CN101416277A - 用于处理电介质膜的方法和系统 - Google Patents

用于处理电介质膜的方法和系统 Download PDF

Info

Publication number
CN101416277A
CN101416277A CNA2004800297050A CN200480029705A CN101416277A CN 101416277 A CN101416277 A CN 101416277A CN A2004800297050 A CNA2004800297050 A CN A2004800297050A CN 200480029705 A CN200480029705 A CN 200480029705A CN 101416277 A CN101416277 A CN 101416277A
Authority
CN
China
Prior art keywords
dielectric film
exposed
film
process chamber
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800297050A
Other languages
English (en)
Other versions
CN101416277B (zh
Inventor
多雷尔·伊万·托玛
朱建红
浜本和裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN101416277A publication Critical patent/CN101416277A/zh
Application granted granted Critical
Publication of CN101416277B publication Critical patent/CN101416277B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02343Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31058After-treatment of organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02134Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising hydrogen silsesquioxane, e.g. HSQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02137Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising alkyl silsesquioxane, e.g. MSQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02359Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the surface groups of the insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

一种用于处理电介质膜的方法和系统,包括将电介质膜的至少一个表面暴露于含CxHy材料,其中x和y分别是大于或者等于1的整数。电介质膜可以包括具有或者没有孔的低介电常数膜,其具有在干法刻蚀处理之后形成在其中的刻蚀构件。作为刻蚀处理和灰化的结果,形成在电介质膜中的构件中的暴露表面可能被损伤或者活化,导致污染物的残留、水分吸附、介电常数增大等。通过执行修复这些表面以例如恢复介电常数(即减小介电常数)和清洁这些表面以去除污染物、水分或者残余物这样的操作中的至少之一,诸如这些的损伤表面被处理。而且,阻挡层的制备和膜中的构件的金属化可以包括通过执行对构件的侧壁表面进行密封以封闭暴露的孔来进行处理并且提供用于阻挡膜沉积的表面。

