CN101437751A - 液态烃的制备方法 - Google Patents
液态烃的制备方法 Download PDFInfo
- Publication number
- CN101437751A CN101437751A CNA200780014837XA CN200780014837A CN101437751A CN 101437751 A CN101437751 A CN 101437751A CN A200780014837X A CNA200780014837X A CN A200780014837XA CN 200780014837 A CN200780014837 A CN 200780014837A CN 101437751 A CN101437751 A CN 101437751A
- Authority
- CN
- China
- Prior art keywords
- methane
- oxygen agent
- catalyticcombustion
- contain
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/062—Hydrocarbon production, e.g. Fischer-Tropsch process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0822—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0827—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1604—Starting up the process
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1025—Natural gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/80—Additives
- C10G2300/805—Water
- C10G2300/807—Steam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
将甲烷转化为较高分子量烃的方法,包括(A)通过在升高温度下与蒸汽的催化反应将甲烷重整(1)以生成一氧化碳和氢气;(B)将该一氧化碳和氢气的混合物经过费托反应(2,3)以生成一种或多种较高分子量烃和水;和(C)从该水中萃取或回收一种或多种含氧剂。该含氧剂是以下中的任一种或两种:在该方法启动时催化燃烧以为步骤(A)提供热量,并在温度达到或超过甲烷的燃烧温度时用来自步骤(B)的尾气的甲烷进行至少部分取代;和/或用作来自步骤(B)的尾气的燃料增强剂,用于步骤(A)中的稳态热供应。
Description
本发明涉及用于将甲烷转化为液态烃的方法。
发明背景
WO03/048034描述了方法,其中在第一阶段,在所谓的重整阶段中,在第一催化反应器中将甲烷和蒸汽反应以生成一氧化碳和氢气(“合成气”),和在第二阶段中,在第二催化反应器中将所得到的合成气经过费托反应以生成较高分子量且在室温下通常为液态的烃。所得到的结果是将甲烷气体转化为液态烃,因此该转化有时也称作气体到液体(“GTL”)。
上述转化是具有吸引力的,因为其能够将油或气井中存在的天然气转化为更容易输送的有价值且有用的液态烃。
WO03/048034公开了该重整阶段是吸热反应,可能通过在钯或铂催化剂上燃烧甲烷用以提供热量。然而,在空气中直到其达到约400℃的温度之前,甲烷不会发生催化燃烧。因此,为了启动该重整阶段,在将甲烷或天然气引入重整反应器中之前,必须提供用于将燃烧催化剂的温度升高到约400℃或更高的温度的方法。在可获得的可能方案中,电加热在商业工厂规模上可能并不实用,其中火焰和待加热的气体之间存在直接接触的管道燃烧器的使用将会产生会在冷催化剂上冷凝并会潜在造成损害的水。本发明通过使用在转化的费托反应阶段中生成的氧化剂以令人惊奇和未曾预期的方式解决了该问题。此外,本发明在该燃烧过程的稳态操作中(即在重整阶段已经令人满意地开始之后)使用该氧化剂。
发明内容
在一个方面,本发明提供了用于将甲烷转化为较高分子量烃的方法,包括:
(A)通过在升高温度下与蒸汽的催化反应将甲烷重整,以生成一氧化碳和氢气;
(B)将该一氧化碳和氢气的混合物经过费托反应,以生成一种或多种较高分子量烃和水;
(C)从该水中萃取或回收一种或多种含氧剂(oxygenates);
(D)催化燃烧该含氧剂,由此为步骤(A)提供热量;和
(E)在该催化燃烧的温度达到或超过甲烷的催化燃烧引发温度时或在此之后,用甲烷取代步骤(D)中的含氧剂的至少一部分。
在该方法启动时(即在步骤(B)中的气态产物,所谓的“尾气”生成之前)步骤(E)中的甲烷通常在天然气中提供。然后,步骤(E)中的甲烷可能在来自步骤(B)的尾气中提供。
