:用于AtNAP的G1027和G1028(参阅上文)、用于SAG12的G10(5’-CAGCTGC GGATGTTGTTG-3’;SEQ ID NO:32)和G246(5’-CCACTTTCT CCCCATTTTG-3’;SEQ ID NO:33)、用于SAG13的G9(5’-GCAACCAAAGGAGCCA TG-3’;SEQ ID NO:34)和G16(5’-GTTTGGCCAACTAGTCTGC-3’;SEQ ID NO:35)、用于RuBISCO小亚单位基因RBCS的G1148(5’-AG TAATGGCTTCCTCTATGC-3’;SEQ ID NO:36)和G1149(5’-GGCTTGTAGGCAATGAAACT-3’;SEQID NO:37)、用于OsNAP的G1665(5’-ATCCCTTCCATTTCCG AC-3’;SEQ ID NO:38)和G1666(参阅上文)、用于PvNAP的G1667(5’-CTGGGTCTTGTG CAGAAT-3’;SEQ ID NO:39)和G1668(参阅上文)。一些引物还用于相关的RT-PCR分析。 
实施例6-在洋葱表皮细胞中瞬时基因表达 
使用氦基因枪转化系统(Bio-Rad,Hercules,CA),用pGL1185转染洋葱(Allium cepa)表皮细胞(如Lin等,“ArabidopsisFHY3/FAR1 Gene Family and Distinct Roles of Its Members in LightControl of Arabidopsis Development,”Plant Physiol.136:4010-4022(2004)所述,参考文献在此以其整体引入作为参考),在光亮或黑暗下22℃孵育24-48小时。用荧光显微镜可见GFP融合蛋白质的亚细胞定位。 
实施例7-糖皮质激素处理 
如Aoyama等,“A Glucocorticoid-Mediated TranscriptionalInduction System in Transgenic Plants,”Plant J 11:605-612(1997)所述 (参考文献在此以其整体引入作为参考),进行糖皮质激素处理。盆栽的两周龄植物用30μM地塞米松(DEX)喷洒。每天一次喷洒植物进行两天,再另培育两天。测量这些植物叶子的Fv/Fm比率,收集获叶子用于分子分析。 
实施例8-黑暗诱导的叶子衰老 
切割来自3周龄拟南芥植物的叶子6,将其向轴面向上置于皮氏培养皿中的潮湿滤纸上。平板在黑暗中23℃保持4天。 
实施例9-测量叶绿素含量、荧光和离子泄露 
如先前He等,“A Gene Encoding an Acyl Hydrolase isInvolved in Leaf Senescence in Arabidopsis,”Plant Cell 14:805-815(2002)所述(参考文献在此以其整体引入作为参考),提取叶绿素并对其定量。根据生产商的说明(Opti-Sciences,Tyngsboro,MA)使用便携式可调叶绿素荧光计(型号:OS1-FL)测量叶子中荧光。使用荧光计的检测方法1直接对每个叶子的变化荧光与最大荧光的比率(Fv/Fm)进行定量。对于离子泄露,将叶子浸入去离子蒸馏水,在25℃水浴中振荡30分钟,使用数字电导计(Fisher Scientific Traceable,Hampton,NH)测量电导率。将样品煮沸10分钟,然后检测电导率。第一次测量值占第二次测量值的百分比作为膜检漏计。 
实施例10-从Genevestigator微阵列数据库采集数据 
使用微阵列数据库Genevestigator(www.genevestigator.ethz.ch)的“Gene Atlas”程序搜索AtNAP(Atlg69490)在不同植物组织中的表达水平。使用“Response Viewer”程序搜索AtNAP在不同处理条件下的表达变化和表达水平。为了运行两个程序,使用“ATH1:22k array”芯片类型(用于“仅野生型”)。当运行“ResponseViewer”时,在“ATH1:22k array”芯片类型(用于“仅野生型”)中选择来自所有来源的芯片。 
实施例11-分子系统发生(Phylogenetic)分析 
使用AtNAP氨基酸序列搜索不同的基因组数据库包括 GenBank(http://www.ncbi.nlm.nih.gov/BLAST/用于大豆、菜豆、稻、茄属、小麦、桃、番茄、矮牵牛花和马铃薯),TIGR植物基因组数据库(http://www.tigr.org/plantProjects.shtml用于玉米和苜蓿属)以及杨木DB(http://www.populus.db.umu.se/用于杨木)。与来自不同植物物种(包括菜豆(Phaseolus vulgaris)(AAK84884)、稻(Oryza sativa)(NP_912423)、大豆(Glycine max)(AAY46121)、茄属(Solanum demissum)(AAU90314)、蒺藜苜蓿(Medicago truncatula)(AC140030_19.1)、毛果杨(Populus trichocarpa)(基因模型gw1.X.1066.1)、小麦(Triticumaestivum)(AAU08785)、玉米(Zea mays)(AZM5_18141)、桃(Prunuspersica)(CAG28971)、番茄(Lycopersicon esculentum)(AAU43923)、马铃薯(Solanum tuberosum)(AAU12055)和矮牵牛花(Petunia x hybrida)(AAM34773))的AtNAP有最高序列相似性的NAC家族基因用于分子系统发生分析。在本申请中,菜豆和稻NAP同系物分别称为PvNAP和OsNAP,进一步研究其表达模式并将其用于在异源互补试验中转移atnap突变体。首先使用缺省参数值(比对算法:完全;CPU模式:单;Kimura修正:关;输出:aln1;输出指令:比对;得分类型:百分比;忽略比对中的间隙:关;序列数目:13;图1)的比对程序CLUSTALW,比对来自不同植物物种的AtNAP同系物的预测氨基酸序列(Chenna等,“Multiple Sequence Alignment With the Clustal Series of Programs,”Nucleic Acids Res 31:3497-3500(2003),参考文献在此以其整体引入作为参考)。然后使用系统发生分析程序MEGA3.1,将比对用于产生系统发生(Kumar等,“MEGA3:Integrated Software for MolecularEvolutionary Genetics Analysis and Sequence Alignment,”BriefBioinform 5:150-163(2004),参考文献在此以其整体引入作为参考)。该分析使用的参数是:数据类型:氨基酸;分析:系统发生重建;方法:邻接法;间隙/丢失数据:完全删除;模型:氨基:泊松修正;可包括替代:所有;谱系间模式:相同(同源)。系统发生树中的结点自引导值来自1000次重复。 
实施例12-在拟南芥叶子衰老过程中AtNAP上调 
拟南芥叶子衰老dbEST的数字表达谱分析和微阵列分析(Buchanan-Wollaston等,“Comparative Transcriptome Analysis Reveals Significant Differences in Gene Expression and Signalling PathwaysBetween Developmental and Dark/Starvation-Induced Senescence inArabidopsis,”The Plant Journal 42:567-585(2005),参考文献在此以其整体引入作为参考)显示在开始衰老叶子中AtNAP是转录丰度最高的转录因子基因之一(Guo等,“Transcriptome of Arabidopsis LeafSenescence,”Plant Cell and Environment 27:521-549(2004),参考文献在此以其整体引入作为参考)。RNA凝胶印迹分析表明AtNAP在拟南芥莲座叶中的表达与叶子衰老的进程紧密关联(图2(a)-(c))。当研究来自相同叶序位置的叶子(自植物底部开始第6片叶子)时,只有在叶子开始衰老时检测到AtNAP的RNA信使(mRNA)(出现后2-3周;图2(a))。在非胁迫条件下生长的拟南芥叶子衰老是年龄依赖性的,从最老的叶子(在植物底部的第一片叶子)到顶部嫩叶按序发展。如图2(b)所示,在老的、开始衰老的叶子中检测到AtNAP转录,但在嫩的绿叶中检测不到。在规定的叶子中,衰老从叶尖开始并向叶基(叶柄)发展。黄尖比叶子近端显示更强的AtNAP表达(图2(c))。 
实施例13-AtNAP靶向细胞核 
尽管通过PredictNLS(Cokol等,“Finding NuclearLocalization Signals,”EMBO Rep 1:411-415(2000),参考文献在此以其整体引入作为参考)和PSORT(Nakai等,“A Knowledge Base forPredicting Protein Localization Sitesin Eukaryotic Cells,”Genomics14:897-911(1992),参考文献在此以其整体引入作为参考)预测AtNAP是核蛋白,但AtNAP没有任何明显的核定位信号。为了确定AtNAP的亚细胞定位,使用粒子轰击,令包含GFP-AtNAP构建体、由35S启动子驱动的嵌合基因在洋葱(Allium cepa)表皮细胞中瞬时表达。用荧光显微镜可见GFP融合蛋白的亚细胞定位。DNA的DAPI(4′,6′-二脒基-2-苯基吲哚)染色显示GFP-AtNAP蛋白质定位在核中,表明AtNAP是核蛋白(图3(a)-(d))。 
实施例14-AtNAP表达在一个T-DNA株系中被剔除,在另一株系中被降低(Knocked Down) 
AtNAP基因由三个外显子组成并编码具有268个氨基酸的 蛋白质(图4(a))。从俄亥俄州立大学的拟南芥生物资源中心(ArabidopsisBiological Resource Center)(ABRC)得到两个Salk T-DNA株系(Columbia背景)(Alonso等,“Genome-Wide Insertional Mutagenesis ofArabidopsis Thaliana,”Science 301:653-657(2003),参考文献在此以其整体引入作为参考)。株系1(SALK_005010)在第二个外显子具有T-DNA插入,株系2(SALK_004077)在启动子区具有T-DNA插入(在距翻译起始位点-227处;图4(a))。RNA凝胶印迹分析表明在纯合株系1的衰老叶子中检测不到AtNAP转录本,而在株系2植物的衰老叶子中AtNAP转录本水平降低到同龄野生型叶子中AtNAP转录本水平的5%(图4(b))。这表明株系1是atnap无效(null)突变体,而株系2是降低(knockdown)株系。 
实施例15-在AtNAP无效突变植物中显著推迟叶子衰老 
为了在株系1(atnap无效突变体)、株系2(atnap降低(knockdown)突变体)和野生型(Columbia accession)之间比较任何生长和发育上的表型变化,在拟南芥生长室中并排种植这些植物。除了atnap无效植物中显著延迟的叶子衰老表型以及atnap降低植物中较低显著延迟的叶子衰老表型之外,在生长和发育上没有可见的差异(图5(a)-(d))。 
进一步表征atnap无效突变植物。如图6(a)中的死亡率曲线所示,atnap无效突变植物的叶子比野生型植物的叶子开始衰老晚。与延迟的可见变黄表型一致(图5(a)-(d)),无效株系单个莲座叶中的叶绿素水平通常比同龄野生型植物相应叶子中的叶绿素水平更高(图6(b))。无效株系单个叶子中的Fv/Fm比率也比同龄野生型植物相应叶子中的Fv/Fm比率更高(图6(c))。Fv/Fm比率反映光合系统II的光化学量子效率,以及光合系统II初级电子受体质体醌的光还原效率。相反,无效植物单个叶子中的离子泄漏小于野生型植物的离子泄漏(图6(d))。离子泄漏是质膜完整性的指示物。开始衰老细胞的质膜变得脆弱和泄漏。 
还检测SAG12和Rubisco小亚单位基因(RBCS)的表达。SAG12是拟南芥中高度衰老特异性基因并且作为叶子衰老的分子标记广泛使用,而RBCS是典型的衰老下调基因。如图6(e)所示,在30天龄野生型植物的第7片叶子中容易检测到SAG12的表达,但是在同龄 无效植物的第4片叶子中几乎检测不到SAG12的表达。 
所有上述数据表明在atnap突变植物中显著推迟叶子衰老进程(大约10天)。 
实施例16-AtNAP使atnap无效突变植物恢复成野生型 
为了证实在AtNAP的T-DNA插入无效突变是造成延迟衰老表型的原因,进行互补测试试验。将包括2kb启动子区的AtNAP野生型副本引入atnap无效突变植物中。引入的AtNAP在开始衰老的叶子中表达(参阅图7(a)中“nap+AtNAP”组(panel))。表征叶子的衰老表型,所述叶子或者分离或者在植物中。从表型上(图7(b))和就Fv/Fm比率而言(图7(c)),从AtNAP互补株系分离的叶子以与来自野生型的叶子衰老相同的方式开始衰老。在植物中互补植物的叶子也以与野生型叶子相同的方式开始衰老(图7(d))。这些数据证实在atnap无效突变体中AtNAP表达的丧失是唯一导致延迟衰老表型的原因。 
实施例17-诱导过表达AtNAP引起早衰 
通过进行功能获得分析进一步研究AtNAP在叶子衰老中的作用。考虑到该基因组成型表达可能有害的事实,使用化学品诱导的基因表达系统(Aoyama等,“A Glucocorticoid-Mediated TranscriptionalInduction System in Transgenic Plants,”Plant J 11:605-612(1997),参考文献在此以其整体引入作为参考)。首先,产生含有pTA7001或pGL1167构建体(图8(a))的转基因株系。pTA7001含有嵌合转录因子GVG,所述GVG由酵母菌转录因子GAL4的DNA结合结构域、单纯疱疹病毒转录调节蛋白VP16的反式激活结构域和糖皮质激素受体结构域组成(图8(a)),而pGL1167是构建体,其中AtNAP由包含六个串联的GAL4上游激活序列拷贝的启动子驱动(图8(a))。用地塞米松(DEX,合成的糖皮质激素)处理导致在F1植物中(pGL1167纯合植物×pTA7001纯合植物)叶子早衰变黄(图8(b))以及Fv/Fm比率显著降低(图8(c)),但是在对照中(野生型,只含有pGL1167或pTA7001的植物)没有这些变化。RNA印迹分析表明在F1植物中强烈诱导AtNAP表达但是在对照中不强烈诱导AtNAP表达(图8(d))。由于SAG12和SAG13都表达,叶子早衰变黄是衰老过程(图8(d))。SAG12和SAG13是叶子衰老特异性标志 基因。这些数据说明AtNAP足以促进叶子衰老。 
实施例18-稻和菜豆中的AtNAP同系物在开始衰老的叶子中特异性表达 
使用不同的基因组数据库例如GenBank(http://www.ncbi.nlm.nih.gov/BLAST/)、TIGR植物基因组数据库(http://www.tigr.org/plantProjects.shtml)和PopulusDB(http://www.populus.db.umu.se/))分析AtNAP的氨基酸序列,并从许多不同的植物物种鉴定具有高度序列相似性的基因(图9(a))。在这些基因中,来自双子叶植物菜豆(Phaseolus vulgaris)的NAC家族转录因子PvNAP(256个氨基酸;AAK84884)具有66%同一性,来自单子叶植物稻(Oryza sativa)的NAC家族转录因子OsNAP(392个氨基酸;NP_912423)具有70%同一性(图9(b))。猜测那些同系物是有功能的AtNAP同源物。为了验证此假说,首先检测PvNAP和OsNAP是否共有与AtNAP相同的叶子衰老特异性表达模式。在五个不同发育期(范围从嫩叶到完全变黄的叶子)的菜豆叶子(图9(c))用于PvNAP表达的RNA凝胶印迹分析。如图9(c)所示,只在开始衰老的叶子中检测到PvNAP转录本。在稻的叶子中OsNAP的表达也显示是衰老特异性的(图9(d))。 
实施例19-稻和菜豆中的AtNAP同系物可将拟南芥atnap无效突变体恢复成野生型 
为了进一步验证假说,即同系物是有功能的拟南芥AtNAP同源物,进行异源互补试验。2kb AtNAP启动子用于指导OsNAP或PvNAP编码区的表达。这些基因在各个互补株系的衰老叶子中表达(图7(a))。从表型上,在黑暗中孵育4天之后,从野生型植物分离的全部展开的非衰老叶子变衰老。相反,来自atnap无效突变体(株系1)的同龄叶子仍保持绿色(图7(b))以及光合作用活性(图7(c))。然而,用OsNAP或PvNAP互补的无效植物的叶子像野生型叶子一样衰老(图7(b))。当在完整植物中检测自然叶子衰老时得到相似的观察数据(图7(d))。与AtNAP相似,OsNAP和PvNAP可将拟南芥无效突变体恢复成野生型,表明OsNAP和PvNAP是有功能的AtNAP同源物。
实施例20-在叶子衰老期间大豆GmNAP和玉米ZmNAP的RT-PCR分析 
在大豆(Glycine max)(AAY46121)(GmNAP)和玉米(Zeamays)(AZM5_18141)(ZmNAP)中进行AtNAP同系物表达的RT-PCR分析。如图10(a)-(b)所示,GmNAP和ZmNAP分别在大豆和玉米叶子衰老期间上调。 
实施例21-使用RNA干扰抑制大豆(GmNAP)和玉米(ZmNAP)中的AtNAP同系物 
NAP基因是促进叶子衰老的重要调节子。RNA干扰(RNAi)方法用于沉默大豆和玉米中的该基因以致显著推迟叶子衰老。RNAi涉及使用可有效导致靶基因沉默的双链RNA(dsRNA),因此广泛应用于遗传学。dsRNA构建体包括小片段目的基因(即GmNAP或ZmNAP)的反向重复,因此转录的时候,RNA转录本相互配对在反向重复序列之间形成双链。dsRNA引发细胞装置来破坏任何与重复序列一致的mRNA序列。因此,制备分别抑制大豆和玉米中GmNAP和ZmNAP表达的RNAi构建体,其中预期抑制同系物导致显著推迟各个作物中的叶子衰老。 
对于GmNAP RNAi,使用引物G2132(5’-TCTAGAGGCAAAAGAGGA CTAC-3’;SEQ ID NO:40;下划线部分是改造的Xba I位点)和G2133(5’-GGATCCTGGTACTTCCCTGAATCT-3’;SEQ ID NO:41;下划线部分是改造的BamH I位点)对GmNAP cDNA3’末端的271-bp片段进行PCR扩增。将PCR产物克隆到pGEM-T(Promega,Madison,WI)中形成质粒pGL1818。pGL1818在BamH I消化和Klenow补齐之后用Xba I切割。将释放的GmNAP cDNA片段克隆到二元载体pGL1100的Xba I和Spe I(补齐)位点,形成pGL1820。pGL1100在35S启动子和RBS(Rubisco小亚单位基因)终止子之间包含690-bp拟南芥AtWRKY75内含子序列。通过Sac II和Xba I(补齐)从pGL1818释放GmNAP cDNA片段的另一个拷贝,将其克隆到pGL 1820的Sac II和Hind III(补齐)位点形成pGL1822,以致pGL1822包含两个在相反的方向、被690-bp内含子分开的271-bp GmNAP cDNA拷贝。用引物G205 (5’-GGAATTCGCCCGGGGATCTCCTTTG-3’;SEQ ID NO:45;下划线部分是改造的EcoR I位点)和G206(5’-TAGGCCTTGATGCATGTTGTCAATC AATTG-3’;SEQ ID NO:42;下划线部分是改造的Stu I位点)对pGL1822中的35S启动子-具内含子的RNAi-RBS终止子进行PCR扩增。用EcoR I和Stu I切割PCR产物,将其克隆到二元载体的EcoR I和Hind III(补齐)位点形成pGL1823(图11(a))。 