Description

用于处理电介质膜的方法和系统
技术领域
本发明涉及用于处理电介质膜的方法和系统,更具体地,涉及处理电介质膜以便执行修复、密封和清洁该电介质膜中的至少一个操作的方法和系统。
背景技术
如对于半导体领域中的技术人员来说已知的,互连延迟是器件中对于提高集成电路(IC)的速度和性能的主要限制因素。使互连延迟最小化的一个方法是通过在IC生产过程中使用低介电常数(低k)材料来减小互连电容。这样的低k材料还被证明对低温处理有用。因此,在最近这些年中,低k材料已经被开发来代替诸如二氧化硅的较高介电常数绝缘材料。具体来说,低k膜正在被用于半导体器件的金属层之间的层间和层内电介质层。此外,为了进一步减小绝缘材料的介电常数,材料膜形成有多个孔,即多孔低k电介质膜。这样的低k膜可以通过类似于涂敷光刻胶的旋涂电介质(SOD)法或者通过化学气相沉积(CVD)被沉积。因此,低k材料的使用容易适用于现有的半导体制造工艺。
虽然低k材料对于制造半导体电路是有前景的,但是本发明人已经认识到这些膜也提出了许多挑战。首先,低k膜往往没有更传统的电介质层那么高的强度,并且可能在诸如通过常用于图案化电介质层的刻蚀和等离子体灰化工艺处理晶片的过程中被损伤。此外,某些低k膜往往在被损伤时,特别是在图案化之后具有高反应性,由此导致低k材料可以吸附水和/或与可以改变电介质层的电性能的其他蒸气和/或处理污染物反应。
而且,本发明人已经认识到一些低k电介质膜的多孔性加剧了将金属化与电介质结合的问题。一般来说,铜金属化与低k电介质膜的结合要求使用镶嵌结构,其中金属布线图案在铜沉积之前被形成在电介质膜中。为了使铜到电介质膜中的扩散最小化,在图案刻蚀之后阻挡层一般被形成在在这些图案的内表面上。但是,在电介质膜中的图案刻蚀之后低k膜的孔和/或损伤的暴露导致如下问题,即阻挡材料和铜穿过阻挡膜中靠近这些暴露的孔的缺陷扩散,以及阻挡层与电介质膜的不良粘附。
此外,诸如上述的损伤的低k膜之类的多孔低k电介质膜容易吸附水分和其他污染物。例如,在图案刻蚀之后,暴露表面可能从疏水性的变为亲水性的,暴露的表面层可以耗尽碳(C),并且孔可以保留来自刻蚀工艺的污染物。
发明内容
本发明的一个目的是减少或者消除与处理电介质膜相关的现有技术中的上述任何问题或者其他问题。
本发明的另一个目的是处理电介质膜,以便修复、密封和/或清洁该电介质膜。
本发明的另一个目的是处理电介质膜,以便减小阻挡材料到电介质膜中的扩散和/或改善阻挡膜到电介质膜的粘附。
通过根据本发明的处理电介质膜的方法,可以实现这些和/或其他目的。在一个技术方案中,该方法包括将电介质膜的至少一个表面暴露于含CxHy材料,其中x和y分别是大于或者等于1的整数。或者,该方法还可以包括将电介质膜的所述至少一个表面暴露于含氮材料和含氯材料中的至少一种。
在另一个技术方案中,一种在衬底上制备电介质膜的方法包括:在所述衬底上形成所述电介质膜;在所述电介质膜上形成掩模;在所述掩模中形成图案;通过将所述掩模中的所述图案转移到所述电介质膜来在所述电介质膜中形成至少一个构件(feature);以及将所述电介质膜中的所述构件的侧壁暴露于处理化合物,所述处理化合物包括含CxHy材料,其中x和y分别是大于或者等于1的整数。或者,所述处理化合物还可以包括含N材料和含Cl材料中的至少一种。
在另一个技术方案中,一种处理电介质膜的方法包括将所述电介质膜暴露于处理化合物,所述处理化合物包括含CxHy材料,其中x和y分别是大于或者等于1的整数。或者,所述处理化合物还可以包括含N材料和含Cl材料中的至少一种。
在另一个技术方案中,描述了一种经处理的电介质膜,其包括:电介质膜;形成在所述电介质膜中的构件;和用于修复所述构件的表面的物质。
在另一个技术方案中,描述了一种经密封的电介质膜,其包括:多孔电介质膜;形成在所述多孔电介质膜中的构件;和用于密封所述多孔电介质膜中的所述构件的表面上的暴露孔的物质。
在另一个技术方案中,描述了一种用于处理衬底上的电介质膜的处理系统。该系统包括:处理室;流体分配系统,所述流体分配系统耦合到所述处理室并且配置来向所述处理室供应处理化合物,以便处理所述衬底上的所述电介质膜,所述处理化合物包括含CxHy材料,其中x和y分别是大于或者等于1的整数。或者,所述处理化合物还包括含N材料和含Cl材料中的至少一种。
在另一个技术方案中,描述了一种用于处理衬底上的电介质膜的处理系统。该系统包括用于将所述电介质膜暴露于处理化合物的装置,所述处理化合物包括含CxHy材料,其中x和y分别是大于或者等于1的整数。或者,所述处理化合物还包括含N材料和含Cl材料中的至少一种。
附图说明
在附图中:
图1A到图1E描绘了根据本发明的实施例形成和处理电介质膜的方法的简化示意性表示;
图2描绘了根据本发明的实施例制备电介质膜的方法;
图3A和图3B示出了处理电介质膜的方法;
图4A到图4C示出了根据本发明的实施例用于处理电介质膜的有机硅结构的示意性表示;
图4D示出了根据本发明的另一个实施例在电介质材料中与硅醇基团反应的示意性表示;
图4E示出了在电介质材料表面上硅醇基团和甲硅烷基团之间的空间位阻;
图5描绘了根据本发明的实施例用于处理电介质膜的处理系统;
图6描绘了根据本发明的另一个实施例的超临界处理系统的简化示意性表示;
图7描绘了根据本发明的另一个实施例的超临界处理系统的详细示意图;
图8是根据本发明的实施例的用于超临界清洁、漂洗或者固化步骤的压强对时间的图线。
图9是根据本发明的实施例概述用于处理电介质层的步骤的示意性框图;以及
图10A和图10B示出了在用修复化合物处理之前和之后硅基低k电介质材料的红外吸收光谱。
具体实施方式
现在参考附图,其中相似的标号表示遍及数个视图中的相同或者相应的部件,图1A到图1E描绘了一种方法的示意性表示,该方法在电介质膜中形成图案,并且处理电介质膜中的刻蚀图案的暴露表面,以便执行修复、密封和清洁这些表面中的至少一个操作。此外,图2描述了执行根据本发明的实施例的方法的流程图100。如图1A、图1B和图2所示,在步骤110中,电介质膜20被形成在衬底10的上表面上,所述衬底10可以或者可以不包含另外的层。衬底10可以是半导体,金属导体或者任何其他的电介质膜将被形成到其上的衬底。电介质膜具有低于大致为4的SiO2的介电常数(例如,热二氧化硅的介电常数的范围可以从3.8到3.9)的名义介电常数值。更具体地,电介质膜20可以具有小于3.0的介电常数,或者范围从1.6到2.7的介电常数。
电介质膜20可以使用化学气相沉积(CVD)技术或者旋涂电介质(SOD)技术(诸如可从Tokyo Electron Limited(TEL)商购的Clean TrackACT 8 SOD和ACT 12 SOD涂层系统中所提供的那些)来形成。CleanTrack ACT 8(200nm)和ACT 12(300nm)涂层系统提供了用于SOD材料的涂覆、烘烤和固化工具。该跟踪系统(track system)可以被配置来处理100nm、200nm、300nm或者更大的衬底尺寸。其他用于在衬底上形成电介质膜的系统和方法对于旋涂电介质技术和CVD电介质技术两个领域的技术人员来说是已知的。
例如,电介质膜20可以为低介电常数(或者低k)电介质膜。电介质膜20可以包括有机材料、无机材料和无机-有机混杂材料中的至少一种。此外,电介质膜20可以是多孔的或者无孔的。例如,电介质膜可以包括无机硅酸盐基材料,诸如利用CVD技术沉积的经氧化的有机硅烷(或有机硅氧烷)。这样的膜的示例包括可从Applied Materials,Inc.商购的BlackDiamondTM CVD有机硅酸盐玻璃(OSG)膜或者可从Novellus Systems商购的CoralTM CVD膜。此外,例如,多孔电介质膜可以包括单相材料,诸如具有在固化工艺过程中断裂以生成小空洞(或者孔)的CH3键的氧化硅基基体。此外,例如,多孔电介质膜可以包括两相材料,诸如具有在固化工艺过程中被蒸发掉的有机材料(例如,成孔剂)的孔的氧化硅基基体。或者,电介质膜20可以包括无机硅酸盐基材料,诸如使用SOD技术沉积的氢硅倍半氧烷(Hydrogen Silsesquioxane,HSQ)或者甲基硅倍半氧烷(Methyl Silsesquioxane,MSQ)。这样的膜的示例包括可从Dow Corning商购的FOx HSQ,可从Dow Corning商购的XLK多孔HSQ,以及可从JSR Microelectronics商购的JSR LKD-5109。或者,电介质膜20可以包括使用SOD技术沉积的有机材料。这样的膜的示例包括可从Dow Chemical商购的SiLK-I、SiLK-J、SiLK-H、SiLK-D、以及多孔SiLK半导体电介质树脂,以及可从Honeywell商购的FLARETM,和纳米玻璃。