优选地,该来自步骤(D)的含氧剂也用作燃料增强剂,与步骤(B)中生成的尾气(较短链烃类气体和氢气)相结合构成用于步骤(A)的稳态热供应的燃料。
在第二方面,本发明提供了用于将甲烷转化为较高分子量烃的方法,包括:
(A)通过在升高温度下与蒸汽的催化反应将甲烷重整,以生成一氧化碳和氢气;
(B)将该一氧化碳和氢气的混合物经过费托反应,以生成一种或多种较高分子量烃和水;
(C)从该水中萃取或回收一种或多种含氧剂;和
(F)使用该来自步骤(C)的含氧剂作为燃料增强剂,与步骤(B)中生成的较短链烃类气体和氢气相结合作为用于步骤(A)的稳态热供应的燃料。
优选地,在第二方面,在步骤(F)中,该来自步骤(C)的含氧剂催化燃烧,来为步骤(A)提供热量(相当于第一方面的步骤(D));和(G)在该催化燃烧的温度达到或超过甲烷的催化燃烧引发温度时或在此之后,用甲烷取代其至少一部分(相当于第一方面的步骤(E))。这是为了能使该方法开始,称作“启动”。
应当指出,在两个方面,用于步骤(A)的热量供应不必须意味着所有用于步骤(A)的热量都是在步骤(D)或步骤(F)中提供的。因此,该热量中只有部分可能是这样提供的。
在本发明的两个方面,如果以及在适合时,优选步骤(D)或步骤(F)的催化燃烧是在空气中发生的,更优选地该空气是间接通过与步骤(B)中所用的冷却剂的热交换而进行预热的。该催化燃烧是非均相发生的。
“含氧剂”是指其分子结构除碳和氢之外还包含氧的有机化合物。作为本发明中含氧剂的实例,可以提及占主要且以痕量存在的甲醇和乙醇、每分子具有不超过九个碳原子的其他醇、醛和酮。WO03/048034提及来自该费托反应的水可以包含醇,该醇在所述情况下将进行重整以产生CO、CO2和H2。对其在该燃烧过程中的作用不做描述或暗示。
发明详述
在步骤(C)中,可以通过从来自步骤(B)的费托反应产物的含水相中将其蒸馏出并将其以液态形式泵送到蒸发器中来从水中去除该含氧剂,通常或主要为甲醇。然后例如通过使用来自步骤(B)的冷却剂的间接加温使其蒸发。可替代地,可以将该含氧剂直接以水蒸气形式从蒸馏过程中去除,并通过使用火焰加热的管路(即由外部热源加热的管路)维持在进入燃烧过程的该蒸汽相中。
在步骤(D)或(F)中,可以通过热交换器,使用来自步骤(B)的冷却剂,间接加热冷燃烧空气;在“启动”时,可以通过气体燃烧锅炉加热来自步骤(B)的冷却剂。该冷却剂通常由费托反应(步骤(B))的放热或启动锅炉加热到约200℃,使其具有将该燃烧空气加热到甲醇的燃烧起始或“点火”温度(~80℃)之上的能力。
当燃烧空气将步骤(D)中的燃烧催化剂加热到高于在甲醇的催化燃烧初始温度左右的80℃时,将作为含氧剂的甲醇蒸汽与预热的燃烧空气一起引入。由此引起甲醇的催化燃烧。这样,并且因为该燃烧空气经过间接加热,因此不会生成当从冷的条件下启动该燃烧反应器时会在催化剂上或用于步骤(D)的燃烧反应器的壁上冷凝的水。应当注意如果使用间接点火的热导管进行对燃烧空气的初始加热,将会在冷催化剂上冷凝水蒸气/碳酸,产生腐蚀状况。通过使用对燃烧空气的间接加热避免了该腐蚀环境。一旦燃烧催化剂的温度达到约80℃,将甲醇蒸汽和燃烧空气一起引入,甲醇的催化燃烧造成催化剂的温度升高。当其超过为甲烷燃烧的催化初始温度的400℃时,可以引入甲烷,甲醇使用减少,直到最后对甲烷的使用可以取代对甲醇的使用。
US-A-5595833描述了在启动固体含氧剂燃料电池的上下文中的塔10中,使用甲醇的放热部分氧化对预重整器进行加温,在预热器达到约500℃的温度时输送烃燃料,并终止甲烷输送。
显然,本发明的方法需要单独的含氧剂来源使其启动。然后,在步骤(B)中生成含氧剂,将一些储存用于未来的启动目的,来自单独来源的含氧剂变得并不是必需的。在生成足够的含氧剂并储存之后(包含例如50wt%或更多的甲醇),可以使用由费托反应(步骤(B))产生的其他含氧剂作为稳态催化燃烧的燃料补充,因此提高了总碳转化效率。满足了上述需要,由于在该方法中产生的含氧剂可以用作燃料,因此该方法具有对含氧剂储存和处理装置的需求有限的优点。这样,改进了操作环境,简化了该方法的启动。
在本发明的优选实施方式中,通常将来自步骤(B)的例如包括每分子具有1~8个碳原子的烃(例如甲烷)的“尾气”和热的预热燃烧空气一起输送到步骤(A)中所用的重整器燃烧器的燃烧侧。来自步骤(B)的蒸发的含氧剂用作尾气的补充燃料。因此,在催化燃烧中消耗了更少的尾气,其更多可以用作补充燃料,例如用于驱动燃气涡轮压缩机以实现适用于步骤(B)的压力。因此,为驱动燃气涡轮压缩机使用了较少的天然气,造成碳转化效率的提高。
通过燃烧含氧剂和如上所示,提高了总热效率,相当程度地降低了对含氧剂储存和处理装置的需求。
本发明的另一个优点是该含氧剂(甲醇等)是低硫燃料。因此在本发明的实施中燃烧催化剂的中毒风险很小。
发明的特别描述