使用大豆子叶节农杆菌介导的转化系统(如网站(http://www.biotech.unl.edu/transgenic/protocols.html)所述),上述GmNAP RNAi沉默构建体用于转化大豆基因型Thorne(俄亥俄州立大学)。产生18个转基因株系。 
对于ZmNAP RNAi,使用引物G2136(5’- TCTAGACGGAGCTGTTCA AC-3’;SEQ ID NO:43;下划线部分是改造的Xba I位点)和G2137(5’-AAGCTTAGAGTGAAGCGGCAT-3’;SEQID NO:44;下划线部分是改造的Hind III位点)对ZmNAP cDNA3’末端的410-bp片段进行PCR扩增。将PCR产物克隆到pGEM-T中形成质粒pGL1817。质粒pGL1817在Hind III消化和Klenow补齐之后用XbaI切割。将释放的ZmNAP cDNA片段克隆到pGL1100的Xba I和Spe I(补齐)位点,形成pGL1819。通过Sac II和Xba I(补齐)从pGL1817释放ZmNAP cDNA片段的另一个拷贝,将其克隆到pGL1819的Sac II和Hind III(补齐)位点形成pGL1821,以致pGL1821包含两个在相反的方向、被690-bp拟南芥AtWRKY75内含子序列分开的410-bp ZmNAPcDNA拷贝(图11(b))。 
将上述ZmNAP RNAi沉默构建体转移到根癌农杆菌菌株ABI中,准备将其用于植物转化。 
实施例22-玉米和大豆中的AtNAP同系物可将拟南芥atnap无效突变体恢复成野生型 
使用如上述实施例19所述相似的策略,研究玉米和大豆NAPs(即ZmNAP和GmNAP)是否可分别互补拟南芥atnap无效突变体。2kb AtNAP启动子用于指导ZmNAP或GmNAP编码区的表达。这些基因在各个互补株系的衰老叶子中表达。在完整植物中检测自然叶 子衰老,其中从表型上野生型植物叶子变衰老(图12(a)-(b))。相反,atnap无效突变体的叶子仍保持绿色(图12(a)-(b))。然而,用ZmNAP或GmNAP互补的无效植物的叶子像野生型叶子一样衰老(图12(a)-(b))。因此,ZmNAP和GmNAP可将拟南芥无效突变体恢复成野生型。 
叶子衰老限制作物产量和生物量积累。在大豆中,在大豆种子发育期间,磷酸盐(Pi)营养物不足促进叶子衰老。当通过茎注入补充Pi显著推迟叶子衰老(8天)时,大豆籽粒产量增加差不多3倍(Grabau等,“P Nutrition During Seed Development:Leaf Senescence,PodRetention,and Seed Weight of Soybean,”Plant Physiol.82:1008-1012(1986),参考文献在此以其整体引入作为参考)。大田和温室试验也证明叶子衰老通过限制鼓粒期限制大豆产量(Hayati等,“Carbon andNitrogen Supply During Seed Filling and Leaf Senescence in Soybean,”Crop Sci.35:1063-1069(1995),参考文献在此以其整体引入作为参考)。 
在玉米和许多其他作物中也已观察到推迟叶子衰老对产量的作用。例如,回顾分析美国50年期间(1930-1980)的杂交玉米数据,显示迟发型叶子衰老有助于玉米产量的有效增加(Duvick,“GeneticContribution to Yield Gains of U.S.Hybrid Maize 1930-1980,”in Fehr编辑,Genetic Contributions to Yield Gains of Five Major Crop Plants,vol.7,Crop Science Society of America,Madison,WI,15-47页(1984),参考文献在此以其整体引入作为参考)。对Ontario,Canada将近30年的杂交玉米产量进行类似的分析也得出相同的结论(Tollenaar,“Physiological-Basis of Genetic-Improvement of Maize Hyb rids in Ontariofrom 1959 to 1988,”Crop Sci.31:119-124(1991),参考文献在此以其整体引入作为参考)。对叶子衰老和玉米产量之间的关系进行的进一步生理学和遗传学研究证实了延迟的叶子衰老和产量增加之间的相互关系(Valentinuz和Tollenaar,“Vertical Profile of Leaf Senescence During theGrain-Filling Period in Older and Newer Maize Hybrids,”Crop.Sci.44:827-835(2004);Ougham等,“The Genetic Control of SenescenceRevealed by Mapping Quantitative Trait Loci,”in Gan编辑,SenescenceProcesses in Plants,Blackwell Publishing,171-201页(2007),参考文献在此以其整体引入作为参考)。
实施例23-使用NAP基因控制作物中叶子衰老 
使用多种分子、遗传学和基因组策略分离在衰老期间差异表达的基因,由此鉴定了数千SAGs。从生物信息学方面已经预测大部分SAGs的结构和功能。仅仅少数基因表现出生物化学方面的酶活性,包括一些核糖核酸酶(Lers等,“Senescence-Induced RNases inTomato,”Plant Molecular Biology 36:439-449(1998),参考文献在此以其整体引入作为参考),一个磷脂酶D(Fan等,“Antisense Suppression ofPhospholipase D Alpha Retards Abscisic Acid-and Ethylene-PromotedSenescence of Postharvest Arabidopsis Leaves,”Plant Cell 9:2183-2196(1997),参考文献在此以其整体引入作为参考)和一个酰基水解酶(He等,“A Gene Encoding an Acyl Hydrolase is Involved in Leaf Senescencein Arabidopsis,”Plant Cell 14:805-815(2002),参考文献在此以其整体引入作为参考)。相似地,从遗传学方面研究了仅少数基因在叶子衰老中的作用。例如,在PLDα-反义拟南芥植物的分离叶子中,推迟ABA促进的衰老(Fan等,“Antisense Suppression of Phospholipase D AlphaRetards Abscisic Acid-and Ethylene-Promoted Senescence of PostharvestArabidopsis Leaves,”Plant Cell 9:2183-2196(1997),参考文献在此以其整体引入作为参考)。由于ore9突变植物表现增加的叶子寿命,因此表明拟南芥F-box基因ORE9也在叶子衰老中发挥作用(Woo等,“ORE9,An F-Box Protein That Regulates Leaf Senescence in Arabidopsis,”PlantCell 13:1779-1790(2001),参考文献在此以其整体引入作为参考)。先前显示SAG101(编码酰基水解酶的基因)在拟南芥叶子衰老中发挥重要的作用;在SAG101反义植物中叶子衰老被推迟4-5天(He等,“A GeneEncoding an Acyl Hydrolase is Involved in Leaf Senescence inArabidopsis,”Plant Cell 14:805-815(2002),参考文献在此以其整体引入作为参考)。在本申请中,显示atnap无效突变株系中的叶子衰老被推迟多达10天(图5(a)-(d)和图6(a)-(e))。野生型AtNAP修复无效表型,证实AtNAP缺乏是延迟无效突变植物中叶子衰老的原因。功能获得分析进一步证实AtNAP在控制叶子衰老中的作用。嫩叶早在开始诱导AtNAP过表达2天后开始变黄,并且在开始诱导4天后完全变衰老(图8(a)-(d)),表明AtNAP足以引起衰老。 
RNA凝胶印迹分析表明AtNAP在开始衰老的叶子细胞中表 达(图2(a)-(c))。目前在Genevestigator(Zimmermann等,“GENEVESTIGATOR.Arabidopsis Microarray Database and AnalysisToolbox,”Plant Physiol 136:2621-2632(2004),参考文献在此以其整体引入作为参考)得到的微阵列数据也表明尽管在幼苗和成体植物的其他部分检测到极低水平的AtNAP表达(图13(b)),但是AtNAP主要在衰老的莲座叶、茎叶、萼片和花瓣中表达(图13(a))。在细胞悬浮中(与叶子衰老相似的过程)程序性细胞死亡(PCD)的诱导剂可强烈诱导AtNAP表达。相反,其他促进衰老因子(如乙烯和ABA、渗透和盐胁迫)仅适度诱导AtNAP表达,而黑暗、干旱、氧化胁迫、茉莉酸和水杨酸对AtNAP表达水平没有显著的影响(图13(b))。缺乏外界应激源时,叶子衰老的起始取决于龄期和发育阶段(Hensel等,“Developmental andAge-Related Processes That Influence the Longevity and Senescence ofPhotosynthetic Tissues in Arabidoposis,”Plant Cell 5:553-564(1993);Nooden等,“Correlative Controls of Senescence and Plant Death inArabidopsis Thaliana(Brassicaceae),”Journal of Experimental Botany52:2151-2159(2001),参考文献在此以其整体引入作为参考)。本文公开的数据和微阵列数据表明AtNAP主要通过变老上调。 
尽管黑暗不容易诱导AtNAP(Buchanan-Wollaston等,“Comparative Transcriptome Analysis Reveals Significant Differences inGene Expression and Signalling Pathways Between Developmental andDark/Starvation-Induced Senescence in Arabidopsis,”The Plant Journal42:567-585(2005);Lin等,“Molecular Events in Senescing ArabidopsisLeaves,”Plant Journal 39:612-628(2004),参考文献在此以其整体引入作为参考),但是在atnap无效突变体中黑暗诱导的分离叶子衰老被推迟,表明AtNAP也许在黑暗诱导衰老的黑暗-应答信号途径下游发挥功能。在完整植物中的叶子自然衰老期间,AtNAP只在已衰老的叶子组织中表达(图2(a)-(c))。这些数据表明AtNAP可能在多种诱导衰老的途径下游、在调节叶子衰老的共同执行过程中发挥关键作用。即使AtNAP的表达不是应答诱导衰老的特定因子所必需的,但是有些因子需要AtNAP引发衰老综合征。作为转录因子,AtNAP通过从转录上活化/抑制参与执行衰老的基因来控制叶子衰老过程。 
相同家族的植物转录因子通常具有相似的功能。在一些发 育阶段或细胞过程,某些转录因子家族发挥主要作用(Liu等,“Transcription Factors and Their Genes in Higher Plants FunctionalDomains,Evolution and Regulation,”Eur J Biochem 262:247-257(1999);Riechmann等,“A Genomic Perspective on Plant Transcription Factors,”Curr Opin Plant Biol 3:423-434(2000),参考文献在此以其整体引入作为参考),如开花阶段的MADS box基因(Saedler等,“MADS-Box Genesare Involved in Floral Development and Evolution,”Acta Biochim Pol48:351-358(2001),参考文献在此以其整体引入作为参考)和防御反应中的WRKY基因(Ulker等,“WRKY Transcription Factors:From DNABinding Towards Biological Function,”Current Opinion in Plant Biology7:491-498(2004),参考文献在此以其整体引入作为参考)。其他NAC家族成员(20种以上)的衰老相关表达模式(Buchanan-Wollaston等,“Comparative Transcriptome Analysis Reveals Significant Differences inGene Expression and Signalling Pathways Between Developmental andDark/Starvation-Induced Senescence in Arabidopsis,”The Plant Journal42:567-585(2005);Guo等,“Transcriptome of Arabidopsis LeafSenescence,”Plant Cell and Environment 27:521-549(2004),参考文献在此以其整体引入作为参考)表明NAC家族基因在叶子衰老中的普遍作用。在NAC蛋白质中,转录自我调控(Xie等,“Arabidopsis NAC1Transduces Auxin Signal Downstream of TIR1 to Promote Lateral RootDevelopment,”Genes Dev 14:3024-3036(2000),参考文献在此以其整体引入作为参考)以及在NAC成员和同源二聚体(Ernst等,“Structure ofthe Conserved Domain of ANAC,a Member of the NAC Family ofTranscription Factors,”EMBO Rep 5:297-303(2004);Xie等,“Arabidopsis NAC1 Transduces Auxin Signal Downstream of TIR1 toPromote Lateral Root Development,”Genes Dev 14:3024-3036(2000),参考文献在此以其整体引入作为参考)以及异源二聚体(Hegedus等,“Molecular Characterization of Brassica Napus NAC DomainTranscriptional Activators Induced in Response to Biotic and AbioticStress,”Plant Mol Biol 53:383-397(2003),参考文献在此以其整体引入作为参考)之间相互调节(Vroemen等,“The CUP-SHAPEDCOTYLEDON3 Gene is Required for Boundary and Shoot Meristem Formation in Arabidopsis,”Plant Cell 15:1563-1577(2003),参考文献在此以其整体引入作为参考)的证据,表明包括许多NACs的可能的叶子衰老调节网络。 
在菜豆(双子叶植物)和稻(单子叶植物)中的AtNAP序列同系物也显示叶子衰老特异性表达模式(图9(c)-(d))。Pv NAP和Os NAP可将拟南芥atnap无效突变体恢复成野生型(图7(a)-(d))。除稻和菜豆之外,在多种其他植物物种(包括大豆(Glycine max)、茄属(Solanumdemissum)、蒺藜苜蓿(Medicago truncatula)、毛果杨(Populustrichocarpa)、小麦(Triticum aestivum)、玉米(Zea mays)、桃(Prunuspersica)、番茄(Lycopersicon esculentum)、马铃薯(Solanum tuberosum)和矮牵牛花(Petunia x hybrida))中存在序列同系物(图9a)。这些表明NAP是植物叶子衰老中的普遍调节子。有可能在其他植物物种中剔除NAP导致显著延迟的叶子衰老,这可成为在重要的农业作物中控制叶子衰老的新策略。 
先前鉴定AtNA尸为花同源异型基因APETALA3/PISTILLATAL的直接靶标(Sablowski等,“A Homolog ofNO APICAL MERISTEM is an Immediate Target of the Floral HomeoticGenes APETALA3/PISTILLATA,”Cell 92:93-103(1998),参考文献在此以其整体引入作为参考),所述APETALA3/PISTILLATAL对花瓣和雄蕊的形成是必需的。在AtNAP反义株系中,主花序和侧生花序的最初2-4朵花具有短雄蕊并且它们的花药通常不裂开。没有叶子衰老表型的描述(Sablowski等,“A Homolog of NO APICAL MERISTEM is anImmediate Target of the Floral Homeotic GenesAPETALA3/PISTILLATA,”Cell 92:93-103(1998),参考文献在此以其整体引入作为参考)。在本申请公开的实验中,在两个T-DNA突变株系中除了延迟的叶子衰老没有观察到发育异常。这种差异可归因于使用不同的拟南芥生态型:Landsberg erecta(Sablowski等,“A Homolog of NOAPICAL MERISTEM is an Immediate Target of the Floral HomeoticGenes APETALA3/PISTILLATA,”Cell 92:93-103(1998),参考文献在此以其整体引入作为参考)vs.本申请中的Columbia。在拟南芥生态型里叶子衰老是一个具有很多变化的特征,并且叶子衰老的分子调节随不同的遗传背景变化(Levey等,“Natural Variation in the Regulation of Leaf Senescence and Relation to Other Traits in Arabidopsis,”Plant Celland Environment 28:223-231(2005),参考文献在此以其整体引入作为参考)。这种差异还可因使用不同的研究方法而造成;T-DNA插入突变和反义方法显示光敏色素相互作用因子3完全不同的作用(Kim等,“Functional Characterization of Phytochrome Interacting Factor 3 inPhytochrome-Mediated Light Signal Transduction,”Plant Cell15:2399-2407(2003);Ni,等,“PIF3,a Phytochrome-Interacting FactorNecessary for Normal Photoinduced Signal Transduction,is a Novel BasicHelix-Loop-Helix Protein,”Cell 95:657-667(1998),参考文献在此以其整体引入作为参考)。 