一旦电介质膜20被制备,在步骤120中图案化掩模30被形成在电介质膜的上表面上。图案化掩模30可以包括以如下方式形成在诸如光刻胶的感光材料层中的图案35:使用微光刻术,然后利用显影溶剂去除感光材料的受辐照区域(如在正型光刻胶的情形中)或者未受辐照区域(如在负型光刻胶的情形中)。或者,掩模30可以包括双层掩模或者多层掩模,具有包埋在其中的抗反射涂层(ARC),诸如埋入式ARC(BARC)层,牺牲DUOTM层,或者可调抗刻蚀ARC(TERA)层。例如,掩模层(或者多层)可以使用跟踪系统或者CVD系统来形成。跟踪系统可以被配置来处理248nm光刻胶、193nm光刻胶、157nm光刻胶、EUV光刻胶、(顶部/底部)抗反射涂层(TARC/BARC),和顶部涂层。例如,跟踪系统可以包括可从Tokyo Electron Limited(TEL)商购的Clean Track ACT8,或者ACT 12光刻胶涂覆和显影系统。其他用于在衬底上形成光刻胶膜的系统和方法对于旋涂光刻胶技术领域的技术人员来说是已知的。此外,例如,掩模图案可以使用任何合适的常规步进式光刻系统或者扫描光刻系统来形成。
在步骤130中,掩模图案35可以被转移到下层的电介质膜20,以利用干法等离子体刻蚀形成具有侧壁45的构件40。例如,当刻蚀诸如氧化硅、二氧化硅等的氧化物电介质膜时,或者当刻蚀诸如经氧化的有机硅烷的无机低k电介质膜时,刻蚀气体组合物一般包括氟碳基化学物质,诸如C4F8、C5F8、C3F6、C4F6、CF4等中的至少一种,以及包括惰性气体、氧和CO中的至少一种。此外,例如,当刻蚀有机低k电介质膜时,刻蚀气体组合物一般包括含氮气体和含氢气体中的至少一种。诸如前面所描述的用于选择性刻蚀电介质膜的技术对于电介质刻蚀工艺领域中的技术人员来说是已知的。
在刻蚀过程中,形成在电介质膜20中的构件内的暴露表面(诸如侧壁45)可能被损伤,或者活化。这些表面招致的损伤或者活化可以导致水的吸附,或者导致在刻蚀处理(即,干法刻蚀,或者在灰化过程中的掩模去除)过程中的污染物和/或化学品的粘附。例如,多孔低k电介质膜在刻蚀处理过程中可能非常容易发生损伤和/或活化。一般来说,多孔低k膜最常用的是带有硅醇(Si-OH)基团和/或有机基团的氧化硅基的。这些材料可能部分由于在刻蚀处理过程中有机成分的耗尽而变为活化或者受损伤的。在任一情形中,可能容易吸附水和/或其他污染物的附加硅醇基团被暴露。因此,具有暴露的低k电介质层的器件结构难以处理并且保持不含污染物,特别是在图案化步骤之后。而且,对于低k材料块的活化和/或损伤可以导致介电常数(k值)的增大。已经观察到活化的或者损伤的低k膜可以具有值增大了1或者更多的k值。
如先前所描述的,在本发明的实施例中,损伤、暴露的表面(例如,在刻蚀或者灰化工艺之后)被处理以执行对这些损伤表面的修复、密封和清洁中的至少一个操作。损伤表面的修复包括恢复介电常数值。
因此,根据本发明的实施例,在步骤140,电介质膜20被处理以执行修复损伤表面、密封暴露多孔表面和清洁损伤表面中的至少一个操作,所述损伤表面例如是如图1E所示的侧壁45。修复工艺包括通过恢复介电常数值进行电介质膜的复原。例如,k值的恢复可以以用含碳材料(例如CH3)补充碳耗尽位点为特征。修复工艺还可以包括使用处理剂钝化低k表面,其中所述处理剂进攻低k膜表面上的硅醇(Si-OH)基团,以形成覆盖使表面钝化的甲硅烷基的表面。钝化低k表面的细节提供于2003年3月4日递交的、题目为“METHOD OF PASSIVAING OF LOWDIELECTRIC MATERIALS IN WAFER PROCES SING”、代理案卷号为No.SSI-03501的美国专利申请中,所述美国专利申请的全文通过引用被包含于此。此外,密封工艺例如可以以密封暴露表面中的暴露的孔为特征。此外,清洁工艺可以包括去除水分、去除污染物或者残余物等中的至少一个操作。
在此处理工艺过程中,电介质膜20被暴露于包括含CxHy的化合物的处理化合物,其中所述下标“x”和“y”表示大于或等于1的整数。或者,处理化合物还可以另外包括含氮(N)化合物和含氯(Cl)化合物中的至少之一,以辅助电介质膜20表面上的表面化学反应。例如,含CxHy的组分可以包括含CH、含CH2和含CH3化合物中的至少一种。
图3A和图3B进一步图示了处理工艺的示例。在图3A中,示出了具有多个孔144的多孔低k电介质膜142,其中,在刻蚀或者灰化工艺之后,以及观察到这些孔中的暴露表面被损伤。表面损坏表现为可以吸附水分(即,H2O)成为OH位点的悬挂键146。现在参考图3B,电介质膜被暴露于包含含CxHy(例如,CH3)的材料的处理化合物,在此过程中,该处理工艺促进了清洁孔144以去除OH和其他残余物,促进了通过用CxHy(例如,CH3)置换OH和悬挂键146来修复孔的暴露表面,并促进了利用含CxHy(例如,CH3)分子148粘附到电介质膜142上以封闭暴露的孔144来密封孔144。因此,经处理的低k膜包括具有CxHy材料的表面区域,其中所述CxHy材料为低k膜提供了改善的物理性能,诸如在该表面区域中不含污染物和水分、更少的悬挂键或者经密封的孔。此外,在该表面区域中的CxHy材料提供了比没有的CxHy材料的相应膜更低的介电常数。
现在参考图4A,处理化合物包括硅烷结构150,所述硅烷结构150可以全部是有机基团,诸如六甲基二硅氮烷(HMDS)的情形,或者可以具有有机和卤素基团(F,Cl,Br等)的组合,其中所述卤素基团被连接到1-4位中的任意一个。
现在参考图4B,处理化合物包括五价有机硅化合物152,其中硅原子以三角双锥构型与1,2,3,4和5位上的5个配体配位结合。一般来说,这样的化合物152是其中1-5位中的一个或者多个与卤素原子配位结合的阴离子,诸如二氟三甲基合硅酸根阴离子。当结构152是阴离子时,化合物152还包括合适的阳离子,诸如钠、钾或者任何其他的无机或者有机阳离子(没有示出)。
现在参考图4C,处理化合物包括硅氮烷结构154,所述结构154可以被描述为具有两个配位结合到胺的氮上的有机甲硅烷基团的胺结构,诸如六甲基二硅氮烷(HMDS)的情形。
图4D示出了在反应过程(1)中六甲基二硅氮烷(HMDS)与电介质材料表面上的硅醇基团反应以及在反应过程(2)中三甲基二硅氮烷(TMDS)与电介质材料表面上的硅醇基团反应的示意性表示。注意,三甲基二硅氮烷(TMDS)是反应过程(1)的产物,其可以随后根据反应过程(2)进一步与低k材料表面上的硅醇基团反应。因此,六甲基二硅氮烷(HMDS)是根据本发明的方法应用的优异处理化合物。
图4E示出了在电介质材料表面51上硅醇基团53和甲硅烷基团55之间的空间位阻。注意,硅醇基团53极大,并且可以实际提供对于硅醇基团的保护性阻挡。因此,一般不可能完全硅烷化电介质材料整个表面或者本体。但是,当电介质材料被预处理时,可以认为在表面51上较大百分比的硅醇基团53被甲硅烷基团55置换。
或者,处理化合物可以包括六甲基二硅氮烷(HMDS)、三甲基二硅氮烷(TMDS)、三甲基氯硅烷(TMCS)、甲基三氯硅烷(TCMS)、[C6H5Si(CH3)2]2NH(或1,3-二苯基-1,1,3,3-四甲基二硅氮烷),C15H29NSi(或N-叔丁基-1,1-二甲基-1-(2,3,4,5-四甲基-2,4-环戊二烯-1-基)硅烷胺)、(CH3)2NH(二甲胺)、H2N(CH2)3Si(OC2H5)3(3-氨基丙基三乙氧基硅烷)、(CH4SiO)4(或TMCTS,或者四甲基环四硅氧烷)、以及[(CH3)2SiO]4(或OMCTS,或八甲基环四硅氧烷)。
在一个示例中,当处理孔尺寸小于或者等于1nm的多孔低k电介质膜时,处理化合物可以包括HMDS、TMDS和(CH3)2NH(二甲胺)中的至少一种。在第二示例中,当处理孔尺寸大于或者等于1nm的多孔低k电介质膜时,处理化合物可以包括[C6H5Si(CH3)2]2NH,C15H29NSi和H2N(CH2)3Si(OC2H5)3(3-氨基丙基三乙氧基硅烷)中的至少一种。或者,在第三示例中,电介质膜被暴露于诸如HMDS、TMDS和(CH3)2NH(二甲胺)中的至少一种的第一处理化合物第一时间段的时间,并且暴露于诸如[C6H5Si(CH3)2]2NH,C15H29NSi和H2N(CH2)3Si(OC2H5)3(3-氨基丙基三乙氧基硅烷)中的至少一种的第二处理化合物第二时间段的时间。
或者,除了将电介质膜暴露于所述处理化合物之外,衬底还可以被加热,以便帮助或者加速通过暴露促进的表面反应。衬底温度可以在从50℃到400℃范围内,并且理想地,衬底温度可以在从100℃到200℃范围内。
图5描述了处理系统170的框图,所述处理系统170用于处理电介质膜以便执行修复、密封和清洁在刻蚀处理或者灰化之后的电介质膜中的暴露表面中的至少一个操作。处理系统170包括处理室172、耦合到处理室172并且配置来将处理化合物引入到安放在处理室172中的衬底的流体分配系统174、以及控制器176,所述控制器176耦合到处理室172和流体分配系统174,并且被配置来根据工艺方案控制处理系统170。