现在仅以实施例的方式参照附图进一步且更特别地描述本发明,其中:
图1显示了本发明的转化方法的流程图。
本发明涉及用于将天然气(主要是甲烷)转化为较长链烃的化学方法。该方法的第一阶段包括蒸汽重整,即下述类型的反应:
H2O+CH4→CO+3H2
该反应是吸热的,可以通过在第一气体流动通道中的铑或铂/铑催化剂进行催化。发生该反应所需的热量是由易燃气体的燃烧提供的,其是放热的,可以由在相邻的第二气体流动通道中的钯催化剂进行催化。在两种情况中,该催化剂优选位于稳定氧化铝载体上,其在金属基体上形成了通常小于100微米厚的涂层。该燃烧反应可以发生在大气压下,但该重整反应可以发生在约2~5个大气压下。燃烧产生的热量可以通过分隔相邻通道的金属片传导。
然后使用蒸汽/甲烷重整生成的“合成的”气体混合物进行费托合成以生成较长链的烃,即通过以下反应:
nCO+2nH2→(CH2)n+nH2O
其是在升高温度(通常为190℃~280℃)和升高压力(通常为1.8MPa~4.0MPa(绝对值))下在催化剂存在下发生的放热反应。
参照图1,示出了以下装置组分:
用于执行本发明的步骤(A)的重整器1,其形式为由一叠限定良好热接触且包含适当催化剂(例如在波纹状金属箔片上)的吸热和放热反应流动通道的板构成的小型催化反应器。该重整器1具有包含用于蒸汽和甲烷生成一氧化碳和氢气的反应的重整催化剂的重整器通道(未示出)。该重整器1还具有负载用于燃烧反应生成用于重整反应(本发明的步骤(A))的热量的燃烧催化剂的相邻的燃烧通道(未示出)。该燃烧催化剂可以包括γ-氧化铝作为载体,涂覆有钯/铂混合物。
用于执行本发明的步骤(B)的两个费托反应器2和3。该费托反应器2和3各自包含用于费托反应的催化剂,并限定了用于冷却剂的通道。该催化剂可以为例如铁、钴或熔体磁铁矿。优选地,其包含比表面积为140~230m2g-1的γ-氧化铝的涂层,基于氧化铝的质量其具有约10~40质量%钴,且具有少于钴质量的10质量%的促进剂,例如铑、铂或钆,和碱度促进剂,例如氧化镧。
用于从费托反应器2和3中分离三种相(即含水相、油相中的烃、和气相中的尾气)和用于在大气压下稳定该烃的分离器腔4。
用于将含氧剂从由分离器腔4产生的含水相中分离出来的蒸馏塔 5。
图1中示出了其他装置组件,并在对图1中所示的装置流程图的操作的以下描述中对其进行了参考。
将蒸汽和天然气(主要是甲烷)的混合物如箭头a所示输送到重整器1的重整器通道中。一旦最初启动,将使用来自如下所述的费托反应器2的锅炉加热的冷却剂流体预加热到高于约100℃的温度的燃烧空气如箭头b所示输送到重整器1的燃烧通道中,最初没有燃料,使得该重整器1可以被预加热用以避免水燃烧产物在冷表面上冷凝并产生腐蚀状况且用以将该催化剂加热到甲醇催化燃烧的“点火”温度之上;然后,在实现充分预热之后,将其与含氧剂蒸汽(主要是甲醇)一起如用于含氧剂的箭头c所示输送到燃烧通道中。含氧剂中的甲醇燃烧产生用于蒸汽和甲烷在重整反应中反应以生成一氧化碳和氢气(“合成气”)的热量。当重整反应和费托反应已经开始时,将尾气作为燃烧燃料和空气和含氧剂一起如箭头d所示引入重整器1中,使得该重整反应可以继续。直至燃烧通道中的温度超过400℃之前,尾气的甲烷组分不能催化燃烧。
在约820℃的温度下,合成气如第一箭头e所示从重整器1的重整器通道中排出,废气如箭头f所示从重整器1的燃烧通道中排出。该合成气通过冷却器6和压缩机7,在该阶段其温度约为150℃且其压力约为20~40巴(表压)。然后该合成气通过预热器8以将其温度提高到约210℃,然后输送到第一费托反应器2中。合成气从重整器1到第一费托反应器2的流动由箭头e所示。
通过其进入和排出分别由箭头g和h所示的冷却剂冷却该第一费托反应器2。来自第一费托反应器2的加热的冷却剂通过热交换器13以预热如上所述如箭头b所示进入重整器1的空气。部分合成气在该第一费托反应器2中转化为主要为水和较长链烃的产物。排出的产物如箭头i所示通过冷凝器9。然后将冷凝的水和较长链烃如箭头j所示离开冷凝器9,未反应的合成气以约80℃的温度如第一箭头k所示离开冷凝器9。未反应的合成气通过预热器10以将其温度提高到约210℃,由此如进一步的箭头k所示进入第二费托反应器3。通过其进入和排出分别由箭头l和m所示的冷却剂冷却该第二费托反应器3。合成气在该第二费托反应器3中转化为主要为水和较长链烃的进一步的产物,其由此如箭头n所示排出,以与如箭头j所示从第一费托反应器2中排出的相应产物合并。
该合并产物如箭头o所示通过冷凝器11,在其中其以约80℃的温度排出,如进一步的箭头o所示进入分离器腔4,以形成三相:含水相、油相和气态相。
该油相包含潜在有用的较高分子量烃(例如包括石蜡族C9~C12烃),以箭头p所示从分离器腔4中去除。
该气态相,称作“尾气”,包含氢气和较低分子量烃(主要是甲烷),如进一步的箭头d所示离开该分离器腔4,以与含氧剂和空气相结合提供如上所述用于重整反应的燃烧燃料。