为了证明,虽然详细地描述了本发明,但应当理解这样的细节是为了该宗旨,本领域技术人员可在本发明中进行变化而不背离由下述权利要求定义的本发明的实质和范围。
序列表
<110>Cornell Research Foundation,Inc.
<120>NAP基因在控制植物中叶子衰老中的应用
<130>19603/5301
<150>US 60/786,602
<151>2006-03-28
<160>45
<170>PatentIn version 3.3
<210>1
<211>256
<212>PRT
<213>菜豆(Phaseolus vulgaris)
<400>1
Met Asp Ala Thr Thr Pro Ser Glu Leu Pro Pro Gly Phe Arg Phe His
1                5                   10                    15
Pro Thr Asp Glu Glu Leu Ile Val Tyr Tyr Leu Cys Asn Gln Ala Thr
             20                   25                   30
Ser Lys Pro Cys Pro Ala Ser Ile Ile Pro Glu Val Asp Leu Tyr Lys
         35                   40                   45
Phe Asp Pro Trp Glu Leu Pro Asp Lys Thr Glu Phe Gly Glu Asn Glu
     50                   55                   60
Trp Tyr Phe Phe Ser Pro Arg Asp Arg Lys Tyr Pro Asn Gly Val Arg
65                   70                   75                   80
Pro Asn Arg Ala Thr Val Ser Gly Tyr Trp Lys Ala Thr Gly Thr Asp
                 85                   90                   95
Lys Ala Ile Tyr Ser Gly Ser Lys Leu Val Gly Val Lys Lys Ser Leu
            100                  105                  110
Val Phe Tyr Lys Gly Arg Pro Pro Lys Gly Asp Lys Thr Asp Trp Ile
        115                  120                  125
Met His Glu Tyr Arg Leu Ala Glu Ser Lys Gln Pro Val Asn Arg Lys
    130                  135                  140
Ile Gly Ser Met Arg Leu Asp Asp Trp Val Leu Cys Arg Ile Tyr Lys
145                  150                  155                  160
Lys Lys Asn Thr Gly Lys Thr Leu Glu His Lys Glu Thr His Pro Lys
                165                  170                  175
Val Gln Met Thr Asn Leu Ile Ala Ala Asn Asn Asp Glu Gln Lys Met
            180                  185                  190
Met Asn Leu Pro Arg Thr Trp Ser Leu Thr Tyr Leu Leu Asp Met Asn
        195                  200                  205
Tyr Leu Gly Pro Ile Leu Ser Asp Gly Ser Tyr Cys Ser Thr Phe Asp
    210                  215                  220
Phe Gln Ile Ser Asn Ala Asn Ile Gly Ile Asp Pro Phe Val Asn Ser
225                  230                  235                  240
Gln Pro Val Glu Met Ala Asn Asn Tyr Val Ser Asp Ser Gly Lys Tyr
                245                  250                  255
<210>2
<211>271
<212>PRT1
<213>疾藜苜蓿(Medicago truncatula)
<400>2
Met Glu Ser Ser Ala Ser Ser Glu Leu Pro Pro Gly Phe Arg Phe His
1                5                   10                   15
Pro Thr Asp Glu Glu Leu Ile Val His Tyr Leu Cys Asn Gln Ala Thr
             20                   25                   30
Ser Lys Pro Cys Pro Ala Ser Ile Ile Pro Glu Val Asp Ile Tyr Lys
         35                   40                   45
Phe Asp Pro Trp Glu Leu Pro Asp Lys Ser Glu Phe Glu Glu Asn Glu
     50                   55                   60
Trp Tyr Phe Phe Ser Pro Arg Glu Arg Lys Tyr Pro Asn Gly Val Arg
65                   70                   75                   80
Pro Asn Arg Ala Thr Leu Ser Gly Tyr Trp Lys Ala Thr Gly Thr Asp
                 85                   90                   95
Lys Ala Ile Lys Ser Gly Ser Lys Gln Ile Gly Val Lys Lys Ser Leu
            100                  105                  110
Val Phe Tyr Lys Gly Arg Pro Pro Lys Gly Val Lys Thr Asp Trp Ile
        115                  120                  125
Met His Glu Tyr Arg Leu Ile Gly Ser Gln Lys Gln Thr Ser Lys His
    130                  135                  140
Ile Gly Ser Met Arg Leu Asp Asp Trp Val Leu Cys Arg Ile Tyr Lys
145                  150                  155                  160
Lys Lys His Met Gly Lys Thr Leu Gln Gln Lys Glu Asp Tyr Ser Thr
                165                  170                  175
His Gln Phe Asn Asp Ser Ile Ile Thr Asn Asn Asp Asp Gly Glu Leu
            180                  185                  190
Glu Met Met Asn Leu Thr Arg Ser Cys Ser Leu Thr Tyr Leu Leu Asp
        195                  200                  205
Met Asn Tyr Phe Gly Pro Ile Leu Ser Asp Gly Ser Thr Leu Asp Phe
    210                  215                  220
Gln Ile Asn Asn Ser Asn Ile Gly Ile Asp Pro Tyr Val Lys Pro Gln
225                  230                  235                  240
Pro Val Glu Met Thr Asn His Tyr Glu Ala Asp Ser His Ser Ser Ile
                245                  250                  255
Thr Asn Gln Pro Ile Phe Val Lys Gln Met His Asn Tyr Leu Ala
            260                  265                  270
<210>3
<211>279
<212>PRT
<213>大豆(Glycine max)
<400>3
Met Glu Asn Arg Thr Ser Ser Val Leu Pro Pro Gly Phe Arg Phe His
1                5                   10                   15
Pro Thr Asp Glu Glu Leu Ile Val Tyr Tyr Leu Cys Asn Gln Ala Ser
             20                   25                   30
Ser Arg Pro Cys Pro Ala Ser Ile Ile Pro Glu Val Asp Ile Tyr Lys
         35                   40                   45
Phe Asp Pro Trp Glu Leu Pro Asp Lys Thr Asp Phe Gly Glu Lys Glu
     50                   55                   60
Trp Tyr Phe Phe Ser Pro Arg Glu Arg Lys Tyr Pro Asn Gly Val Arg
65                   70                   75                   80
Pro Asn Arg Ala Thr Val Ser Gly Tyr Trp Lys Ala Thr Gly Thr Asp
                 85                   90                   95
Lys Ala Ile Tyr Ser Gly Ser Lys His Val Gly Val Lys Lys Ala Leu
            100                  105                  110
Val Phe Tyr Lys Gly Lys Pro Pro Lys Gly Leu Lys Thr Asp Trp Ile
        115                  120                  125
Met His Glu Tyr Arg Leu Ile Gly Ser Arg Arg Gln Ala Asn Arg Gln
    130                  135                  140
Val Gly Ser Met Arg Leu Asp Asp Trp Val Leu Cys Arg Ile Tyr Lys
145                  150                  155                  160
Lys Lys Asn Ile Gly Lys Ser Met Glu Ala Lys Glu Asp Tyr Pro Ile
                165                  170                  175
Ala Gln Ile Asn Leu Thr Pro Ala Asn Asn Asn Ser Glu Gln Glu Leu
            180                  185                  190
Val Lys Phe Pro Arg Thr Ser Ser Leu Thr His Leu Leu Glu Met Asp
        195                  200                  205
Tyr Leu Gly Pro Ile Ser His Ile Leu Pro Asp Ala Ser Tyr Asn Ser
    210                  215                  220
Thr Phe Asp Phe Gln Ile Asn Thr Ala Asn Gly Gly Ile Asp Pro Phe
225                  230                  235                  240
Val Lys Pro Gln Leu Val Glu Ile Pro Tyr Ala Thr Asp Ser Gly Lys
                245                  250                  255
Tyr Gln Val Lys Gln Asn Ser Thr Ile Asn Pro Thr Ile Phe Val Asn
            260                  265                  270
Gln Val Tyr Asp Gln Arg Gly
        275
<210>4
<211>224
<212>PRT
<213>毛果杨(Populus trichocarpa)
<400>4
Thr Asn Ser Glu Gln Leu Pro Pro Gly Phe Arg Phe His Pro Thr Asp
1                5                   10                   15
Glu Glu Leu Ile Met Tyr Tyr Leu Arg Asn Gln Ala Thr Ser Arg Pro
             20                   25                   30
Cys Pro Ala Ser Ile Ile Pro Glu Val Asp Ile Tyr Lys Phe Asp Pro
         35                   40                   45
Trp Gln Leu Pro Glu Lys Ala Asp Phe Gly Glu Asn Glu Trp Tyr Phe
     50                   55                   60
Phe Thr Pro Leu Asp Arg Lys Tyr Pro Asn Gly Val Arg Pro Asn Arg
65                   70                   75                   80
Ala Thr Val Ser Gly Tyr Trp Lys Ala Thr Gly Thr Asp Lys Ala Ile
                 85                   90                   95
His Ser Gly Ser Lys Tyr Val Gly Val Lys Lys Ala Leu Val Phe Tyr
            100                  105                  110
Lys Gly Arg Pro Pro Lys Gly Thr Lys Thr Asp Trp Ile Met Gln Glu
        115                  120                  125
Tyr Arg Leu Asn Asp Ser Asn Lys Pro Ala Ser Lys Gln Asn Gly Ser
    130                  135                  140
Met Arg Leu Val Leu Cys Arg Ile Tyr Arg Lys Arg His Ala Ile Arg
145                  150                  155                  160
His Leu Glu Glu Lys Thr Glu Asn Pro Val His Ala His Leu Asp Val
                 165                  170                  175
Thr Pro Asp Asn Asp Ala Arg Glu Gln Gln Met Met Lys Ile Ser Gly
            180                  185                  190
Thr Cys Ser Leu Ser Arg Leu Leu Glu Met Glu Tyr Leu Gly Ser Ile
        195                  200                  205
Ser Gln Leu Leu Ser Gly Asp Thr Tyr Asn Ser Asp Phe Asp Ser Gln
    210                  215                  220
<210>5
<211>281
<212>PRT
<213>茄属(Solanum demissum)
<400>5
Met Val Gly Lys Ile Ser Ser Asp Leu Pro Pro Gly Phe Arg Phe His
1                5                   10                   15
Pro Thr Asp Glu Glu Leu Ile Met Tyr Tyr Leu Arg Tyr Gln Ala Thr