处理系统170可以包括气相处理装置,其中处理化合物通过蒸气运输被引入到电介质膜,可以利用载气或者不利用载气。例如,流体分配系统174可以包括用于供应载气或者诸如氮气的惰性气体的载气供应系统,和处理化合物的储存器,诸如HMDS的储存器。流体分配系统174还可以包括蒸气输送系统,所述蒸气输送系统允许使载气鼓泡通过处理流体的储存器,并且将处理化合物蒸气运输到处理室172,以使其暴露于具有待处理的电介质膜的衬底。此外,流体分配系统174还可以包括温度控制系统,用于升高蒸气输送系统的温度,以便防止其中的处理化合物蒸气冷凝。处理室172还可以包括用于安放衬底的衬底支座,其可以是固定的、可平移的或者可旋转的。此外,衬底支座可以被配置来加热和/或控制衬底温度,以便帮助在电介质膜暴露于处理化合物时的表面反应。衬底温度的范围可以从50℃到400℃,并且理想地,衬底温度的范围可以从100℃到200℃。对于其他的细节,在转让给Tokyo Electron Limited的美国专利No.5,035,200中描述了一种示例性的蒸气运输供应装置,该美国专利的全文通过引用被包含于此。
处理系统170可以包括液相处理装置,其中处理化合物通过液体运输被引入到电介质膜,可以利用载液或者不利用载液。例如,流体分配系统174可以包括处理化合物的储存器(诸如HMDS的储存器),以及液体输送系统,用于使处理化合物循环通过处理室172。处理室172可以包括浸没浴,其使得用于运输具有待处理的电介质膜的衬底的衬底支座进入和离开处理化合物浴液。此外,衬底支座可以被配置来加热和/或控制衬底温度,以便帮助在电介质膜暴露于处理化合物时的表面反应。衬底温度的范围可以从50℃到400℃,并且理想地,衬底温度的范围可以从100℃到200℃。例如,可以在处理化合物的浴液内产生气泡,以便产生一定的搅动以促进衬底上的处理表面附近的化学物质运输。对于其他的细节,在转让给Tokyo Electron Limited的美国专利No.5,730,162中描述了一种示例性浸没浴装置,在美国专利No.5,911,232中描述了一种利用超声波搅动的浸没浴装置,该两篇美国专利的全文通过引用被包含于此。此外,例如,流体分配系统174可以包括处理化合物的储存器,诸如HMDS的储存器,并且包括液体输送系统,用于将处理化合物分散到具有待处理的电介质膜的衬底的上表面上。液体输送系统还可以包括一个或者多个用于分散处理化合物的流体喷嘴。处理室172还可以包括用于安放衬底的衬底支座,其可以是固定的、可平移的或者可旋转的。此外,衬底支座可以被配置来加热和/或控制衬底温度,以便帮助在电介质膜暴露于处理化合物时的表面反应。衬底温度的范围可以从50℃到400℃,并且理想地,衬底温度的范围可以从100℃到200℃。对于其他的细节,在转让给Tokyo ElectronLimited的美国专利No.6,589,338中描述了一种示例性的液体分散供应装置,该美国专利的全文通过引用被包含于此。
处理系统170可以包括将在下面更详细描述的超临界处理装置,其中处理化合物通过诸如超临界二氧化碳(SCCO2)或者液体CO2的超临界流体引入到电介质膜。
控制器176包括微处理器、存储器和数字I/O端口(可选地包括D/A和/或A/D转换器),其中所述端口能够生成足以传输和激活到处理室172和流体分配系统174的输入以及监控来自这些系统的输出的控制电压。存储在存储器中的程序被用于根据所存储的工艺方案与系统172和174进行交互。控制器176的一个示例是可从Texas,Austin的Dell Corporation商购的DELL PRECISION WORKSTATION530TM。控制器176也可以被实现为通用计算机、数字信号处理器等。
控制器176可以相对于处理室172和流体分配系统174位于本地,或者其可以通过互连网或者内部网相对于处理室172和流体分配系统174位于远端。因此,控制器176可以利用直接连接、内部网和互联网中的至少之一与处理室172和流体分配系统174交换数据。控制器176可以在客户位置(即,器件制造商等)处被耦合到内部网,或者可以在卖主位置(即,设备生产商等)处耦合到内部网。此外,另一个计算机(即,控制器,服务器等)可以通过直接连接、内部网和互联网中的至少之一访问控制器176以交换数据。
图6示出了超临界处理装置200的简化示意图。装置200包括二氧化碳源221,所述二氧化碳源221通过源阀223连接到进口管线226,所述源阀223可以被打开和关闭,以起动或者停止从二氧化碳源221到入口管线226的二氧化碳流。入口管线226优选装配有一个或者多个由方框220示意性示出的回流阀、泵和加热器,用于产生和/或维持超临界二氧化碳流。入口管线226还优选具有入口阀225,所述入口阀225被配置来打开和关闭以允许或者阻止超临界二氧化碳流流入到处理室201中。
仍参考图6,处理室201优选装配有一个或者多个压力阀209,用于排空处理室201和/或用于调节处理室201内的压强。并且,根据本发明的一个实施例,处理室201被耦合到泵和/或真空211,用于增压和/或抽空处理室201。
再次参考图6,在装置200的处理室201内优选具有卡盘233,用于保持和/或支撑晶片结构213。根据本发明的其他实施例,卡盘233和/或处理室201具有一个或者多个加热器231,用于调节晶片结构213的温度和/或处理室201内超临界处理溶液的温度。
装置200还优选具有耦合到处理室201的循环管线或者环线203。循环管线203优选装配有一个或者多个阀215和215’,用于调节通过循环管线203和通过处理室201的超临界处理溶液的流量。循环管线203还优选装配有任意数量的由方框205示意性表示的回流阀、泵和/或加热器,用于维持超临界处理溶液并且使超临界处理溶液流动通过循环管线203和处理室201。根据本发明的实施例,循环管线203具有注入端口207,用于将诸如修复化合物之类的化学物资引入到循环管线203,以原位产生超临界处理溶液。
图7比上述图6更详细地示出了超临界处理装置76。超临界处理装置76被配置来产生超临界处理溶液并用超临界处理溶液处理晶片。超临界处理装置76包括二氧化碳供应容器332,二氧化碳泵334,处理室336,化学品供应容器338,循环泵340,以及排出气体收集容器344。二氧化碳供应容器332经由二氧化碳泵334和二氧化碳管道346被耦合到处理室336。二氧化碳管道346包括位于二氧化碳泵334和处理室336之间的二氧化碳加热器348。处理室336包括处理室加热器350。
循环泵340位于循环管线352上,所述循环管线352在循环入口354和循环出口356处耦合到处理室336。化学品供应容器338经由化学品供应管线358耦合到循环管线352,所述化学品供应管线358包括第一注入泵359。漂洗剂供应容器360经由漂洗供应管线362耦合到循环管线352,所述漂洗供应管线362包括第二注入泵363。排出气体收集容器344经由排出气体管道364耦合到处理室336。
二氧化碳供应容器332,二氧化碳泵334和二氧化碳加热器348形成了二氧化碳供应设备349。化学品供应容器338,第一注入泵359,漂洗剂供应容器360以及第二注入泵363形成了化学品和漂洗剂供应设备365。
对于本领域技术人员将明显的是,超临界处理装置76包括常用于超临界流体处理系统的阀、控制电子器件、过滤器和应用连接。
仍然参考图7,在操作中,其上具有电介质膜的晶片(没有示出)被插入到处理室336的晶片腔312中,并且通过关闭闸门阀306来密封处理室336。处理室336通过二氧化碳泵334利用来自二氧化碳供应容器332的二氧化碳增压,并且二氧化碳被二氧化碳加热器348加热,同时处理室336被处理室加热器350加热以保证处理室336中二氧化碳的温度高于临界温度。二氧化碳的临界温度是31℃。优选地,在超临界钝化步骤中,处理室336中二氧化碳的温度处在从40℃到约200℃的范围内,并且优选处在或者接近150℃。
在达到初始的超临界条件时,第一注入泵359将诸如修复化合物之类的处理化学物质从化学品供应容器338经由循环管线352泵入到处理室336,同时二氧化碳泵进一步增压超临界二氧化碳。在开始将处理化学物质添加到处理室336时,处理室336中的压强优选为约1070到9000psi,并且优选处在或者接近3000psi。一旦所期望量的处理化学物质已经被泵入到处理室336中并且所期望的超临界条件被达到,二氧化碳泵334停止对处理室336的增压,第一注入泵359停止将处理化学物质泵入到处理室336中,并且循环泵340开始循环包含超临界二氧化碳和处理化学物质的超临界清洁溶液。优选地,在此时处理室336内的压强为约3000psi。通过循环超临界处理溶液,在晶片表面,超临界处理溶液被快速补充,由此提高了晶片上的电介质层的表面钝化的速率。
当具有电介质层的晶片(没有示出)正在处理室336内被处理时,使用机械卡盘、真空卡盘或者其它合适的保持或者固定装置来保持晶片。根据本发明的实施例,在超临界处理步骤过程中,晶片在处理室336内是固定的,或者,是旋转的、自旋的或者以其他方式被搅动。