该含水相包含水和含氧剂(主要为甲醇),如箭头q所示从分离器腔4通过到蒸馏塔5中。该分离的含氧剂蒸发,从其中去除了含氧剂的水如箭头r所示离开该蒸馏塔5用于提升蒸汽用于重整阶段中。含氧剂如箭头c所示离开蒸馏塔5以与空气并随后和尾气构成如上所述用于重整反应的燃烧燃料。该含氧剂离开蒸馏塔5,通过冷凝器12;部分该含氧剂作为蒸馏塔5的回流如箭头s所示再循环。
为了开始操作,需要在由上述两阶段化学反应操作产生含氧剂之前将单独来源的含氧剂作为燃烧燃料输送到重整器1中,该单独来源的含氧剂变得可用于用作燃烧燃料。
在实际中,在由冷凝器12冷凝之后,用作燃料(箭头c)的含氧剂可以进一步冷却并储存在储存罐(未示出)中。这种储存罐应当储存足够用于启动程序的含氧剂。一旦该储存罐充满后,可以使用随后制备的含氧剂作为燃料或燃料补充,如箭头c所示。
使用甲醇的另一个优点是其能够作为含水溶液输送,以及当其蒸发并在正常操作过程中输送到重整器燃料注射头中时,该蒸汽可以帮助防止甲烷燃料组分在高于800℃的温度下可能发生的热裂化,并可能帮助抑制Boudouard一氧化碳岐化反应,即:
其在300~700℃的温度范围内通常是有利的。这些反应两者都会导致碳沉降,如果燃料气体在燃料注射头(其可能在重整反应器中)中受到高温就可能会发生。燃料注射头中添加蒸汽能够防止这些反应。
Claims (10)
1.用于将甲烷转化为较高分子量烃的方法,包括:
(A)通过在升高温度下与蒸汽的催化反应将甲烷重整,以生成一氧化碳和氢气;
(B)将该一氧化碳和氢气的混合物经过费托反应,以生成一种或多种较高分子量烃和水;
(C)从该水中萃取或回收一种或多种含氧剂;
(D)催化燃烧该含氧剂,由此为步骤(A)提供热量;和
(E)在该催化燃烧的温度达到或超过甲烷的催化燃烧引发温度时或在此之后,用甲烷取代步骤(D)中的含氧剂的至少一部分。
2.权利要求1的方法,其中在该方法启动时步骤(E)中的甲烷在天然气中提供,随后至少部分被用来自步骤(B)的气态产物中所提供的甲烷所取代。
3.权利要求1或权利要求2的方法,其中来自步骤(D)的含氧剂也用作燃料增强剂,与步骤(B)中生成的较短链烃类气体和氢气相结合作为用于步骤(A)的稳态热供应的燃料。
4.用于将甲烷转化为较高分子量烃的方法,包括:
(A)通过在升高温度下与蒸汽的催化反应将甲烷重整,以生成一氧化碳和氢气;
(B)将该一氧化碳和氢气的混合物经过费托反应,以生成一种或多种较高分子量烃和水;
(C)从该水中萃取或回收一种或多种含氧剂;和
(F)使用该来自步骤(C)的含氧剂作为燃料增强剂,与步骤(B)中生成的较短链烃类气体和氢气相结合作为用于步骤(A)的稳态热供应的燃料。
5.权利要求4的方法,在步骤(F)中,该来自步骤(C)的含氧剂:催化燃烧来为步骤(A)提供热量;和(G)在该催化燃烧的温度达到或超过甲烷的催化燃烧引发温度时或在此之后,用甲烷取代其至少一部分。
6.权利要求1~5中任一项的方法,其中步骤(D)或步骤(F)的催化燃烧是在间接通过与步骤(B)中所用的冷却剂的热交换而进行预热的空气中进行的。
其中在步骤(D)或步骤(F)中,在间接通过与步骤(B)中所用的冷却剂的热交换而空气预热中发生燃烧。
7.权利要求1~6中任一项的方法,其中步骤(A)中的甲烷在天然气中提供。
8.权利要求1~7中任一项的方法,其中使用步骤(B)中生成的至少部分水来产生用于步骤(A)的蒸汽。
9.权利要求1~8中任一项的方法,其中该含氧剂主要包含甲醇。
10.前述权利要求中任一项的方法,其中在步骤(D)或步骤(F)中,该含氧剂以含水溶液的形式提供以用于燃烧。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0608277.0 | 2006-04-27 | ||
GBGB0608277.0A GB0608277D0 (en) | 2006-04-27 | 2006-04-27 | Process for preparing liquid hydrocarbons |
PCT/GB2007/050199 WO2007125360A1 (en) | 2006-04-27 | 2007-04-17 | Process for preparing liquid hydrocarbons |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101437751A true CN101437751A (zh) | 2009-05-20 |
CN101437751B CN101437751B (zh) | 2011-06-08 |
Family
ID=36589867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200780014837XA Active CN101437751B (zh) | 2006-04-27 | 2007-04-17 | 液态烃的制备方法 |