             20                   25                   30
Ser Arg Pro Cys Pro Val Ser Ile Ile Pro Glu Ile Asp Val Tyr Lys
         35                   40                   45
Phe Asp Pro Trp Glu Leu Pro Glu Lys Ala Glu Phe Gly Glu Asn Glu
     50                   55                   60
Trp Tyr Phe Phe Thr Pro Arg Asp Arg Lys Tyr Pro Asn Gly Val Arg
65                   70                   75                   80
Pro Asn Arg Ala Ala Val Ser Gly Tyr Trp Lys Ala Thr Gly Thr Asp
                 85                   90                   95
Lys Ala Ile Tyr Ser Ala Asn Lys Tyr Val Gly Ile Lys Lys Ala Leu
            100                  105                  110
Val Phe Tyr Lys Gly Lys Pro Pro Lys Gly Val Lys Thr Asp Trp Ile
        115                  120                  125
Met His Glu Tyr Arg Leu Ser Asp Ser Lys Ser Gln Thr Tyr Ser Lys
    130                  135                  140
Gln Ser Gly Ser Met Arg Leu Asp Asp Trp Val Leu Cys Arg Ile Tyr
145                  150                  155                  160
Lys Lys Lys Asn Leu Gly Lys Thr Ile Glu Met Met Lys Val Glu Glu
                165                  170                  175
Glu Glu Leu Glu Ala Gln Asn Val Ser Ile Asn Asn Ala Ile Glu Val
            180                  185                  190
Gly Gly Pro Gln Thr Met Lys Leu Pro Arg Ile Cys Ser Leu Ser His
        195                  200                  205
Leu Leu Glu Leu Asp Tyr Phe Gly Ser Ile Pro Gln Leu Leu Ser Asp
    210                  215                  220
Asn Leu Leu Tyr Asp Asp Gln Ser Tyr Thr Met Asn Asn Val Ser Asn
225                  230                  235                  240
Thr Ser Asn Val Asp Gln Val Ser Ser Gln Gln Gln Asn Thr Asn Asn
                245                  250                  255
Ile Thr Ser Asn Asn Cys Asn Ile Phe Phe Asn Tyr Gln Gln Pro Leu
            260                  265                  270
Phe Val Asn Pro Thr Phe Gln Ser Gln
        275                  280
<210>6
<211>268
<212>PRT
<213>拟南芥(Arabidopsis thaliana)
<400>6
Met Glu Val Thr Ser Gln Ser Thr Leu Pro Pro Gly Phe Arg Phe His
1                5                   10                   15
Pro Thr Asp Glu Glu Leu Ile Val Tyr Tyr Leu Arg Asn Gln Thr Met
             20                   25                   30
Ser Lys Pro Cys Pro Val Ser Ile Ile Pro Glu Val Asp Ile Tyr Lys
         35                   40                   45
Phe Asp Pro Trp Gln Leu Pro Glu Lys Thr Glu Phe Gly Glu Asn Glu
     50                   55                   60
Trp Tyr Phe Phe Ser Pro Arg Glu Arg Lys Tyr Pro Asn Gly Val Arg
65                   70                   75                   80
Pro Asn Arg Ala Ala Val Ser Gly Tyr Trp Lys Ala Thr Gly Thr Asp
                 85                   90                   95
Lys Ala Ile His Ser Gly Ser Ser Asn Val Gly Val Lys Lys Ala Leu
            100                  105                  110
Val Phe Tyr Lys Gly Arg Pro Pro Lys Gly Ile Lys Thr Asp Trp Ile
        115                  120                  125
Met His Glu Tyr Arg Leu His Asp Ser Arg Lys Ala Ser Thr Lys Arg
    130                  135                  140
Asn Gly Ser Met Arg Leu Asp Glu Trp Val Leu Cys Arg Ile Tyr Lys
145                  150                  155                  160
Lys Arg Gly Ala Ser Lys Leu Leu Asn Glu Gln Glu Gly Phe Met Asp
                165                  170                  175
Glu Val Leu Met Glu Asp Glu Thr Lys Val Val Val Asn Glu Ala Glu
            180                  185                  190
Arg Arg Thr Glu Glu Glu Ile Met Met Met Thr Ser Met Lys Leu Pro
        195                  200                  205
Arg Thr Cys Ser Leu Ala His Leu Leu Glu Met Asp Tyr Met Gly Pro
    210                  215                  220
Val Ser His Ile Asp Asn Phe Ser Gln Phe Asp His Leu His Gln Pro
225                  230                  235                  240
Asp Ser Glu Ser Ser Trp Phe Gly Asp Leu Gln Phe Asn Gln Asp Glu
                245                  250                  255
Ile Leu Asn His His Arg Gln Ala Met Phe Lys Phe
            260                  265
<210>7
<211>354
<212>PRT
<213>小麦(Triticum aestivum)
<400>7
Met Pro Met Gly Ser Ser Ala Ala Met Pro Ala Leu Pro Pro Gly Phe
1                5                   10                   15
Arg Phe His Pro Thr Asp Glu Glu Leu Ile Val His Tyr Leu Arg Arg
             20                   25                   30
Gln Ala Ala Ser Met Pro Ser Pro Val Pro Ile Ile Ala Glu Val Asn
         35                   40                   45
Ile Tyr Lys Cys Asn Pro Trp Asp Leu Pro Gly Lys Ala Leu Phe Gly
     50                   55                   60
Glu Asn Glu Trp Tyr Phe Phe Ser Pro Arg Asp Arg Lys Tyr Pro Asn
65                   70                   75                   80
Gly Ala Arg Pro Asn Arg Ala Ala Gly Ser Gly Tyr Trp Lys Ala Thr
                 85                   90                   95
Gly Thr Asp Lys Ala Ile Leu Ser Thr Pro Ala Asn Glu Ser Ile Gly
            100                  105                  110
Val Lys Lys Ala Leu Val Phe Tyr Arg Gly Lys Pro Pro Lys Gly Val
        115                  120                  125
Lys Thr Asp Trp Ile Met His Glu Tyr Arg Leu Thr Ala Ala Asp Asn
    130                  135                  140
Arg Thr Thr Lys Arg Arg Gly Ser Ser Met Arg Leu Asp Asp Trp Val
145                  150                  155                  160
Leu Cys Arg Ile His Lys Lys Cys Gly Asn Leu Pro Asn Phe Ser Ser
                165                  170                  175
Ser Asp Gln Glu Gln Glu His Glu Gln Glu Ser Ser Thr Val Glu Asp
            180                  185                  190
Ser Gln Asn Asn His Thr Val Ser Ser Pro Lys Ser Glu Ala Phe Asp
        195                  200                  205
Gly Asp Gly Asp Asp His Leu Gln Leu Gln Gln Phe Arg Pro Met Ala
    210                  215                  220
Ile Ala Lys Ser Cys Ser Leu Thr Asp Leu Leu Asn Thr Val Asp Tyr
225                  230                  235                  240
Ala Ala Leu Ser His Leu Leu Leu Asp Gly Ala Gly Ala Ser Ser Ser
                245                  250                  255
Asp Ala Gly Ala Asp Tyr Gln Leu Pro Pro Glu Asn Pro Leu Ile Tyr
            2602                  65                  270
Ser Gln Pro Pro Trp Gln Gln Thr Leu His Tyr Asn Asn Asn Asn Gly
        275                  280                  285
Tyr Val Asn Asn Glu Thr Ile Asp Val Pro Gln Leu Pro Glu Ala Arg
    290                  295                  300
Val Asp Asp Tyr Gly Met Asn Gly Asp Lys Tyr Asn Gly Met Lys Arg
305                  310                  315                  320
Lys Arg Ser Ser Gly Ser Leu Tyr Cys Ser Gln Leu Gln Leu Pro Ala
                325                  330                  335
Asp Gln Tyr Ser Gly Met Leu Ile His Pro Phe Leu Ser Gln Gln Leu
            340                  345                  350
His Met
<210>8
<211>392
<212>PRT
<213>稻(Oryza sativa)
<400>8
Met Val Leu Ser Asn Pro Ala Met Leu Pro Pro Gly Phe Arg Phe His
1                5                   10                   15
Pro Thr Asp Glu Glu Leu Ile Val His Tyr Leu Arg Asn Arg Ala Ala
            20                   25                   30
Ser Ser Pro Cys Pro Val Ser  Ile Ile Ala Asp Val AspIle Tyr Lys
        35                   40                   45
Phe Asp Pro Trp Asp Leu Pro Ser Lys Glu Asn Tyr Gly Asp Arg Glu
    50                   55                   60
Trp Tyr Phe Phe Ser Pro Arg Asp Arg Lys Tyr Pro Asn Gly Ile Arg
65                   70                   75                   80
Pro Asn Arg Ala Ala Gly Ser Gly Tyr Trp Lys Ala Thr Gly Thr Asp
                 85                   90                   95
Lys Pro Ile His Ser Ser Gly Gly Ala Ala Thr Asn Glu Ser Val Gly
            100                  105                  110
Val Lys Lys Ala Leu Val Phe Tyr Lys Gly Arg Pro Pro Lys Gly Thr
        115                  120                  125
Lys Thr Asn Trp Ile Met His Glu Tyr Arg Leu Ala Ala Ala Asp Ala
    130                  135                  140
His Ala Ala Asn Thr Tyr Arg Pro Met Lys Phe Arg Asn Thr Ser Met
145                  150                  155                  160
Arg Leu Asp Asp Trp Val Leu Cys Arg Ile Tyr Lys Lys Ser Ser His
                165                  170                  175
Ala Ser Pro Leu Ala Val Pro Pro Leu Ser Asp His Glu Gln Asp Glu
            180                  185                  190
Pro Cys Ala Leu Glu Glu Asn Ala Pro Leu Tyr Ala Pro Ser Ser Ser
        195                  200                  205
Ser Ala Ala Ser Met Ile Leu Gln Gly Ala Ala Ala Gly Ala Phe Pro
    210                  215                  220
Ser Leu His Ala Ala Ala Ala Ala Thr Gln Arg Thr Ala Met Gln Lys