在超临界处理溶液被循环通过循环管线352和处理室336之后,处理室336通过将超临界处理溶液中的一些排出到排出气体收集容器344而被部分地减压,以便将处理室336中的条件返回到接近初始的超临界条件。优选地,在超临界处理溶液被完全从处理室336排出到收集容器344之前,处理室336经过至少一个这样的减压和压缩循环。在排空压力室336之后,执行第二超临界处理步骤,或者将晶片通过闸门阀306从处理室336取出并且在第二处理装置或者模块(没有示出)中继续晶片处理。
图8示出了根据本发明的方法,对于诸如超临界清洁/钝化处理步骤的超临界处理步骤的压强对时间的示例性图线400。现在参考图7和图8,在初始时间T0之前,其上具有刻蚀后残余物的晶片结构通过闸门阀306被置于处理室336中,并且处理室336被密封。从初始时间T0到第一持续时间T1,处理室336被增压。当处理室336达到临界压力Pc(1,070psi)时,则将包含修复化合物的处理化学物质优选通过循环管线352注入到处理室336,如前面所说明的。处理化学物质优选包括被注入到该系统中的六甲基二硅氮烷(HMDS)、三甲基氯硅烷(TMCS)、甲基三氯硅烷(TCMS)及其组合。在时间T1的持续期间内,可以执行数次处理化学物质的注入,以产生具有所期望的化学品浓度的超临界处理溶液。根据本发明的实施例,处理化学物质还可以包括一种或者多种载体溶剂、氨合物盐、氟化氢和/或其他氟化物源,或者N,N-二甲基乙酰胺(DMAC)、γ-丁内酯(BLO)、二甲基亚砜(DMSO)、碳酸乙二酯(EC)、N-甲基吡咯烷酮(NMP)、二甲基哌啶酮、碳酸丙二酯、醇或其混合物。优选地,处理化学物质的注入开始于达到约1100-1200psi时,如拐点405所示的。或者,处理化学物质在第二时间T2附近或者在第二时间T2之后被注入到处理室336中。
在处理室336于第二时间T2达到优选为约3000psi(但是也可以是任何值,只要工作压强足够来维持超临界条件)的工作压强Pop之后,利用循环管线352将超临界处理溶液循环到晶片上和/或周围,并且穿过处理室336,诸如如上所述的。然后,处理室336内的压强增大,并且在整个下一持续时间段内,利用循环管线352将超临界处理溶液连续地循环到晶片上和/或周围并且穿过处理室336,且通过下面所述的挤过(push-through)工艺调节处理室内超临界处理溶液的浓度。
仍然参考图8,在挤过工艺中,在时间T3的持续期间内,新的超临界二氧化碳原料被供入到处理室336内,同时超临界清洁溶液连同悬浮或者溶解在其中的处理残余物同时被通过排放管线364从处理室336移出。在挤过步骤完成之后,然后在时间T4的持续期间内,处理室336经过多次减压和压缩循环。优选地,这通过如下操作来完成:在第一次排气中将处在工作压强Pop以下的处理室336排空到约1100-1200psi,然后利用第一次压强再充压操作将处理室336内的压强从1100-1200psi升高到工作压强Pop或者以上。此后,多个减压和压缩循环被完成,并且处理室被完全排空或者排气到大气压。对于晶片处理,下一个晶片处理步骤开始,或者晶片被从处理室取出,并且转移到第二处理装置或者模块以继续处理。
图线400仅仅为了示例性目的而被提供。本领域技术人员将理解,超临界处理步骤可以具有任意数量的不同的时间/压强或者温度曲线,而不偏离本发明的范围。此外,可以设想任意数量的清洁和漂洗处理工序,而每一个步骤具有任意数量的压缩和减压循环。并且,如前所述,超临界处理溶液内各种化学品和物质的浓度可以容易地为当前的应用进行设计并且在超临界处理步骤内的任意时间进行变化。根据本发明的优选实施例,电介质层在3分钟的周期内由1到10个钝化步骤处理,如上面参考图6和7所述的。
图9是概述了利用超临界清洁和处理化合物(或者钝化溶液)处理其上包括图案化的低k电介质层和刻蚀后残余物的衬底结构的步骤的框图500。在步骤502中,包括刻蚀后残余物的衬底结构被放置和密封在处理室内。在衬底结构在步骤502中被放置和密封到处理室内之后,在步骤504,处理室被用超临界二氧化碳增压,并且处理化学物质被添加到超临界二氧化碳中以生成超临界清洁和钝化溶液。优选地,清洁和钝化化学物质包括至少一种有机硅化合物。
在步骤504中生成超临界清洁和钝化溶液之后,在步骤506中,衬底结构被保持在超临界处理溶液中,持续足以将残余物的至少一部分从衬底结构去除并且钝化在残余物被去除之后所暴露的表面的时间段。在步骤506期间,超临界清洁和钝化溶液优选被循环通过处理室和/或以其他方式被搅动,以使超临界清洁溶液在衬底结构的表面上方移动。
仍然参考图9,在步骤506中残余物的至少一部分被从衬底结构去除之后,在步骤508中处理室被部分地排空。如连接步骤508和504的箭头所示,包括步骤504和506的清洁工艺被重复将残余物从衬底结构去除并且钝化所表露的表面所需的任意次数。根据本发明的实施例,包括步骤504和506的步骤使用新鲜的超临界二氧化碳,新鲜的化学物质或者使用新鲜的二氧化碳和化学物质两者。或者,通过使用超临界二氧化碳稀释处理室、通过添加清洁化学物质的附加加料或者通过其组合,改变清洁化学物质的浓度。
仍然参考图9,在处理步骤504,506和508被完成之后,在步骤510中,衬底结构优选被超临界漂洗溶液处理。超临界漂洗溶液优选包括超临界二氧化碳和一种或者多种有机溶剂,但是也可以是纯超临界二氧化碳。
仍然参考图9,在步骤504,506和508中清洁并在步骤510中漂洗衬底结构之后,在步骤512中,处理室被减压,并且衬底结构被从处理室取出。或者,衬底结构被循环经过一个或者多个附加的包括步骤504,506,508和510的清洁/漂洗工艺,如连接步骤510和504的箭头所示。或者,除了使衬底结构循环通过一个或者多个附加清洁/漂洗循环之外,还在步骤512将衬底结构从室取出之前对衬底结构进行数次漂洗循环处理,如连接步骤510和508的箭头所示。
如前面所描述的,在通过使用包括超临界二氧化碳和诸如甲醇、乙醇、正己烷和/或其组合的一种或者多种溶剂的超临界溶液钝化其上的低k电介质层之前,衬底结构可以被干燥和/或预处理。并且,如前所述,使用包括超临界二氧化碳和正己烷的超临界溶液预处理低k电介质层看起来提高了低k电介质层表面上甲硅烷基的覆盖率。并且,本领域技术人员将清楚,可以对包括刻蚀后残余物和/或图案化低k电介质层的晶片进行任意次数的清洁和钝化步骤和/或工序的处理。
本领域技术人员将理解,虽然在本文中主要针对刻蚀后处理和/或刻蚀后清洁处理描述了低k电介质材料的钝化方法,但是本发明的方法可以被直接用于钝化低k电介质材料。此外,应该理解,当根据本发明的方法处理低k电介质材料时,超临界漂洗步骤不总是必须的,并且在用超临界钝化溶液处理低k电介质材料之前仅仅干燥低k电介质材料可能对于某些应用是合适的。
在一个示例中,诸如上面在图6和图7中所详细描述的超临界处理系统被用于通过将由MSQ材料形成的低k电介质层在若干条件下暴露于修复化合物来处理具有该层的样品。在第一组条件下,用己烷和约6%的TMCS的溶液处理具有低k电介质材料层的样品。然后将样品在约100℃下退火约1小时。在第二组条件下,用具有约1.0%的TMCS的超临界二氧化碳钝化溶液在约3000psi下处理具有低k电介质材料层的样品。在第三组条件下,用具有约1.0%的TMCS的超临界二氧化碳钝化溶液在约3000psi和100℃下处理具有低k电介质材料层的样品。当样品在上述的条件下处理之后,收集了未处理样品和每一个已处理样品的傅立叶变换红外(FTIR)光谱。所收集的FTIR光谱的比较图线被示于图10A和图10B中。
图10A绘制了从波数约250m-1到4000m-1的IR光谱区域。峰611对应于Si(CH3)3基团的C-H的伸缩振动,其对于所有用处理化合物处理过的样品都明显增大了。峰661对应于Si(CH3)3基团的C-H的弯曲振动,其对于所有用处理化合物处理过的样品同样都明显增大了。图10B示出了图10A中所示的从波数约2800m-1到3100m-1的放大的IR光谱区域的比较图,以便更清楚地示出对于处理过的样品的峰661的增大。
仍然参考图10A,对应于O-H的伸缩振动的宽峰663在处理过的样品中是可以忽略不计的,但是在未处理样品中是明显的。从图10A和图10B所示的光谱,可以清楚看出TMCS在湿法操作条件下以及在超临界处理条件下对于钝化低k电介质材料表面都是有效的处理化合物。
本发明具有钝化低k电介质表面并且与诸如在超临界处理环境中为图案化的低k电介质层去除刻蚀后残余物(包括但不限于旋涂聚合物抗反射涂层和光敏聚合物)之类的其他处理步骤相容的能力。
还已经观察到本发明恢复或者部分恢复在图案化步骤之后损失的电介质材料的介电常数(k值),并且展现了制备出随时间稳定的低k电介质层。还已经观察到本发明密封或者部分密封暴露的多孔表面。
仍然上面仅仅详细描述了本发明的某些示例性实施例,但是本领域技术人员将容易理解可以在示例性实施例中进行许多修改而不实质上偏离本发明的新颖教导和优点。例如,虽然主要针对刻蚀或者灰化所产生的损伤描述了低k表面的损伤,但是本发明不限于仅仅处理这样的损坏,并且可以实施来处理对含低k膜的晶片的其他处置或处理所导致的低k膜的损伤。因此,所有这些修改都被包括在本发明的范围中。