Country Status (18)
Country | Link |
---|---|
US (1) | US7501456B2 (zh) |
EP (1) | EP2010453B1 (zh) |
JP (1) | JP5048054B2 (zh) |
KR (1) | KR20090013767A (zh) |
CN (1) | CN101437751B (zh) |
AU (1) | AU2007245431B2 (zh) |
BR (1) | BRPI0710989B8 (zh) |
CA (1) | CA2647525C (zh) |
DE (1) | DE602007002559D1 (zh) |
DK (1) | DK2010453T3 (zh) |
EA (1) | EA013560B1 (zh) |
EG (1) | EG25087A (zh) |
GB (1) | GB0608277D0 (zh) |
MX (1) | MX2008013780A (zh) |
MY (1) | MY145217A (zh) |
NO (1) | NO20084485L (zh) |
TW (1) | TWI405718B (zh) |
WO (1) | WO2007125360A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107530669A (zh) * | 2015-03-17 | 2018-01-02 | 希路瑞亚技术公司 | 甲烷氧化偶合方法和系统 |
CN114072355A (zh) * | 2019-06-18 | 2022-02-18 | 托普索公司 | 富含甲烷的气体升级为甲醇 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008017344A1 (de) | 2008-04-04 | 2009-10-08 | Linde Aktiengesellschaft | Verfahren und Reaktor zur Durchführung exothermer und endothermer Reaktionen |
DE102008017342A1 (de) | 2008-04-04 | 2009-10-08 | Linde Aktiengesellschaft | Kompaktreaktor |
US7989511B2 (en) * | 2008-05-21 | 2011-08-02 | Texaco Inc. | Process and apparatus for synthesis gas and hydrocarbon production |
GB201007196D0 (en) * | 2010-04-30 | 2010-06-16 | Compactgtl Plc | Gas-to-liquid technology |
GB201118465D0 (en) * | 2011-10-26 | 2011-12-07 | Compactgtl Plc | Gas-to-liquid technology |
KR101315676B1 (ko) * | 2011-12-20 | 2013-10-08 | 한국에너지기술연구원 | 피셔-트롭쉬 합성 반응기와 연료전지를 이용한 합성석유와 전기의 동시 생산 장치 및 방법 |
US9133079B2 (en) | 2012-01-13 | 2015-09-15 | Siluria Technologies, Inc. | Process for separating hydrocarbon compounds |
EP2659960A1 (en) | 2012-05-03 | 2013-11-06 | Global-Synergy Consultancy Services S.L. | Gas-to-liquid proccesing system in microreactors |
US9969660B2 (en) | 2012-07-09 | 2018-05-15 | Siluria Technologies, Inc. | Natural gas processing and systems |
US9598328B2 (en) | 2012-12-07 | 2017-03-21 | Siluria Technologies, Inc. | Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products |
US9676623B2 (en) | 2013-03-14 | 2017-06-13 | Velocys, Inc. | Process and apparatus for conducting simultaneous endothermic and exothermic reactions |