225                  230                  235                  240
Ile Pro Ser Ile Ser Asp Leu Leu Asn Glu Tyr Ser Leu Ser Gln Leu
                245                  250                  255
Phe Asp Asp Gly Gly Ala Ala Ala Ala Ala Pro Leu Gln Glu Met Ala
            260                  265                  270
Arg Gln Pro Asp His His His His Gln Gln Gln Gln His Ala Leu Phe
        275                  280                  285
Gly His Pro Val Met Asn His Phe Ile Ala Asn Asn Ser Met Val Gln
    290                  295                  300
Leu Ala His Leu Asp Pro Ser Ser Ser Ala Ala Ala Ser Thr Ser Ala
305                  310                  315                  320
Gly Ala Val Val Glu Pro Pro Ala Val Thr Gly Lys Arg Lys Arg Ser
                325                  330                  335
Ser Asp Gly Gly Glu Pro Thr Ile Gln Ala Leu Pro Pro Ala Ala Ala
            340                  345                  350
Ala Ala Lys Lys Pro Asn Gly Ser Cys Val Gly Ala Thr Phe Gln Ile
        355                  360                  365
Gly Ser Ala Leu Gln Gly Ser Ser Leu Gly Leu Ser His Gln Met Leu
    370                  375                  380
Leu His Ser Asn Met Gly Met Asn
385                  390
<210>9
<211>163
<212>PRT
<213>玉米(Zea mays)
<400>9
Met Val Met Ala Asn Pro Asp Met Leu Pro Pro Gly Phe Arg Phe His
1                5                    10                   15
Pro Thr Asp Glu Glu LeuIle Leu His Tyr Leu Arg Asn Arg Ala Ala
             20                   25                   30
Asn Ala Pro Cys Pro Val Ala Ile Ile Ala Asp Val Asp Ile Tyr Lys
         35                   40                   45
Phe Asp Pro Trp Asp Leu Pro Arg Ala Ala Tyr Gly Asp Lys Glu Trp
     50                   55                   60
Tyr Phe Phe Ser Pro Arg Asp Arg Lys Tyr Pro Asn Gly Ile Arg Pro
65                   70                   75                   80
Asn Arg Ala Ala Gly Ser Gly Tyr Trp Lys Ala Thr Gly Thr Asp Lys
                 85                   90                   95
Pro Ile His Ser Ser Thr Thr Ala Gly Glu Ser Val Gly Val Lys Lys
            100                  105                  110
Ala Leu Val Phe Tyr Glu Gly Arg Pro Pro Lys Gly Thr Lys Thr Asn
        115                  120                  125
Trp Ile Met His Glu Tyr Arg Leu Ala Ala Asp Ala Gln Ala Ala His
    130                  135                  140
Ala Tyr Arg Pro Met Lys Phe Arg Asn Ala Ser Met Arg Val Arg Arg
145                  150                  155                  160
Thr Leu Leu
<210>10
<211>363
<212>PRT
<213>桃(Prunus persica)
<400>10
Met Glu Ser Thr Asp Ser Ser Thr Ala Ser Gln Gln Gln Gln Gln Gln
1                5                   10                   15
Gln Pro Gln Pro Pro Pro Gln Pro Asn Leu Pro Pro Gly Phe Arg Phe
             20                   25                   30
His Pro Thr Asp Glu Glu Leu Val Val His Tyr Leu Lys Lys Lys Val
         35                   40                   45
Thr Ser Ala Pro Leu Pro Val Ala Ile Ile Ala Glu Ile Glu Leu Tyr
     50                   55                   60
Lys Phe Asp Pro Trp Glu Leu Pro Ala Lys Ala Thr Phe Gly Glu Gln
65                   70                   75                   80
Glu Trp Tyr Phe Phe Ser Pro Arg Asp Arg Lys Tyr Pro Asn Gly Ala
                 85                   90                   95
Arg Pro Asn Arg Ala Ala Thr Ser Gly Tyr Trp Lys Ala Thr Gly Thr
            100                  105                  110
Asp Lys Pro Val Leu Thr Ser Gly Gly Thr Gln Lys Val Gly Val Lys
        115                  120                  125
Lys Ala Leu Val Phe Tyr Gly Gly Lys Pro Pro Lys Gly Ile Lys Thr
    130                  135                  140
Asn Trp Ile Met His Glu Tyr Arg Leu Ala Asp Ser Lys Thr Ser Asn
145                  150                  155                  160
Lys Pro Pro Gly Cys Asp Leu Gly Asn Lys Lys Asn Ser Leu Arg Leu
                165                  170                  175
Asp Asp Trp Val Leu Cys Arg Ile Tyr Lys Lys Asn Asn Ser His Arg
            180                  185                  190
Pro Met Asp Leu Glu Arg Glu Asp Ser Met Glu Asp Met Met Gly Pro
        195                  200                  205
Leu Met Pro Pro Ser Ile Ser His Val Gly His His Gln Asn Met Asn
    210                  215                  220
Leu His Leu Pro Lys Ser Asn Thr Asn Tyr Gly Pro Pro Phe Ile Glu
225                  230                  235                  240
Asn Asp Gln Ile Ile Phe Asp Gly Ile Met Ser Ser Thr Asp Gly Ser
                245                  250                  255
Ala Ser Leu Ser Asn Gly Thr Ser Gln Leu Pro Leu Lys Arg Ser Ile
            260                  265                  270
Val Pro Ser Leu Tyr Arg Asn Asp Gln Glu Asp Asp Gln Thr Ala Gly
        275                  280                  285
Ala Ser Ser Ser Lys Arg Val Val Gln Leu His Gln Leu Asp Ser Gly
    290                  295                  300
Thr Asn Asn Ser Val Ala Ala Asn Asn Asn Ser Thr Ser Ile Ala Asn
305                  310                  315                  320
Leu Leu Ser Gln Leu Pro Gln Thr Pro Pro Leu His Gln His Ala Met
                325                  330                  335
Leu Gly Ser Leu Gly Asp Gly Leu Phe Arg Thr Pro Tyr Gln Leu Pro
            340                  345                  350
Gly Met Asn Trp Phe Ser Glu Ser Asn Leu Gly
        355                  360
<210>11
<211>355
<212>PRT
<213>番茄(Lycopersicon esculentum)
<400>11
Met Glu Ser Thr Asp Ser Ser Thr Gly Thr Arg His Gln Pro Gln Leu
1                5                   10                   15
Pro Pro Gly Phe Arg Phe His Pro Thr Asp Glu Glu Leu Ile Val His
             20                   25                   30
Tyr Leu Lys Lys Arg Val Ala Gly Ala Pro Ile Pro Val Asp Ile Ile
         35                   40                   45
Gly Glu Ile Asp Leu Tyr Lys Phe Asp Pro Trp Glu Leu Pro Ala Lys
     50                   55                   60
Ala Ile Phe Gly Glu Gln Glu Trp Phe Phe Phe Ser Pro Arg Asp Arg
65                   70                   75                   80
Lys Tyr Pro Asn Gly Ala Arg Pro Asn Arg Ala Ala Thr Ser Gly Tyr
                  85                   90                   95
Trp Lys Ala Thr Gly Thr Asp Lys Pro Val Phe Thr Ser Gly Gly Thr
            100                  105                  110
Gln Lys Val Gly Val Lys Lys Ala Leu Val Phe Tyr Gly Gly Lys Pro
        115                  120                  125
Pro Lys Gly Val Lys Thr Asn Trp Ile Met His Glu Tyr Arg Val Val
    130                  135                  140
Glu Asn Lys Thr Asn Asn Lys Pro Leu Gly Cys Asp Asn Ile Val Ala
145                  150                  155                  160
Asn Lys Lys Gly Ser Leu Arg Leu Asp Asp Trp Val Leu Cys Arg Ile
                165                  170                  175
Tyr Lys Lys Asn Asn Thr Gln Arg Ser Ile Asp Asp Leu His Asp Met
            180                  185                  190
Leu Gly Ser Ile Pro Gln Asn Val Pro Asn Ser Ile Leu Gln Gly Ile
        195                  200                  205
Lys Pro Ser Asn Tyr Gly Thr Ile Leu Leu Glu Asn Glu Ser Asn Met
    210                  215                  220
Tyr Asp Gly Ile Met Asn Asn Thr Asn Asp Ile Ile Asn Asn Asn Asn
225                  230                  235                  240
Arg Ser Ile Pro Gln Ile Ser Ser Lys Arg Thr Met His Gly Gly Leu
                245                  250                  255
Tyr Trp Asn Asn Asp Glu Ala Thr Thr Thr Thr Thr Thr Ile Asp Arg
            260                  265                  270
Asn His Ser Pro Asn Thr Lys Arg Phe Leu Val Glu Asn Asn Glu Asp
        275                  280                  285
Asp Gly Leu Asn Met Asn Asn Ile Ser Arg Ile Thr Asn His Glu Gln
    290                  295                  300
Ser Ser Ser Ile Ala Asn Phe Leu Ser Gln Phe Pro Gln Asn Pro Ser
305                  310                  315                  320
Ile Gln Gln Gln Gln Gln Gln Gln Glu Glu Val Leu Gly Ser Leu Asn
               325                  330                  335
Asp Gly Val Val Phe Arg Gln Pro Tyr Asn Gln Val Thr Gly Met Asn
            340                  345                  350
Trp Tyr Ser
        355
<210>12
<211>304
<212>PRT
<213>矮牵牛花(Petunia x hybrida)
<400>12
Met Thr Thr Ala Glu Leu Gln Leu Pro Pro Gly Phe Arg Phe His Pro
1                5                   10                   15
Thr Asp Glu Glu Leu Val Met His Tyr Leu Cys Arg Lys Cys Ala Ser
             20                   25                   30
Gln Pro Ile Ala Val Pro Ile Ile Ala Glu Ile Asp Leu Tyr Lys Tyr
         35                   40                   45
Asp Pro Trp Asp Leu Pro Asp Leu AlaLeu Tyr Gly Glu Lys Glu Trp
     50                   55                   60