Claims (48)

1.一种处理电介质膜的方法,包括:
将所述电介质膜的至少一个表面暴露于含CxHy材料,其中:
x和y分别是大于或者等于1的整数,并且所述电介质膜具有小于SiO2的介电常数的介电常数值。
2.如权利要求1所述的方法,还包括:
将所述电介质膜的所述至少一个表面暴露于含氮材料和含氯材料中的至少一种。
3.如权利要求1所述的方法,其中,所述将所述电介质膜暴露的操作包括将介电常数的范围从1.6到2.7的电介质膜暴露。
4.如权利要求1所述的方法,其中,所述将所述电介质膜暴露的操作包括将多孔电介质膜和无孔电介质膜中的至少之一暴露。
5.如权利要求1所述的方法,其中,所述将所述多孔电介质膜暴露的操作包括将单相材料和两相材料中的至少之一暴露。
6.如权利要求1所述的方法,其中,所述将所述电介质膜暴露的操作包括将包含有机材料和无机材料中的至少之一的膜暴露。
7.如权利要求6所述的方法,其中,所述将膜暴露的操作包括将含有无机-有机混杂材料的膜暴露。
8.如权利要求6所述的方法,其中,所述将膜暴露的操作包括将包含经氧化的有机硅烷的膜暴露。
9.如权利要求6所述的方法,其中,所述将膜暴露的操作包括将包含氢硅倍半氧烷和甲基硅倍半氧烷中的至少之一的膜暴露。
10.如权利要求6所述的方法,其中,所述将膜暴露的操作包括将包含硅酸盐基材料的膜暴露。
11.如权利要求6所述的方法,其中,所述将膜暴露的操作包括将包含硅、碳和氧的聚集膜暴露。
12.如权利要求11所述的方法,其中,所述将聚集膜暴露的操作还包括将所述聚集膜中的氢暴露。
13.如权利要求1所述的方法,其中,所述将所述电介质膜暴露于所述含CxHy材料的操作包括将所述含CxHy材料以气相,液相和处在超临界流体内的至少一种形式引入。
14.如权利要求13所述的方法,其中,所述将所述含CxHy材料以处在所述超临界流体内的形式引入的操作包括将所述含CxHy材料以处在超临界二氧化碳内的形式引入。
15.如权利要求1或者2所述的方法,其中,所述将所述电介质膜暴露于所述含CxHy材料的操作包括将所述电介质膜暴露于含CH2材料和含CH3材料中的至少一种。
16.如权利要求1所述的方法,其中,所述将所述电介质膜暴露于所述含CxHy材料的操作包括将所述电介质膜暴露于四甲基环四硅氧烷和八甲基环四硅氧烷中的至少一种。
17.如权利要求2所述的方法,其中,所述将所述电介质膜暴露于所述含CxHy材料的操作包括将所述电介质膜暴露于六甲基二硅氮烷、三甲基二硅氮烷、三甲基氯硅烷、甲基三氯硅烷、[C6H5Si(CH3)2]2NH、C15H29NSi、(CH3)2NH、和H2N(CH2)3Si(OC2H5)3中的至少一种。
18.如权利要求1所述的方法,还包括:
将所述衬底上的所述电介质膜加热到范围从50℃到400℃的温度。
19.如权利要求1或者2所述的方法,其中,所述将所述电介质膜暴露于所述含CxHy材料的操作促进了修复所述电介质膜、密封所述电介质膜和清洁所述电介质膜中至少一个操作。
20.如权利要求1所述的方法,其中,所述将所述电介质膜的至少一个表面暴露于所述含CxHy材料的操作包括将所述电介质膜的所述至少一个表面暴露于第一含CxHy材料,以及暴露于第二含CxHy材料。
21.一种在衬底上制备电介质膜的方法,包括:
在所述衬底上形成所述电介质膜;
在所述电介质膜上形成掩模;
在所述掩模中形成图案;
通过将所述掩模中的所述图案转移到所述电介质膜来在所述电介质膜中形成至少一个构件;以及
将所述电介质膜中的所述构件的侧壁暴露于处理化合物,所述处理化合物包括含CxHy材料,其中x和y分别是大于或者等于1的整数。
22.如权利要求21所述的方法,还包括:
将所述构件的所述侧壁暴露于所述处理化合物,其中所述处理化合物还包括含N材料和含Cl材料中的至少一种。
23.如权利要求21或者22所述的方法,还包括:
将所述衬底上的所述电介质膜加热到范围从50℃到400℃的温度。
24.如权利要求21或者22所述的方法,其中,所述将所述构件的所述侧壁暴露于所述含CxHy材料的操作包括将所述构件的所述侧壁暴露于含CH2材料和含CH3材料中的至少一种。
25.如权利要求21所述的方法,其中,所述将所述构件的所述侧壁暴露于所述含CxHy材料的操作包括将所述构件的所述侧壁暴露于四甲基环四硅氧烷和八甲基环四硅氧烷中的至少一种。
26.如权利要求22所述的方法,其中,所述将所述电介质膜中的所述构件的所述侧壁暴露于所述修复化合物的操作包括将所述电介质膜暴露于六甲基二硅氮烷、三甲基二硅氮烷、三甲基氯硅烷、甲基三氯硅烷、[C6H5Si(CH3)2]2NH、C15H29NSi、(CH3)2NH、和H2N(CH2)3Si(OC2H5)3中的至少一种。
27.一种处理电介质膜的方法,包括:
将所述电介质膜暴露于处理化合物,所述处理化合物包括含CxHy材料,其中x和y分别是大于或者等于1的整数。
28.如权利要求27所述的方法,还包括:
将所述电介质膜暴露于处理化合物,其中所述处理化合物还包括含N材料和含Cl材料中的至少一种。
29.如权利要求27或者28所述的方法,其中所述将所述电介质膜暴露于所述处理化合物的操作促进了修复所述电介质膜、密封所述电介质膜和清洁所述电介质膜中至少一个操作。
30.一种经处理的电介质膜,包括:
电介质膜;
形成在所述电介质膜中的构件;和
用于修复所述构件的表面的物质。
31.一种经密封的电介质膜,包括:
多孔电介质膜;
形成在所述多孔电介质膜中的构件;和
用于密封所述多孔电介质膜中的所述构件的表面上的暴露孔的物质。
32.一种用于处理衬底上的电介质膜的处理系统,包括:
处理室;
流体分配系统,所述流体分配系统耦合到所述处理室并且配置来向所述处理室供应处理化合物,以便处理所述衬底上的所述电介质膜,所述处理化合物包括含CxHy材料,其中x和y分别是大于或者等于1的整数。
33.如权利要求32所述的系统,其中所述处理化合物还包括含N材料和含Cl材料中的至少一种。
34.如权利要求32或者33所述的系统,其中所述处理化合物促进修复所述电介质膜、密封所述电介质膜和清洁所述电介质膜中的至少一个操作。
35.如权利要求32或者33所述的处理系统,其中所述含CxHy材料包括含CH2材料和含CH3材料中的至少一种。
36.如权利要求32所述的处理系统,其中所述含CxHy材料包括四甲基环四硅氧烷和八甲基环四硅氧烷中的至少一种。
37.如权利要求33所述的处理系统,其中所述处理化合物包括六甲基二硅氮烷、三甲基二硅氮烷、三甲基氯硅烷、甲基三氯硅烷、[C6H5Si(CH3)2]2NH、C15H29NSi、(CH3)2NH、和H2N(CH2)3Si(OC2H5)3中的至少一种。
38.如权利要求32所述的处理系统,其中所述处理室还包括被配置来支撑所述衬底的衬底支座。
39.如权利要求38所述的处理系统,其中所述衬底支座还被配置来将所述衬底加热到范围从50℃到400℃的温度。
40.如权利要求32所述的处理系统,其中所述处理室包括超临界处理室,并且所述流体分配系统被配置来向所述处理室供应超临界流体和所述处理化合物。
41.如权利要求32所述的处理系统,其中所述处理室包括气相处理处理室,并且所述流体分配系统被配置来向所述处理室供应所述处理化合物的蒸气。
42.如权利要求32所述的处理系统,其中所述处理室包括浸没浴,并且所述流体分配系统被配置来向所述处理室供应液化处理化合物。
43.如权利要求32所述的处理系统,其中所述处理室包括液相处理系统,并且所述流体分配系统被配置来将所述处理化合物分散在所述电介质膜上。
44.如权利要求38所述的处理系统,其中所述液相处理系统包括被配置来在所述处理化合物的所述分散过程中支撑和旋转具有所述电介质膜的衬底的衬底支座。
45.一种用于处理衬底上的电介质膜的处理系统,包括:
用于将所述电介质膜暴露于处理化合物的装置,所述处理化合物包括含CxHy材料,其中x和y分别是大于或者等于1的整数。
46.如权利要求45所述的处理系统,其中所述处理化合物还包括含N材料和含Cl材料中的至少一种。
47.如权利要求45所述的处理系统,还包括:
用于将所述衬底上的所述电介质膜加热到范围从50℃到200℃的温度的装置。
48.一种经处理的电介质膜,包括:
具有表面区域的电介质膜;和
位于所述低k膜的所述表面区域中的含CxHy材料。
CN2004800297050A 2003-10-10 2004-10-07 用于处理电介质膜的方法和系统 Expired - Fee Related CN101416277B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/682,196 2003-10-10
US10/682,196 US7553769B2 (en) 2003-10-10 2003-10-10 Method for treating a dielectric film
PCT/US2004/030909 WO2005038863A2 (en) 2003-10-10 2004-10-07 Method and system for treating a dielectric film