EP3074119B1 (en) | 2013-11-27 | 2019-01-09 | Siluria Technologies, Inc. | Reactors and systems for oxidative coupling of methane |
CA3123783A1 (en) | 2014-01-08 | 2015-07-16 | Lummus Technology Llc | Ethylene-to-liquids systems and methods |
US10377682B2 (en) | 2014-01-09 | 2019-08-13 | Siluria Technologies, Inc. | Reactors and systems for oxidative coupling of methane |
EP3097068A4 (en) | 2014-01-09 | 2017-08-16 | Siluria Technologies, Inc. | Oxidative coupling of methane implementations for olefin production |
US10793490B2 (en) | 2015-03-17 | 2020-10-06 | Lummus Technology Llc | Oxidative coupling of methane methods and systems |
US9334204B1 (en) | 2015-03-17 | 2016-05-10 | Siluria Technologies, Inc. | Efficient oxidative coupling of methane processes and systems |
US20160289143A1 (en) | 2015-04-01 | 2016-10-06 | Siluria Technologies, Inc. | Advanced oxidative coupling of methane |
US9328297B1 (en) | 2015-06-16 | 2016-05-03 | Siluria Technologies, Inc. | Ethylene-to-liquids systems and methods |
US20170107162A1 (en) | 2015-10-16 | 2017-04-20 | Siluria Technologies, Inc. | Separation methods and systems for oxidative coupling of methane |
CA3019396A1 (en) | 2016-04-13 | 2017-10-19 | Siluria Technologies, Inc. | Oxidative coupling of methane for olefin production |
WO2018118105A1 (en) | 2016-12-19 | 2018-06-28 | Siluria Technologies, Inc. | Methods and systems for performing chemical separations |
ES2960342T3 (es) | 2017-05-23 | 2024-03-04 | Lummus Technology Inc | Integración de procedimientos de acoplamiento oxidativo del metano |
WO2019010498A1 (en) | 2017-07-07 | 2019-01-10 | Siluria Technologies, Inc. | SYSTEMS AND METHODS FOR OXIDIZING METHANE COUPLING |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0151663A1 (de) | 1984-02-14 | 1985-08-21 | Nordsee Pumpenfabrik GmbH | Schwimmerschalter |
JPH04164802A (ja) * | 1990-10-29 | 1992-06-10 | Kawasaki Heavy Ind Ltd | 水素製造装置の起動方法及び装置 |
JPH04338101A (ja) | 1991-05-14 | 1992-11-25 | Mitsubishi Heavy Ind Ltd | 燃料電池システムの起動方法 |