Tyr Phe Phe Ser Pro Arg Asp Arg Lys Tyr Pro Asn Gly Ser Arg Pro
65                   70                   75                   80
Asn Arg Ala Ala Gly Thr Gly Tyr Trp Lys Ala Thr Gly Ala Asp Lys
                 85                   90                   95
Pro Ile Gly His Pro Lys Ala Val Gly Ile Lys Lys Ala Leu Val Phe
            100                  105                  110
Tyr Ala Gly Lys Ala Pro Lys Gly Glu Lys Thr Asn Trp Ile Met His
        115                  120                  125
Glu Tyr Arg Leu Ala Asp Val Asp Arg Ser Ala Arg Lys Asn Asn Asn
    130                  135                  140
Ser Leu Arg Leu Asp Asp Trp Val Leu Cys Arg Ile Tyr Asn Lys Lys
145                  150                  155                  160
Gly Ser Ile Glu Lys Asn Gln Leu Asn Asn Lys Lys Ile Met Asn Thr
                165                  170                  175
Ser Tyr Met Asp Met Thr Val Ser Ser Glu Glu Asp Arg Lys Pro Glu
            180                  185                  190
Ile Leu Pro Pro Leu Pro Pro Gln Pro Ala Pro Gln Gln Gln Gln Val
        195                  200                  205
Tyr Asn Asp Phe Phe Tyr Leu Asp Pro Ser Asp Ser Val Pro Lys Ile
    210                  215                  220
His Ser Asp Ser Ser Cys Ser Glu His Val Val Ser Pro Glu Phe Thr
225                  230                  235                  240
Cys Glu Arg Glu Val Gln Ser Glu Ala Lys Leu Ser Glu Trp Glu Lys
                245                  250                  255
Ala Ala Leu Asp Leu Pro Phe Asn Tyr Met Asp Ala Thr Thr Gly Ala
            260                  265                  270
Thr Thr Leu Asp Asn Ser Leu Leu Gly Ser Gln Phe Gln Ser Ser Tyr
        275                  280                  285
Gln Met Ser Pro Leu Gln Asp Met Phe Met His Leu His Lys Pro Phe
        290                  295                  300
<210>13
<211>349
<212>PRT
<213>马铃薯(Solanum tuberosum)
<400>13
Met Gly Val Gln Glu Lys Tyr Pro Leu Leu Gln Leu Ser Leu Pro Pro
1                5                   10                   15
Gly Phe Arg Phe Tyr Pro Thr Asp Glu Glu Leu Leu Val Gln Tyr Leu
             20                   25                   30
Cys Lys Lys Val Ala Gly His Asp Phe Pro Leu Gln Ile Ile Gly Glu
         35                   40                   45
Ile Asp Leu Tyr Lys Phe Asp Pro Trp Val Leu Pro Ser Lys Ala Thr
     50                   55                   60
Phe Gly Glu Lys Glu Trp Tyr Phe Phe Ser Pro Arg Asp Arg Lys Tyr
65                   70                   75                   80
Pro Asn Gly Ser Arg Pro Asn Arg Val Ala Gly Ser Gly Tyr Trp Lys
                 85                  90                   95
Ala Thr Gly Thr Asp Lys Ile Ile Thr Ser Gln Gly Arg Lys Val Gly
            100                  105                  110
Ile Lys Lys Ala Leu Val Phe Tyr Val Gly Lys Ala Pro Lys Gly Ser
        115                  120                  125
Lys Thr Asn Trp Ile Met His Glu Tyr Arg Leu Phe Glu Ser Ser Lys
    130                  135                  140
Lys Asn Asn Gly Ser Ser Lys Leu Asp Glu Trp Val Leu Cys Arg Ile
145                  150                  155                  160
Tyr Lys Lys Asn Ser Ser Gly Pro Lys Pro Leu Met Ser Gly Leu His
                165                  170                  175
Ser Ser Asn Glu Tyr Ser His Gly Ser Ser Thr Ser Ser Ser Ser Gln
            180                  185                  190
Phe Asp Asp Met Leu Glu Ser Leu Pro Glu Met Asp Asp Arg Phe Ser
        195                  200                  205
Asn Leu Pro Arg Leu Asn Ser Leu Lys Thr Glu Lys Leu Asn Leu Glu
    210                  215                  220
Arg Leu Asp Ser Ala Asn Phe Asp Trp Ala Ile Leu Ala Gly Leu Lys
225                  230                  235                  240
Pro Met Pro Glu Leu Arg Pro Ala Asn Gln Ala Pro Gly Val Gln Gly
                245                  250                  255
Gln Gly Gln Ala Gln Gly Asn Val Asn Asn His Asn Asn Asn Asn Met
            260                  265                  270
Asn Phe Leu Asn Asp Val Tyr Ala His Pro Thr Thr Asn Phe Arg Gly
        275                  280                  285
Asn Thr Lys Val Glu Ser Ile Asn Leu Asp Glu Glu Val Glu Ser Gly
    290                  295                  300
Asn Arg Asn Arg Arg Ile Asp Gln Ser Ser Tyr Phe Gln Gln Ser Leu
305                  310                  315                  320
Asn Gly Phe Ser Gln Ala Tyr Thr Asn Ser Val Asp Gln Phe Gly Ile
                325                  330                  335
Gln Cys Pro Asn Gln Thr Leu Asn Leu Gly Phe Arg Gln
            340                  345
<210>14
<211>22
<212>DNA
<213>人工的
<220>
<223>引物
<400>14
gcgtggaccg cttgctgcaa ct                                        22
<210>15
<211>23
<212>DNA
<213>人工的
<220>
<223>引物
<400>15
atcatggaag taacttccca atc                                       23
<210>16
<211>21
<212>DNA
<213>人工的
<220>
<223>引物
<400>16
ttcagttctt ctctctgctt c                                        21
<210>17
<211>20
<212>DNA
<213>人工的
<220>
<223>引物
<400>17
ggccattttc tacgctacct                                          20
<210>18
<211>25
<212>DNA
<213>人工的
<220>
<223>引物
<400>18
cttccatggt tttcagacaatttag                                     25
<210>19
<211>29
<212>DNA
<213>人工的
<220>
<223>引物
<400>19
tagtcgacag ttcctgttct attagattg                                        29
<210>20
<211>27
<212>DNA
<213>人工的
<220>
<223>引物
<400>20
tatcatgaac ttaaacatcg cttgacg                                          27
<210>21
<211>25
<212>DNA
<213>人工的
<220>
<223>引物
<400>21
cactagttcc tgttctatta gattg                                            25
<210>22
<211>25
<212>DNA
<213>人工的
<220>
<223>引物
<400>22
gctgcagtaa cttttcaagc acatc                                           25
<210>23
<211>24
<212>DNA
<213>人工的
<220>
<223>引物
<400>23
gcgtcatctc atcctaatcc tcat                                            24
<210>24
<211>23
<212>DNA
<213>Aritifical
<400>24
cgtgacttcg tcttatcatg ctg                                          23
<210>25
<211>31
<212>DNA
<213>人工的
<220>
<223>引物
<400>25
ttctgcagcg tcatctcatc ctaatcctca t                                 31
<210>26
<211>29
<212>DNA
<213>人工的
<220>
<223>引物
<400>26
gttacttcca tggttttcag acaatttag                                    29
<210>27
<211>22
<212>DNA
<213>人工的
<220>
<223>引物
<400>27
ttccatggtt ctgtcgaacc cg                                               22
<210>28
<211>26
<212>DNA
<213>人工的
<220>
<223>引物
<400>28
gatctagacg aagaacgagc tatcag                                           26
<210>29
<211>35
<212>DNA
<213>人工的
<220>
<223>引物
<400>29
aagtcgacga ttttcagaca atttagaaaa caatc                                 35
<210>30
<211>28
<212>DNA
<213>人工的
<220>
<223>引物
<400>30
aagtcgacat ggatgctacc acaccctc                                        28
<210>31
<211>26
<212>DNA
<213>人工的
<220>
<223>引物
<400>31
gatctagatg gacgaagctt atcgtc                                          26
<210>32
<211>18
<212>DNA
<213>人工的
<220>
<223>引物
<400>32
cagctgcgga tgttgttg                                                      18
<210>33
<211>19
<212>DNA
<213>人工的
<220>
<223>引物
<400>33
ccactttctc cccattttg                                                     19
<210>34
<211>18
<212>DNA
<213>人工的
<220>
<223>引物
<400>34
gcaaccaaag gagccatg                                                      18
<210>35
<211>19
<212>DNA
<213>人工的
<220>
<223>引物
<400>35
gtttggccaa ctagtctgc                                                    19
<210>36
<211>20
<212>DNA
<213>人工的
<220>
<223>引物
<400>36
agtaatggct tcctctatgc                                                   20
<210>37
<211>20
<212>DNA
<213>人工的
<220>
<223>引物
<400>37
ggcttgtagg caatgaaact                                                   20
<210>38
<211>18
<212>DNA
<213>人工的
<220>
<223>引物
<400>38
atcccttcca tttccgac                                                    18
<210>39
<211>18
<212>DNA
<213>人工的
<220>
<223>引物
<400>39
ctgggtcttg tgcagaat                                                    18
<210>40
<211>22
<212>DNA
<213>人工的
<220>
<223>引物
<400>40
tctagaggca aaagaggact ac                                              22
<210>41
<211>24
<212>DNA
<213>人工的
<220>
<223>引物
<400>41
ggatcctggt acttccctga atct                                            24
<210>42
<211>30
<212>DNA
<213>人工的
<220>
<223>引物
<400>42
taggccttga tgcatgttgt caatcaattg                                      30
<210>43
<211>20
<212>DNA
<213>人工的
<220>
<223>引物
<400>43
tctagacgga gctgttcaac                                                 20
<210>44
<211>21
<212>DNA
<213>人工的
<220>
<223>引物
<400>44
aagcttagag tgaagcggca t                                               21
<210>45
<211>25
<212>DNA
<213>人工的
<220>
<223>引物
<400>45
ggaattcgcc cggggatctc ctttg                                           25