Publications (2)

Publication Number Publication Date
CN101416277A true CN101416277A (zh) 2009-04-22
CN101416277B CN101416277B (zh) 2011-06-22

Family

ID=34422460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800297050A Expired - Fee Related CN101416277B (zh) 2003-10-10 2004-10-07 用于处理电介质膜的方法和系统

Country Status (7)

Country Link
US (1) US7553769B2 (zh)
EP (1) EP1671360A4 (zh)
JP (1) JP4847332B2 (zh)
KR (1) KR101026211B1 (zh)
CN (1) CN101416277B (zh)
TW (1) TWI299178B (zh)
WO (1) WO2005038863A2 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102319656A (zh) * 2011-09-21 2012-01-18 上海先进半导体制造股份有限公司 Hmds自动供应系统及其自动供应的方法
CN102881585A (zh) * 2011-07-12 2013-01-16 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN103367238A (zh) * 2012-03-31 2013-10-23 中芯国际集成电路制造(上海)有限公司 一种低k介质层及其形成方法
CN103377989A (zh) * 2012-04-18 2013-10-30 中芯国际集成电路制造(上海)有限公司 大马士革结构的制作方法
CN103839871A (zh) * 2012-11-21 2014-06-04 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN104152863A (zh) * 2014-08-27 2014-11-19 上海华力微电子有限公司 一种提高钴阻挡层沉积选择比的方法
CN104319259A (zh) * 2014-10-29 2015-01-28 上海集成电路研发中心有限公司 一种超低介电常数薄膜的制作方法

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2413592A1 (en) * 2000-06-23 2002-01-03 Nigel P. Hacker Method to restore hydrophobicity in dielectric films and materials
US8277675B2 (en) * 2002-09-30 2012-10-02 Lam Research Corporation Method of damaged low-k dielectric film layer removal
WO2004068555A2 (en) * 2003-01-25 2004-08-12 Honeywell International Inc Repair and restoration of damaged dielectric materials and films
US7709371B2 (en) * 2003-01-25 2010-05-04 Honeywell International Inc. Repairing damage to low-k dielectric materials using silylating agents
US7138333B2 (en) * 2003-09-05 2006-11-21 Infineon Technologies Ag Process for sealing plasma-damaged, porous low-k materials
US8475666B2 (en) * 2004-09-15 2013-07-02 Honeywell International Inc. Method for making toughening agent materials
US20050077629A1 (en) * 2003-10-14 2005-04-14 International Business Machines Corporation Photoresist ash process with reduced inter-level dielectric ( ILD) damage
US7199046B2 (en) * 2003-11-14 2007-04-03 Tokyo Electron Ltd. Structure comprising tunable anti-reflective coating and method of forming thereof
US7250374B2 (en) * 2004-06-30 2007-07-31 Tokyo Electron Limited System and method for processing a substrate using supercritical carbon dioxide processing
US7307019B2 (en) * 2004-09-29 2007-12-11 Tokyo Electron Limited Method for supercritical carbon dioxide processing of fluoro-carbon films
US20060128163A1 (en) * 2004-12-14 2006-06-15 International Business Machines Corporation Surface treatment of post-rie-damaged p-osg and other damaged materials
US7124764B2 (en) * 2004-12-29 2006-10-24 Industrial Technology Research Institute Method for removing impurities from porous materials
US20080207005A1 (en) * 2005-02-15 2008-08-28 Freescale Semiconductor, Inc. Wafer Cleaning After Via-Etching
US7678712B2 (en) * 2005-03-22 2010-03-16 Honeywell International, Inc. Vapor phase treatment of dielectric materials
US7789971B2 (en) 2005-05-13 2010-09-07 Tokyo Electron Limited Treatment of substrate using functionalizing agent in supercritical carbon dioxide
US7335586B2 (en) * 2005-06-10 2008-02-26 Intel Corporation Sealing porous dielectric material using plasma-induced surface polymerization
US20070012337A1 (en) * 2005-07-15 2007-01-18 Tokyo Electron Limited In-line metrology for supercritical fluid processing
JP4630756B2 (ja) * 2005-08-05 2011-02-09 パナソニック株式会社 半導体装置及びその製造方法
US20090179357A1 (en) * 2005-08-12 2009-07-16 Mitsui Chemicals, Inc. Method and Apparatus for Producing Porous Silica
US20070054501A1 (en) * 2005-08-23 2007-03-08 Battelle Memorial Institute Process for modifying dielectric materials
JP4657859B2 (ja) * 2005-09-09 2011-03-23 ローム株式会社 多孔質薄膜の製造方法、多孔質薄膜およびこれを用いた半導体装置
TW200721311A (en) * 2005-10-11 2007-06-01 Toshiba Kk Semiconductor device manufacturing method and chemical fluid used for manufacturing semiconductor device
JP5019741B2 (ja) * 2005-11-30 2012-09-05 東京エレクトロン株式会社 半導体装置の製造方法および基板処理システム
WO2007087831A1 (en) * 2006-02-03 2007-08-09 Freescale Semiconductor, Inc. 'universal' barrier cmp slurry for use with low dielectric constant interlayer dielectrics
US7485573B2 (en) * 2006-02-17 2009-02-03 International Business Machines Corporation Process of making a semiconductor device using multiple antireflective materials
US20090301867A1 (en) * 2006-02-24 2009-12-10 Citibank N.A. Integrated system for semiconductor substrate processing using liquid phase metal deposition
JP4716370B2 (ja) * 2006-03-27 2011-07-06 東京エレクトロン株式会社 低誘電率膜のダメージ修復方法及び半導体製造装置
US7623978B2 (en) * 2006-03-30 2009-11-24 Tokyo Electron Limited Damage assessment of a wafer using optical metrology
US7619731B2 (en) * 2006-03-30 2009-11-17 Tokyo Electron Limited Measuring a damaged structure formed on a wafer using optical metrology
US7324193B2 (en) * 2006-03-30 2008-01-29 Tokyo Electron Limited Measuring a damaged structure formed on a wafer using optical metrology
US7576851B2 (en) * 2006-03-30 2009-08-18 Tokyo Electron Limited Creating a library for measuring a damaged structure formed on a wafer using optical metrology
US20080067145A1 (en) * 2006-09-14 2008-03-20 United Microelectronics Corp. Method of recycling dummy wafer
US7723237B2 (en) * 2006-12-15 2010-05-25 Tokyo Electron Limited Method for selective removal of damaged multi-stack bilayer films
US7500397B2 (en) * 2007-02-15 2009-03-10 Air Products And Chemicals, Inc. Activated chemical process for enhancing material properties of dielectric films
US20100015731A1 (en) * 2007-02-20 2010-01-21 Lam Research Corporation Method of low-k dielectric film repair
US20090026924A1 (en) * 2007-07-23 2009-01-29 Leung Roger Y Methods of making low-refractive index and/or low-k organosilicate coatings
US8282844B2 (en) 2007-08-01 2012-10-09 Tokyo Electron Limited Method for etching metal nitride with high selectivity to other materials
KR100861311B1 (ko) * 2007-09-10 2008-10-01 주식회사 하이닉스반도체 반도체 소자의 소자분리막 형성방법
KR101542636B1 (ko) * 2007-12-19 2015-08-06 램 리써치 코포레이션 나노다공성 로우-k 유전체 재료 처리 방법
JP5173396B2 (ja) * 2007-12-25 2013-04-03 大陽日酸株式会社 絶縁膜のダメージ回復処理方法
CN102046699B (zh) * 2008-05-26 2012-09-05 巴斯夫欧洲公司 制备多孔材料的方法和通过该方法制备的多孔材料
WO2010027128A1 (en) * 2008-09-02 2010-03-11 Cheil Industries Inc. Compound for filling small gaps in semiconductor device, composition comprising the compound and process for fabricating semiconductor capacitor
JP5565314B2 (ja) * 2008-12-08 2014-08-06 富士通株式会社 半導体装置の製造方法及びその製造装置
EP2406267B1 (en) * 2009-03-10 2019-02-20 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Cyclic amino compounds for low-k silylation
US9017933B2 (en) * 2010-03-29 2015-04-28 Tokyo Electron Limited Method for integrating low-k dielectrics
US9478437B2 (en) * 2011-06-01 2016-10-25 Applied Materials, Inc. Methods for repairing low-k dielectrics using carbon plasma immersion
EP2714960B1 (en) * 2011-06-03 2018-02-28 Versum Materials US, LLC Compositions and processes for depositing carbon-doped silicon-containing films
US8592327B2 (en) 2012-03-07 2013-11-26 Tokyo Electron Limited Formation of SiOCl-containing layer on exposed low-k surfaces to reduce low-k damage
US8551877B2 (en) 2012-03-07 2013-10-08 Tokyo Electron Limited Sidewall and chamfer protection during hard mask removal for interconnect patterning
US8809194B2 (en) 2012-03-07 2014-08-19 Tokyo Electron Limited Formation of SiOCl-containing layer on spacer sidewalls to prevent CD loss during spacer etch
WO2013158526A1 (en) * 2012-04-17 2013-10-24 Praxair Technology, Inc. System for delivery of purified multiple phases of carbon dioxide to a process tool
US8859430B2 (en) 2012-06-22 2014-10-14 Tokyo Electron Limited Sidewall protection of low-K material during etching and ashing
US8962078B2 (en) * 2012-06-22 2015-02-24 Tokyo Electron Limited Method for depositing dielectric films
US9029171B2 (en) * 2012-06-25 2015-05-12 Taiwan Semiconductor Manufacturing Co., Ltd. Self repairing process for porous dielectric materials
FR3000602B1 (fr) * 2012-12-28 2016-06-24 Commissariat A L Energie Atomique Et Aux Energies Alternatives Procede de gravure d'un materiau dielectrique poreux
US8871639B2 (en) * 2013-01-04 2014-10-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
KR102341710B1 (ko) 2014-11-25 2021-12-22 삼성전자주식회사 다공성 절연막의 처리 방법 및 이를 이용한 반도체 소자의 제조 방법
JP6803842B2 (ja) 2015-04-13 2020-12-23 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. オプトエレクトロニクス用途のためのポリシロキサン製剤及びコーティング
US10544330B2 (en) 2017-01-20 2020-01-28 Honeywell International Inc. Gap filling dielectric materials