NZ242569A (en) * | 1991-05-30 | 1994-07-26 | British Petroleum Co Plc | Process for the conversion of natural gas into higher hydrocarbons by reforming combined with a fischer-tropsch process |
GB9403198D0 (en) * | 1994-02-19 | 1994-04-13 | Rolls Royce Plc | A solid oxide fuel cell stack |
EP0936182A3 (en) * | 1998-02-13 | 2000-02-23 | Haldor Topsoe A/S | Method of soot-free start-up of autothermal reformers |
US6277894B1 (en) * | 1999-03-30 | 2001-08-21 | Syntroleum Corporation | System and method for converting light hydrocarbons into heavier hydrocarbons with a plurality of synthesis gas subsystems |
AU2001223877A1 (en) | 2000-01-11 | 2001-07-24 | Aea Technology Plc | Catalytic reactor |
WO2003048034A1 (en) * | 2001-12-05 | 2003-06-12 | Gtl Microsystems Ag | Process an apparatus for steam-methane reforming |
EP1516663A3 (en) * | 2002-04-14 | 2006-03-22 | IdaTech, LLC. | Steam reformer with burner |
-
2006
- 2006-04-27 GB GBGB0608277.0A patent/GB0608277D0/en not_active Ceased
-
2007
- 2007-04-17 EP EP07733621A patent/EP2010453B1/en not_active Not-in-force
- 2007-04-17 EA EA200870484A patent/EA013560B1/ru not_active IP Right Cessation
- 2007-04-17 DK DK07733621.2T patent/DK2010453T3/da active
- 2007-04-17 JP JP2009507178A patent/JP5048054B2/ja not_active Expired - Fee Related
- 2007-04-17 CN CN200780014837XA patent/CN101437751B/zh active Active
- 2007-04-17 BR BRPI0710989A patent/BRPI0710989B8/pt active IP Right Grant
- 2007-04-17 MX MX2008013780A patent/MX2008013780A/es active IP Right Grant
- 2007-04-17 DE DE602007002559T patent/DE602007002559D1/de active Active
- 2007-04-17 AU AU2007245431A patent/AU2007245431B2/en not_active Ceased
- 2007-04-17 CA CA2647525A patent/CA2647525C/en not_active Expired - Fee Related
- 2007-04-17 WO PCT/GB2007/050199 patent/WO2007125360A1/en active Application Filing
- 2007-04-17 KR KR1020087026149A patent/KR20090013767A/ko active IP Right Grant
- 2007-04-25 TW TW096114565A patent/TWI405718B/zh not_active IP Right Cessation
- 2007-04-26 US US11/740,880 patent/US7501456B2/en not_active Expired - Fee Related
-
2008