Claims (60)

1.推迟植物中叶子衰老的方法,所述方法包括:
提供用核酸构建体转化的转基因植物或植物种子,所述核酸构建体有效沉默能够导致植物中叶子衰老的NAP蛋白质的表达,其中所述NAP蛋白质的序列如选自SEQ ID NO:1,SEQ ID NO:3,SEQ ID NO:6,SEQ ID NO:8和SEQ ID NO:9的氨基酸序列所示;并且
在有效推迟转基因植物中或从转基因植物种子长出的植物中叶子衰老的条件下,种植转基因植物或从转基因植物种子中长出的植物。
2.根据权利要求1的方法,其中提供转基因植物。
3.根据权利要求1的方法,其中提供转基因植物种子。
4.根据权利要求1的方法,其中所述提供包括:
提供核酸构建体,所述核酸构建体包含:
设定为沉默NAP蛋白质表达的核酸分子;
5’DNA启动子序列;和
3’终止子序列,其中核酸分子、启动子和终止子可操纵地连接以允许核酸分子的表达;以及
用核酸构建体转化植物细胞。
5.根据权利要求4的方法,其中核酸分子包含显性负突变并编码非功能性NAP蛋白质,导致抑制或干扰编码NAP蛋白质的内源性mRNA。
6.根据权利要求4的方法,其中核酸分子定位于核酸构建体中以导致抑制或干扰编码NAP蛋白质的内源性mRNA。
7.根据权利要求4的方法,其中核酸分子编码NAP蛋白质并在有义方向上。
8.根据权利要求4的方法,其中核酸分子是编码NAP蛋白质核酸分子的反义形式。
9.根据权利要求4的方法,其中用第一个和第二个核酸构建体转化植物,第一个核酸构建体编码有义方向上的NAP蛋白质并且第二个核酸构建体编码反义形式的NAP蛋白质。
10.根据权利要求4的方法,其中核酸分子包括编码NAP蛋白质的第一个片断、编码NAP蛋白质核酸分子的反义形式的第二个片断以及连接第一个和第二个片断的第三个片断。
11.根据权利要求4的方法,其中植物细胞来自于作物植物。
12.根据权利要求11的方法,其中作物植物选自稻、小麦、大麦、黑麦、棉花、向日葵、花生、玉米、马铃薯、甘薯、菜豆、豌豆、菊苣、生菜、苣荬菜、卷心菜、白菜、抱子甘蓝、甜菜、欧洲防风草、芜青、花椰菜、西兰花、小萝卜、菠菜、洋葱、大蒜、茄子、胡椒、芹菜、胡萝卜、南瓜、西葫芦、黄瓜、苹果、梨、甜瓜、柑橘、桃、草莓、葡萄、覆盆子、菠萝、大豆、苜蓿属、烟草、番茄、高粱和甘蔗。
13.根据权利要求4的方法,其中植物细胞来自于观赏植物。
14.根据权利要求13的方法,其中观赏植物选自拟南芥、非洲堇、杨木、矮牵牛花、天竺葵、一品红、菊花、康乃馨、百日草、草坪草、百合和茄属。
15.根据权利要求4的方法,其中所述方法还包括:
从转化的植物细胞中繁殖植物。
16.根据权利要求4的方法,其中所述转化是通过选自下列的方法进行的:农杆菌介导的转化、真空渗入、基因枪基因转化、电穿孔、微注射、化学品介导的转化和激光束转化。
17.根据权利要求1的方法,其中在收获前的植物中推迟叶子衰老。
18.根据权利要求1的方法,其中在收获后的植物中推迟叶子衰老。
19.推迟植物中叶子衰老的方法,所述方法包括:
用编码能够引起叶子衰老的NAP蛋白质、或NAP蛋白质或其一部分的反义形式的核酸分子转化植物细胞,其中所述核酸分子与启动子可操纵地连接以获得转化的植物细胞,其中核酸分子在植物细胞中的表达通过转录后基因沉默方式导致延迟的叶子衰老,并且其中所述NAP蛋白质序列如选自SEQ ID NO:1,SEQ ID NO:3,SEQ ID NO:6,SEQ ID NO:8和SEQ ID NO:9的氨基酸序列所示;和
在有效推迟植物中叶子衰老的条件下,从转化的植物细胞中再生植物。
20.根据权利要求19的方法,其中转录后基因沉默方式是RNA干扰。
21.产生与非突变植物的NAP蛋白质水平相比具有降低的NAP蛋白质水平的突变植物的方法,其中突变植物相对于非突变植物表现出延迟的叶子衰老表型,所述方法包括:
提供至少一个含有编码功能性NAP蛋白质的基因的非突变植物细胞,其中所述NAP蛋白质序列如选自SEQ ID NO:1,SEQ ID NO:3,SEQ ID NO:6,SEQ ID NO:8和SEQ ID NO:9的氨基酸序列所示;
处理所述至少一个非突变植物细胞以使所述基因失活,由此产生至少一个含有失活NAP基因的突变植物细胞;和
所述至少一个突变植物细胞繁殖成突变植物,其中所述突变植物与非突变植物的NAP蛋白质水平相比具有降低的NAP蛋白质水平,并且相对于非突变植物表现出延迟的叶子衰老表型。
22.根据权利要求21的方法,其中所述处理包括用化学诱变剂处理至少一个非突变植物细胞以产生至少一个含有失活NAP基因的突变植物细胞。
23.根据权利要求22的方法,其中化学诱变剂是甲磺酸乙酯。
24.根据权利要求21的方法,其中所述处理包括用辐射源处理至少一个非突变植物细胞以产生至少一个含有失活NAP基因的突变植物细胞。
25.根据权利要求24的方法,其中辐射源有效产生紫外线、伽玛射线或快中子。
26.根据权利要求21的方法,其中所述处理包括,将起失活作用的核酸分子插入编码功能性NAP蛋白质的基因或其启动子中以使基因失活。
27.根据权利要求26的方法,其中所述起失活作用的核酸分子是转座因子。
28.根据权利要求27的方法,其中转座因子选自激活因子(Ac)转座子、解离因子(Ds)转座子和Mutator(Mu)转座子。
29.根据权利要求21的方法,其中所述处理包括对至少一个非突变植物细胞进行农杆菌转化以将农杆菌T-DNA序列插入基因由此使基因失活。
30.根据权利要求29的方法,其中所述处理包括对至少一个非突变植物细胞进行NAP基因或其启动子的定点诱变以产生至少一个含有失活NAP基因的突变植物细胞。
31.根据权利要求29的方法,其中所述处理包括通过NAP基因或其启动子的同源重组引起突变。
32.根据权利要求29的方法,其中所述处理包括靶向性删除部分NAP基因序列或其启动子。
33.根据权利要求29的方法,其中所述处理包括在NAP基因或其启动子中靶向性插入核酸序列。
34.根据权利要求21的方法,其中非突变植物是作物植物。
35.根据权利要求34的方法,其中作物植物选自稻、小麦、大麦、黑麦、棉花、向日葵、花生、玉米、马铃薯、甘薯、菜豆、豌豆、菊苣、生菜、苣荬菜、卷心菜、白菜、抱子甘蓝、甜菜、欧洲防风草、芜青、花椰菜、西兰花、小萝卜、菠菜、洋葱、大蒜、茄子、胡椒、芹菜、胡萝卜、南瓜、西葫芦、黄瓜、苹果、梨、甜瓜、柑橘、桃、草莓、葡萄、覆盆子、菠萝、大豆、苜蓿属、烟草、番茄、高粱和甘蔗。
36.根据权利要求21的方法,其中非突变植物是观赏植物。
37.根据权利要求36的方法,其中观赏植物选自拟南芥、非洲堇、杨木、矮牵牛花、天竺葵、一品红、菊花、康乃馨、百日草、草坪草、百合和茄属。
38.导致植物中叶子早衰或促进叶子衰老的方法,所述方法包括:
用可操纵地连接启动子的、编码能够引起植物中叶子衰老的NAP蛋白质的核酸分子转化植物细胞以获得转化的植物细胞,其中所述NAP蛋白质序列如选自SEQ ID NO:1,SEQ ID NO:3,SEQ ID NO:6,SEQ ID NO:8和SEQ ID NO:9的氨基酸序列所示;
从转化的植物细胞中再生植物;和
在有效导致植物中早熟或叶子早衰的条件下诱导启动子。
39.根据权利要求38的方法,其中植物细胞来自作物植物。
40.根据权利要求39的方法,其中作物植物选自稻、小麦、大麦、黑麦、棉花、向日葵、花生、玉米、马铃薯、甘薯、菜豆、豌豆、菊苣、生菜、苣荬菜、卷心菜、白菜、抱子甘蓝、甜菜、欧洲防风草、芜青、花椰菜、西兰花、小萝卜、菠菜、洋葱、大蒜、茄子、胡椒、芹菜、胡萝卜、南瓜、西葫芦、黄瓜、苹果、梨、甜瓜、柑橘、桃、草莓、葡萄、覆盆子、菠萝、大豆、苜蓿属、烟草、番茄、高粱和甘蔗。
41.根据权利要求40的方法,其中作物植物是棉花。
42.根据权利要求38的方法,其中植物细胞来自观赏植物。
43.根据权利要求42的方法,其中观赏植物选自拟南芥、非洲堇、杨木、矮牵牛花、天竺葵、一品红、菊花、康乃馨、百日草、草坪草、百合和茄属。
44.根据权利要求38的方法,其中进行所述转化是通过选自下列的方法进行的:农杆菌介导的转化、真空渗入、基因枪基因转化、电穿孔、微注射、化学品介导的转化和激光束转化。
45.鉴定适于育种的表现延迟的叶子衰老和/或增加产量表型的候选植物的方法,所述方法包括:分析候选植物的失活NAP基因,其中激活NAP基因编码功能性NAP蛋白质,并且,其中所述NAP蛋白质序列如选自SEQ ID NO:1,SEQ ID NO:3,SEQ ID NO:6,SEQ ID NO:8和SEQ ID NO:9的氨基酸序列所示。
46.根据权利要求45的方法,其中所述方法鉴定适于育种的表现出延迟的叶子衰老表型的候选植物。
47.根据权利要求45的方法,其中所述方法鉴定适于育种的表现增加产量表型的候选植物。
48.根据权利要求45的方法,其中所述方法鉴定适于育种的表现延迟的叶子衰老和增加产量表型的候选植物。
49.根据权利要求45的方法,其中植物是作物植物。
50.根据权利要求49的方法,其中作物植物选自稻、小麦、大麦、黑麦、棉花、向日葵、花生、玉米、马铃薯、甘薯、菜豆、豌豆、菊苣、生菜、苣荬菜、卷心菜、白菜、抱子甘蓝、甜菜、欧洲防风草、芜青、花椰菜、西兰花、小萝卜、菠菜、洋葱、大蒜、茄子、胡椒、芹菜、胡萝卜、南瓜、西葫芦、黄瓜、苹果、梨、甜瓜、柑橘、桃、草莓、葡萄、覆盆子、菠萝、大豆、苜蓿属、烟草、番茄、高粱和甘蔗。
51.根据权利要求45的方法,其中植物是观赏植物。
52.根据权利要求51的方法,其中观赏植物选自拟南芥、非洲堇、杨木、矮牵牛花、天竺葵、一品红、菊花、康乃馨、百日草、草坪草、百合和茄属。
53.根据权利要求12的方法,其中所述作物植物是美洲南瓜。
54.根据权利要求12的方法,其中所述作物植物是苜蓿。
55.根据权利要求35的方法,其中所述作物植物是美洲南瓜。
56.根据权利要求35的方法,其中所述作物植物是苜蓿。
57.根据权利要求40的方法,其中所述作物植物是美洲南瓜。
58.根据权利要求40的方法,其中所述作物植物是苜蓿。
59.根据权利要求50的方法,其中所述作物植物是美洲南瓜。
60.根据权利要求50的方法,其中所述作物植物是苜蓿。
CN200780019749.9A 2006-03-28 2007-03-28 Nap基因在控制植物中叶子衰老中的应用 Expired - Fee Related CN101453885B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US78660206P 2006-03-28 2006-03-28
US60/786,602 2006-03-28
PCT/US2007/065321 WO2007112430A2 (en) 2006-03-28 2007-03-28 Use of nap gene to manipulate leaf senescence in plants

Publications (2)

Publication Number Publication Date
CN101453885A CN101453885A (zh) 2009-06-10
CN101453885B true CN101453885B (zh) 2014-03-05

Family

ID=38541885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780019749.9A Expired - Fee Related CN101453885B (zh) 2006-03-28 2007-03-28 Nap基因在控制植物中叶子衰老中的应用

Country Status (4)

Country Link
US (2) US8420890B2 (zh)
EP (1) EP2003953A4 (zh)
CN (1) CN101453885B (zh)
WO (1) WO2007112430A2 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143155A2 (en) * 2008-05-19 2009-11-26 Cornell University Delayed fruit deterioration allele in plants and methods of detection
US8907164B2 (en) 2010-04-19 2014-12-09 The Samuel Roberts Noble Foundations, Inc. Regulating nutrient allocation in plants
CN104120137A (zh) * 2014-07-28 2014-10-29 华中农业大学 调控水稻叶片衰老和抗旱能力的基因OsNAP及应用
CA3087064A1 (en) 2017-12-28 2019-07-04 Agribody Technologies, Inc. Plants with modified dhs genes
CN109584955B (zh) * 2018-11-27 2022-09-23 大连海事大学 一种基于多种植物基因组识别人类辐射响应生物标志物的方法
CN111154772B (zh) * 2020-02-09 2022-10-04 南京农业大学 梨糖转运基因PbSWEET4及其应用
CN112813078B (zh) * 2021-04-08 2022-08-26 昆明理工大学 一种转录因子LbNAP在延迟百合花期中的应用
KR20230023402A (ko) 2021-08-10 2023-02-17 주식회사 팜앤셀 식물의 다수확성, 노화 지연 및 내재성 강화 기능을 갖는 메디카고 트런카툴라 AT-hook 단백질과 그 유전자 및 이들의 용도
CN114480417A (zh) * 2022-01-21 2022-05-13 吉林农业大学 一种调控叶片衰老基因ZmSAG39、编码蛋白及其应用
CN114686514B (zh) * 2022-02-21 2023-11-03 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) NtNAC083基因在负调控烟草冷胁迫应答中的应用
CN114736279B (zh) * 2022-05-10 2022-10-18 黑龙江八一农垦大学 一种植物抗逆相关蛋白PvNAC52及其编码基因和应用

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177307A (en) 1987-05-26 1993-01-05 Calgene, Inc. Compositions and methods for modulation of endogenous cytokinin levels
WO1991001323A1 (en) 1989-07-19 1991-02-07 Calgene, Inc. Compositions and methods for modulation of endogenous cytokinin levels
US7390937B2 (en) 1996-02-14 2008-06-24 The Governors Of The University Of Alberta Plants with enhanced levels of nitrogen utilization proteins in their root epidermis and uses thereof
GB9720148D0 (en) 1997-09-22 1997-11-26 Innes John Centre Innov Ltd Gene silencing materials and methods
CA2304109A1 (en) 1997-09-25 1999-04-01 Boyce Thompson Institute For Plant Research, Inc. Banana proteins, dna, and dna regulatory elements associated with fruit development
US6635806B1 (en) 1998-05-14 2003-10-21 Dekalb Genetics Corporation Methods and compositions for expression of transgenes in plants
US6693185B2 (en) 1998-07-17 2004-02-17 Bayer Bioscience N.V. Methods and means to modulate programmed cell death in eukaryotic cells
US20030041356A1 (en) 2001-03-27 2003-02-27 Lynne Reuber Methods for modifying flowering phenotypes
US7511190B2 (en) 1999-11-17 2009-03-31 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants
US7238860B2 (en) * 2001-04-18 2007-07-03 Mendel Biotechnology, Inc. Yield-related polynucleotides and polypeptides in plants
US7345217B2 (en) 1998-09-22 2008-03-18 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants
US6844486B1 (en) 1999-02-11 2005-01-18 Temasek Life Sciences Laboratory Nac1—a plant gene encoding a transcription factor involved in cotyledon and lateral root development
EP1033405A3 (en) 1999-02-25 2001-08-01 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
EP1586645A3 (en) 1999-02-25 2006-02-22 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
CA2266295A1 (en) 1999-02-26 2000-09-19 Heberle-Bors, Erwin Method of modifying plant metabolism and development
US20030172404A1 (en) 1999-02-26 2003-09-11 John Peter Crook Lloyd Method of modifying plant characters by the targeted expression of a cell cycle control protein
AU2786000A (en) 1999-02-26 2000-09-21 Cropdesign N.V. Method of modifying plant morphology, biochemistry or physiology using cdc25 substrates
CA2263067A1 (en) 1999-02-26 2000-08-26 The Australian National University Method of modifying plant morphology, biochemistry and physiology
ATE446370T1 (de) 1999-04-12 2009-11-15 Monsanto Technology Llc Öl, das brassicastanol enthält
EP1059354A2 (en) 1999-06-10 2000-12-13 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
AU7116200A (en) 1999-09-09 2001-04-10 Pioneer Hi-Bred International, Inc. Maize polynucleotides and related polypeptides useful for enhancing disease resistance in crop plants
AU1569801A (en) 1999-10-12 2001-04-23 Robert Creelman Flowering time modification
WO2001030990A2 (en) 1999-10-13 2001-05-03 Avestha Gengraine Technologies Pvt. Ltd. Isolated nucleic acid sequence conferring salt tolerance in rice plant
EP1111063A1 (en) * 1999-12-24 2001-06-27 Coöperatieve Verkoop- en Productievereniging van Aardappelmeel en Derivaten 'AVEBE' B.V. Modified DHPS genes
EP1313867A2 (en) 2000-08-24 2003-05-28 The Scripps Research Institute Stress-regulated genes of plants, transgenic plants containing same, and methods of use
CA2422293A1 (en) 2000-09-15 2002-03-21 Syngenta Participations Ag Plant genes, the expression of which are altered by pathogen infection
US6787684B2 (en) 2000-10-16 2004-09-07 E. & J. Gallo Winery Lipoxygenase genes from Vitis vinifera
AU2002211615A1 (en) 2000-10-20 2002-05-06 University Of Kentucky Research Foundation Genetic insulator for preventing influence by another gene promoter
DE60018428D1 (de) 2000-11-09 2005-04-07 Plant Res Int Bv DNA Sequenzen, die Proteine kodieren, welche Resistenz gegen Phytophthora infestans in Pflanzen vermitteln
EP1402037A1 (en) 2001-06-22 2004-03-31 Syngenta Participations AG Plant genes involved in defense against pathogens
US7141721B2 (en) 2001-07-06 2006-11-28 E. I. Du Pont De Nemours And Company Enoyl-ACP reductases
AU2002313749A1 (en) 2001-08-09 2003-02-24 Mendel Biotechnology, Inc. Biochemistry-related polynucleotides and polypeptides in plants
AU2002323249A1 (en) 2001-08-16 2003-03-03 Boyce Thompson Institute For Plant Research, Inc. Novel salicylic acid-binding protein encoding nucleic acid, sabp2, and methods of use thereof
US7427590B2 (en) 2001-09-12 2008-09-23 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Neurothrophic components of the ADNF I complex
US20040016025A1 (en) 2001-09-26 2004-01-22 Paul Budworth Rice promoters for regulation of plant expression
AR037699A1 (es) 2001-12-04 2004-12-01 Monsanto Technology Llc Maiz transgenico con fenotipo mejorado
AU2003222566A1 (en) 2002-01-10 2003-07-24 Cornell Research Foundation, Inc. Genes for altering mitochondrial function and for hybrid seed production
US20040006787A1 (en) 2002-01-14 2004-01-08 Martin Gregory B. Plant defense-related genes regulated in response to plant-pathogen interactions and methods of use
US20040138176A1 (en) 2002-05-31 2004-07-15 Cjb Industries, Inc. Adjuvant for pesticides
US20030224939A1 (en) 2002-05-31 2003-12-04 David Miles Adjuvant for pesticides
US7476777B2 (en) 2002-09-17 2009-01-13 Ceres, Inc. Biological containment system
AU2003295333A1 (en) 2002-09-17 2004-04-08 Ceres, Inc. Biological containment system
ES2380017T3 (es) 2002-09-18 2012-05-07 Mendel Biotechnology, Inc. Polinucleótidos y polipéptidos en plantas
WO2004046336A2 (en) 2002-11-18 2004-06-03 Monsanto Technology, Llc Production of increased oil and protein in plants by the disruption of the phenylpropanoid pathway
US7507875B2 (en) 2003-06-06 2009-03-24 Arborgen, Llc Transcription factors
CN103333885A (zh) * 2003-06-23 2013-10-02 先锋高级育种国际公司 将单基因控制的保绿潜力工程化进植物中
US20050144669A1 (en) 2003-07-01 2005-06-30 Whitehead Institute For Biomedical Research MicroRNAs in plants
US20060041961A1 (en) 2004-03-25 2006-02-23 Abad Mark S Genes and uses for pant improvement
WO2006005023A2 (en) 2004-06-30 2006-01-12 Ceres Inc. Promoter, promoter control elements and combinations, and uses thereof
EP1774006A2 (en) 2004-07-14 2007-04-18 Mendel Biotechnology, Inc. Plant polynucleotides for improved yield and quality
EP1652930A1 (en) 2004-10-25 2006-05-03 De Ruiter Seeds R&D B.V. Botrytis-resistant tomato plants
US7820882B2 (en) * 2005-05-12 2010-10-26 The Regents Of The University Of California NAC from wheat for increasing grain protein content
WO2006133461A1 (en) 2005-06-08 2006-12-14 Ceres Inc. Identification of terpenoid-biosynthesis related regulatory protein-regulatory region associations

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
acute *
Jose&acute
Jose&amp *
M. Alonso等.Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana.《Science》.2003,第301卷653-657. *
Robert W. M. Sablowski等.A Homolog of NO APICAL MERISTEM Is an Immediate Target of the Floral Homeotic Genes APETALA3/PISTILLATA.《Cell》.1998,第92卷93-103. *
Y.GUO等.Transcriptome of Arabidopsis leaf senescence.《Plant, Cell and Environment》.2004,第27卷521-549. *
张治礼等.PSAG12序列克隆及PSAG12-ipt嵌合基因植物表达载体的构建.《热带作物》.2002,第23卷(第1期),62-66. *

Also Published As

Publication number Publication date
CN101453885A (zh) 2009-06-10
EP2003953A4 (en) 2009-11-11
WO2007112430A2 (en) 2007-10-04
WO2007112430A3 (en) 2008-07-24
US8420890B2 (en) 2013-04-16
US20130227740A1 (en) 2013-08-29
EP2003953A2 (en) 2008-12-24
US20090288218A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
CN101453885B (zh) Nap基因在控制植物中叶子衰老中的应用
Guo et al. AtNAP, a NAC family transcription factor, has an important role in leaf senescence
US5689042A (en) Transgenic plants with altered senescence characteristics
KR20080009243A (ko) 형질전환 구조체를 사용하는 하나 이상의 유전자의 유전자발현의 동조적 감소 및 증가
US10793868B2 (en) Plants with increased seed size
CN101952443A (zh) 涉及编码miR827的基因的耐旱植物、以及相关的构建体和方法
US20140245497A1 (en) Drought tolerant plants and related constructs and methods involving genes encoding ferredoxin family proteins
CN103130885B (zh) 来源于新疆野苹果的与植物生长相关的蛋白质及其编码基因与应用
WO2019129145A1 (en) Flowering time-regulating gene cmp1 and related constructs and applications thereof
Zhang et al. Maize WRKY28 interacts with the DELLA protein D8 to affect skotomorphogenesis and participates in the regulation of shade avoidance and plant architecture
CN102618516B (zh) 耐低磷环境基因及其应用
CN103288941A (zh) 一种调节叶绿体蛋白翻译效率及改善植物耐热性的相关蛋白及其应用
CN106854652B (zh) 一种杨树PtCYP85A3基因及应用
US20230279419A1 (en) Enhancement of productivity in c3 plants
CN114560919A (zh) 一种与植物耐旱相关的转录因子VcMYB108及其编码基因与应用
EP2128251A1 (en) Genes having activity of promoting endoreduplication
CN101280008B (zh) 一种与植物耐冷性相关的蛋白及其编码基因与应用
CN107739403B (zh) 一种与植物开花期相关的蛋白及其编码基因与应用
CN114591409B (zh) TaDTG6蛋白在提高植物抗旱性中的应用
Dan et al. MicroTom-A new model system for plant genomics
CN112048490B (zh) 棉花丝/苏氨酸蛋白磷酸酶GhTOPP6及其编码基因和应用
CN113773375B (zh) 大豆核因子蛋白GmNF307在植物耐盐调控中的应用
KR100833475B1 (ko) 어린 식물의 발생 또는 분화를 촉진하는 OsMSRPK1유전자
KR20230154995A (ko) 벼 수확량 관련 단백질과 생체재료 및 양자의 벼 수확량 향상에서의 응용
KR102082217B1 (ko) 배추의 옥신 억제 유전자 및 이의 용도

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140305

Termination date: 20180328

CF01 Termination of patent right due to non-payment of annual fee