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2899600B2 (ja) * 1994-01-25 1999-06-02 キヤノン販売 株式会社 成膜方法
AU3055599A (en) 1998-04-01 1999-10-25 Asahi Kasei Kogyo Kabushiki Kaisha Method of manufacturing interconnection structural body
JP3248492B2 (ja) * 1998-08-14 2002-01-21 日本電気株式会社 半導体装置及びその製造方法
JP2000340651A (ja) * 1999-05-28 2000-12-08 Hitachi Chem Co Ltd 低誘電率膜の製造法
US6318124B1 (en) * 1999-08-23 2001-11-20 Alliedsignal Inc. Nanoporous silica treated with siloxane polymers for ULSI applications
TW452863B (en) 2000-04-07 2001-09-01 Nano Architect Res Corp Methods for reducing a dielectric constant of a dielectric film and for forming a low dielectric constant porous film
US6486082B1 (en) * 2001-06-18 2002-11-26 Applied Materials, Inc. CVD plasma assisted lower dielectric constant sicoh film
TW492145B (en) 2001-06-21 2002-06-21 United Microelectronics Corp Method of avoiding dielectric layer deterioration with a low dielectric constant
WO2003005438A2 (en) * 2001-07-02 2003-01-16 Dow Corning Corporation Improved metal barrier behavior by sic:h deposition on porous materials
US6570256B2 (en) * 2001-07-20 2003-05-27 International Business Machines Corporation Carbon-graded layer for improved adhesion of low-k dielectrics to silicon substrates
US6670717B2 (en) * 2001-10-15 2003-12-30 International Business Machines Corporation Structure and method for charge sensitive electrical devices
JP4152619B2 (ja) * 2001-11-14 2008-09-17 株式会社ルネサステクノロジ 半導体装置およびその製造方法
TW521312B (en) 2002-03-01 2003-02-21 Nat Science Council Manufacture method of increasing oxygen plasma resistance of porous low-k
US6875709B2 (en) * 2003-03-07 2005-04-05 Taiwan Semiconductor Manufacturing Comapny, Ltd. Application of a supercritical CO2 system for curing low k dielectric materials
US7345000B2 (en) * 2003-10-10 2008-03-18 Tokyo Electron Limited Method and system for treating a dielectric film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881585A (zh) * 2011-07-12 2013-01-16 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN102319656A (zh) * 2011-09-21 2012-01-18 上海先进半导体制造股份有限公司 Hmds自动供应系统及其自动供应的方法
CN102319656B (zh) * 2011-09-21 2013-06-12 上海先进半导体制造股份有限公司 Hmds自动供应系统及其自动供应的方法
CN103367238A (zh) * 2012-03-31 2013-10-23 中芯国际集成电路制造(上海)有限公司 一种低k介质层及其形成方法
CN103367238B (zh) * 2012-03-31 2016-02-03 中芯国际集成电路制造(上海)有限公司 一种低k介质层及其形成方法
CN103377989A (zh) * 2012-04-18 2013-10-30 中芯国际集成电路制造(上海)有限公司 大马士革结构的制作方法
CN103377989B (zh) * 2012-04-18 2015-08-05 中芯国际集成电路制造(上海)有限公司 大马士革结构的制作方法
CN103839871A (zh) * 2012-11-21 2014-06-04 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN103839871B (zh) * 2012-11-21 2017-09-08 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN104152863A (zh) * 2014-08-27 2014-11-19 上海华力微电子有限公司 一种提高钴阻挡层沉积选择比的方法
CN104319259A (zh) * 2014-10-29 2015-01-28 上海集成电路研发中心有限公司 一种超低介电常数薄膜的制作方法

Also Published As

Publication number Publication date
EP1671360A2 (en) 2006-06-21
CN101416277B (zh) 2011-06-22
US7553769B2 (en) 2009-06-30
US20050077597A1 (en) 2005-04-14
KR101026211B1 (ko) 2011-03-31
JP2007517380A (ja) 2007-06-28
JP4847332B2 (ja) 2011-12-28
WO2005038863A3 (en) 2009-04-02
TWI299178B (en) 2008-07-21
KR20060126933A (ko) 2006-12-11
TW200522141A (en) 2005-07-01
EP1671360A4 (en) 2010-04-14
WO2005038863A2 (en) 2005-04-28

Similar Documents

Publication Publication Date Title
CN101416277B (zh) 用于处理电介质膜的方法和系统
US7345000B2 (en) Method and system for treating a dielectric film
US7901743B2 (en) Plasma-assisted vapor phase treatment of low dielectric constant films using a batch processing system
US7270941B2 (en) Method of passivating of low dielectric materials in wafer processing
US7387868B2 (en) Treatment of a dielectric layer using supercritical CO2
US8039049B2 (en) Treatment of low dielectric constant films using a batch processing system
US7405168B2 (en) Plural treatment step process for treating dielectric films
US7169540B2 (en) Method of treatment of porous dielectric films to reduce damage during cleaning
US9502255B2 (en) Low-k damage repair and pore sealing agents with photosensitive end groups
JPH05326464A (ja) 基板表面の気相洗浄方法
EP1495366A1 (en) Method of treatment of porous dielectric films to reduce damage during cleaning
US7399708B2 (en) Method of treating a composite spin-on glass/anti-reflective material prior to cleaning
TW200305213A (en) Method of passivating of low dielectric materials in wafer processing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110622

Termination date: 20171007