- 2008-10-24 NO NO20084485A patent/NO20084485L/no not_active Application Discontinuation
- 2008-10-24 MY MYPI20084270A patent/MY145217A/en unknown
- 2008-10-27 EG EG2008101761A patent/EG25087A/xx active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107530669A (zh) * | 2015-03-17 | 2018-01-02 | 希路瑞亚技术公司 | 甲烷氧化偶合方法和系统 |
CN114072355A (zh) * | 2019-06-18 | 2022-02-18 | 托普索公司 | 富含甲烷的气体升级为甲醇 |
Also Published As
Publication number | Publication date |
---|---|
BRPI0710989B1 (pt) | 2017-11-07 |
CN101437751B (zh) | 2011-06-08 |
BRPI0710989B8 (pt) | 2019-04-24 |
AU2007245431A1 (en) | 2007-11-08 |
EP2010453B1 (en) | 2009-09-23 |
EP2010453A1 (en) | 2009-01-07 |
DK2010453T3 (da) | 2010-02-01 |
DE602007002559D1 (de) | 2009-11-05 |
CA2647525C (en) | 2012-12-18 |
US7501456B2 (en) | 2009-03-10 |
EA200870484A1 (ru) | 2009-04-28 |
TWI405718B (zh) | 2013-08-21 |
BRPI0710989A8 (pt) | 2018-02-27 |
JP2009534516A (ja) | 2009-09-24 |
WO2007125360A1 (en) | 2007-11-08 |
GB0608277D0 (en) | 2006-06-07 |
US20070254967A1 (en) | 2007-11-01 |
EG25087A (en) | 2011-08-07 |
JP5048054B2 (ja) | 2012-10-17 |
CA2647525A1 (en) | 2007-11-08 |
EA013560B1 (ru) | 2010-06-30 |
MX2008013780A (es) | 2008-11-14 |
TW200811035A (en) | 2008-03-01 |
BRPI0710989A2 (pt) | 2011-05-24 |
AU2007245431B2 (en) | 2012-08-16 |
MY145217A (en) | 2012-01-13 |
NO20084485L (no) | 2009-01-27 |
KR20090013767A (ko) | 2009-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101437751B (zh) | 液态烃的制备方法 | |
US6695983B2 (en) | Syngas production method utilizing an oxygen transport membrane | |
CN1934225B (zh) | 天然气转化为长链烃类的工艺 | |
CN103221769B (zh) | 气-转-液技术 | |
RU2570458C2 (ru) | Получение метанола с использованием сверхчистого водорода высокого давления | |
JP2024524086A (ja) | グリーン水素のためのアンモニア分解 | |
US8671695B2 (en) | Process for the production of hydrogen with total recovery of CO2 and reduction of unconverted methane | |
AU2016273831A1 (en) | Generating methanol using ultrapure, high pressure hydrogen | |
AU2002348696A1 (en) | Synags production utilizing an oxygen transport membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |