CN101367756A - 用于制造相变存储器材料的碲(Te)前驱体 - Google Patents

用于制造相变存储器材料的碲(Te)前驱体 Download PDF

Info

Publication number
CN101367756A
CN101367756A CNA2008101258763A CN200810125876A CN101367756A CN 101367756 A CN101367756 A CN 101367756A CN A2008101258763 A CNA2008101258763 A CN A2008101258763A CN 200810125876 A CN200810125876 A CN 200810125876A CN 101367756 A CN101367756 A CN 101367756A
Authority
CN
China
Prior art keywords
deposition
contain
presoma
tellurium
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101258763A
Other languages
English (en)
Other versions
CN101367756B (zh
Inventor
萧满超
T·R·加夫尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of CN101367756A publication Critical patent/CN101367756A/zh
Application granted granted Critical
Publication of CN101367756B publication Critical patent/CN101367756B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/004Acyclic, carbocyclic or heterocyclic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C395/00Compounds containing tellurium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02562Tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/023Formation of switching materials, e.g. deposition of layers by chemical vapor deposition, e.g. MOCVD, ALD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Chemical Vapour Deposition (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

说明书中公开了用于制造相变存储器材料的碲(Te)前驱体,特别是含碲(Te)前驱体、含Te硫属元素化物相变材料。说明书中还公开了使用ALD、CVD或循环CVD法制造含Te硫属元素化物相变材料的方法,其中至少一种公开的含碲(Te)前驱体引入该方法。

Description

用于制造相变存储器材料的碲(Te)前驱体
与相关申请的相互参考
[0001]按照35 U.S.C.§119(e),本申请要求于2007年4月24日提交的在先提交的美国专利申请序列号60/913,798的优先权。
技术领域
本发明涉及用于制造相变存储器材料的碲(Te)前驱体。
背景技术
[0002]相变材料按照温度以晶体状态或无定形状态存在。相比无定形状态,晶体状态下的相变材料具有更低的电阻和更加有序的原子排布。基于操作温度,可以将相变材料可逆地由晶体状态向无定形状态转化。这种特性,即可逆的相变和不同状态下的不同电阻,被应用于新提出的电子器件,新型的非易失性存储器器件,相变随机存取存储器(PRAM)器件。PRAM的电阻可基于其含有的相变材料的状态(例如,晶体、无定形等)而变化。
[0003]可以将各种类型的相变材料用于存储器器件,最常用的相变材料是14族和15族元素的硫属元素化物的三元组合物,例如锗—锑—碲化合物,一般简写为GST。在加热和冷却的循环中,GST的固体相可以迅速地由晶体转变为无定形,或反之亦然。无定形GST具有相对较高的电阻,而晶体GST具有相对较低的电阻。
[0004]目前,在可擦写光盘的制造中采用物理气相沉积(PVD)法或溅射在塑料基底上涂覆相变材料薄层。然而,由于膜生长控制和涂膜性能,PVD法不适用于电子器件。为制造PRAM,采用化学气相沉积(CVD)或原子层沉积(ALD)技术在硅基底上沉积GST薄层。相变存储器的发展日益需要采用适于低温沉积的前驱体的ALD/CVD方法。
发明内容
[0005]本发明通过提供含碲化合物作为Te前驱体满足了采用低温ALD、CVD或循环CVD法沉积三元锗—锑—碲膜的需要。
[0006]本说明书公开了含Te的组合物。这种含Te组合物包括具有下列一般结构的氘化有机碲酚(organotellurol):
R-Te-D
其中R选自含1—10个碳的直链、支链或环状形式的烷基或烯基;含C6-12的芳基;二烷氨基;甲硅烷基(organosilyl)和有机锗基(organogermyl)。
[0007]说明书中公开了含Te硫属元素化物相变材料。通过沉积选自
(a)有机碲酚(organotellurol),其具有一般结构:
R-Te-R’
其中R选自含1—10个碳的直链、支链或环状形式的烷基或烯基;含C6-12的芳基;二烷氨基;甲硅烷基和有机锗基;R’选自氢和氘;
(b)具有以下一般结构的组合物:
R”2Te
其中R”选自氢和氘;和
(c)六氟化碲
的Te前驱体制备该含Te硫属元素化物相变材料。
[0008]说明书中还公开了在基底上沉积含Te硫属元素化物相变材料的方法。
该方法包括步骤:
沉积包括选自以下的含碲组合物的Te前驱体:
(a)有机碲酚,其具有一般结构:
R-Te-R’
其中R选自含1—10个碳的直链、支链或环状形式的烷基或烯基;含C6-12的芳基;二烷氨基;甲硅烷基和有机锗基;R’选自氢和氘;
(b)一般结构:
R”2Te
其中R”选自氢和氘;和
(c)六氟化碲,与氨反应;
沉积包括具有以下一般结构的氨基锗烷(germane)的Ge前驱体:
(R1R2N)4Ge
其中R1和R2为含有1—10个碳的直链、支链或环状形式的烷基;和
沉积包括具有以下一般结构的氨基锑烷的Sb前驱体:
(R1R2N)3Sb
其中R1和R2为含有1—10个碳的直链、支链或环状形式的烷基。
[0009]可以以任何顺序依次或同时实施该方法中的三个沉积步骤。或者,可以同时实施三个沉积步骤中的任何两个。在100—400℃通过ALD、CVD或循环CVD法实施该方法。
具体实施方式
[0010]本发明涉及作为Te前驱体的经选择的碲化合物,并使用经选择的碲化合物同氨基锗及氨基锑化合物一起通过ALD、CVD或循环CVD法在低温方法中生产三元锗—锑—碲膜。
[0011]在本发明的一个具体实施方式中,用于低温沉积方法的Te前驱体包括碲化氢(H2Te)。氨基金属化合物对水解具有反应活性。氢的硫属元素化物均比水酸性强。氨基锗烷和氨基锑烷与碲化氢在低温(<250℃)下反应形成金属碲化物。沉积四(二甲氨基)锗烷、(Me2N)4Ge和三(二甲氨基)锑、(Me2N)3Sb,随后经碲化氢处理,是ALD或CVD法制造用于相变存储器应用的GST膜的合适途径。碲化氢是沸点为—4℃的气态化合物。它在0℃以上不稳定,分解为元素碲和氢。为了克服这个问题,可以通过原位生成来生产碲化氢,并立即引入反应室中。
Figure A200810125876D00071
[0012]在本发明的另一个具体实施方式中,Te前驱体包括碲化氘(D2Te)。氘是氢的较重的同位素(其原子核含有额外的中子)。与相应的规则的碲化氢相比,碲化氘具有提高的热稳定性。
[0013]作为热稳定性更高的碲化合物,公开了有机碲酚和氘化有机碲酚作为更适于三元锗—锑—碲膜沉积的碲前驱体。
[0014]在本发明的另一个具体实施方式中,用于低温沉积工艺的Te前驱体包括有机碲酚。有机碲酚具有酸性的Te-H键,其对于氨基金属化合物中的Ge-N和Sb-N键具有高反应性。以挥发性的胺作为脱离化合物,在相对较低的温度下形成Te-Ge和Te-Sb键。该反应在下图中被说明:
Figure A200810125876D00081
[0015]含有机碲酚的Te前驱体具有一般结构式
R—Te—R’
其中R为含有1—10个碳的直链、支链或环状形式的烷基或烯基;或含C6-12的芳基,如苯基;或二烷氨基;或甲硅烷基;或有机锗基;R’为氢或氘。
[0016]烷基碲为优选的碲前驱体。它们是挥发性的液体,并可以通过蒸汽提取或直接液体注射法输送。叔丁基碲酚具有键能为26kcal/mol的弱Te-C键。叔丁基可以在相对较低的温度下断裂。这有助于降低所得GST膜中的碳含量。
[0017]与相应的规则的有机碲酚相比,氘化有机碲酚具有提高的热稳定性,导致较长的保存期和较宽的工艺范围。由于一级动力学同位素效应,Te-D键比Te-H键更稳定。因此,在储存和输送过程中氘化有机碲酚具有较小的分解趋向,而同时保持与锗和锑形成碲化物相似的化学反应活性。
[0018]包括氘化有机碲酚的例子为正丁基碲酚(butyltellurol)-D和叔丁基碲酚-D,其中“D”为氘。
[0019]在本发明的另一个具体实施方式中,Te前驱体包括四(二烷氨基)碲,其中,烷基独立地选自甲基、乙基、丙基、异丙基、丁基和叔丁基。
[0020]可以按希望的摩尔比将包括四(二甲氨基)碲的Te前驱体与四(二甲氨基)锗(Me2N)4Ge和三(二甲氨基)锑烷混合形成均匀溶液。通过直接液体注射法将这样的溶液引入沉积室中。将这些化学品沉积在热的基底表面。随后采用氢或氢等离子体的还原反应除去氨基并形成具有适宜元素比的GST层。这些步骤形成ALD或循环CVD法的循环。
Figure A200810125876D00091
[0021]在本发明的又一个具体实施方式中,Te前驱体包含六氟化碲。六氟化碲TeF6是沸点为-38℃的无色气体。与硫的类似体不同,六氟化碲不是化学惰性的。这可能归因于d轨道的较大的可利用性和可能的f轨道的可利用性,这一点硫或硒都不具备。
[0022]在本发明的另一个具体实施方式中,以任何已知的沉积方法,如ALD、CVD或循环CVD法,通过沉积选自任何前面公开的具体实施方式中的Te前驱体来合成含Te硫属元素化物相变材料。
[0023]在本发明的又一个具体实施方式中,制造含Te硫属元素化物相变材料的方法可以以任何已知的沉积方法,如ALD、CVD或循环CVD法,将前面公开的具体实施方式中的Te前驱体与Ge前驱体和Sb前驱体一起沉积。
[0024]Ge前驱体和Sb前驱体的例子是具有以下一般结构的氨基锗烷和氨基锑烷:
(R1R2N)4Ge和(R1R2N)3Sb
其中R1和R2独立地是含1至10个碳的,直链、支链或环状形式的烷基。
[0025]例如,作为碲前驱体,六氟化碲可以在沉积室中与氨反应以形成氨基碲,随后可以与氨基锗烷和氨基锑烷反应,接着是氢还原以在基底上形成GST膜。
TeF6+NH3---->[Te(NH2)n]+NH4F
[0026]在用于制造GST薄膜的方法中,可以依次沉积三种前驱体。将三种前驱体中的任何一种如Ge前驱体沉积在具有适于化学反应的温度的热的基底表面上。例如,在净化/清洗步骤之后,通过流入惰性气体将第二种前驱体如Sb前驱体沉积在具有Ge薄层的基底表面上。在另一次净化/清洁步骤之后,将最后一种前驱体如Te前驱体沉积在含有Ge和Sb薄层的基底表面上。三种前驱体中的任何一种都可以作为此方法中的第一种或第二种或第三种前驱体。为了本发明的目的,在基底上沉积不仅包括直接在基底本身上沉积,还包括在三种反应物中已经沉积在基底上的一种之上沉积另一种。
[0027]或者,沉积方法可以同时沉积三种前驱体中的任何两种,或同时沉积全部三种前驱体。
[0028]另外,可以重复沉积方法以制造多层膜。
[0029]可以在100—400℃实施膜沉积。
工作实施例
[0030]在用于低温沉积的Te前驱体的制备中,可以使用各种已知方法中的任一种。在已知的方法中,按照本发明实施例的具体实施方式的Te前驱体制备方法描述如下。
实施例I 合成正丁基碲酚-D
[0031]将6.4g(0.05mol)200目的碲粉、100ml二乙醚和20ml在己烷中的2.5M叔丁基锂加入到250ml的烧瓶中。在0℃下,将混合物搅拌8小时。所有碲的黑色粉末消失而形成泥色沉淀物。向该混合物中加入5.4g(0.05mol)三甲基氯硅烷。使混合物升至室温。搅拌2小时后,缓慢加入2.0g(0.06mol)氘化甲醇(MeOD)。搅拌1小时后,将混合物在惰性气氛下过滤。经蒸馏除去溶剂和副产物甲氧基三甲基硅烷。真空蒸馏得到正丁基碲酚-D。沸点为85℃/100mmHg。
实施例II 合成叔丁基碲酚-D
[0032]将12.8g(0.10mol)200目的碲粉、250ml二乙醚和50ml在二乙醚中的2.0M叔丁基氯化镁溶液加入到500ml的烧瓶中。室温下,将混合物搅拌24小时。所有碲的黑色粉末消失而形成亮灰色沉淀物。用干冰浴将混合物冷至-50℃。向该混合物中缓慢加入10.0g(0.21mol)氘化乙醇(EtOD)。使混合物升至室温。搅拌2小时后,将混合物在惰性气氛下过滤。蒸馏除去醚溶剂。真空蒸馏得到叔丁基碲酚-D。沸点为65℃/100mmHg。
[0032]包括工作实施例的上述本发明的具体实施方式是可以构成本发明的众多具体实施方式的示例。预期可以使用该方法的众多其它组合,且在该方法中使用的材料可以选自具体公开的那些材料之外的众多材料。

Claims (21)

1.含Te组合物,包括具有以下一般结构的氘化有机碲酚:
R-Te-D
其中R选自含1—10个碳的直链、支链或环状形式的烷基或烯基;含C6-12的芳基;二烷氨基;甲硅烷基和有机锗基。
2.权利要求1的含Te组合物,选自正丁基碲酚-D和叔丁基碲酚-D。
3.含Te硫属元素化物相变材料,通过选自以下的Te前驱体合成
(a)有机碲酚,其具有一般结构:
R-Te-R’
其中R选自含1—10个碳的直链、支链或环状形式的烷基或烯基;含C6-12的芳基;二烷氨基;甲硅烷基和有机锗基;R’选自氢和氘;
(b)具有以下一般结构的组合物:
R”2Te
其中R”选自氢和氘;和
(c)六氟化碲。
4.在基底上沉积含Te硫属元素化物相变材料的方法,包括以下步骤:
沉积包括具有以下一般结构的有机碲酚的Te前驱体:
R-Te-R’
其中R选自含1—10个碳的直链、支链或环状形式的烷基或烯基;含C6-12的芳基;二烷氨基;甲硅烷基和有机锗基;R’选自氢和氘;
沉积包括具有以下一般结构的氨基锗烷的Ge前驱体:
(R1R2N)4Ge
其中R1和R2为含有1—10个碳的直链、支链或环状形式的烷基;和
沉积包括具有以下一般结构的氨基锑烷的Sb前驱体:
(R1R2N)3Sb
其中R1和R2为含有1—10个碳的直链、支链或环状形式的烷基。
5.权利要求4的方法,其中该方法进一步包括在每个沉积步骤之后引入氢或氢等离子体的步骤。
6.权利要求4的方法,其中该方法进一步包括在三个沉积步骤之后引入氢或氢等离子体的步骤。
7.权利要求4的方法,其中依次或同时实施三个沉积步骤。
8.权利要求4的方法,其中同时实施三个沉积步骤中的任何两个。
9.权利要求4的方法,其中通过选自ALD、CVD和循环CVD法的方法实施沉积。
10.在基底上沉积含Te硫属元素化物相变材料的方法,包括以下步骤:
沉积包括具有以下一般结构的含Te组合物的Te前驱体:
R”2Te
其中R”选自氢和氘;
沉积包括具有以下一般结构的氨基锗烷的Ge前驱体:
(R1R2N)4Ge
其中R1和R2为含有1—10个碳的直链、支链或环状形式的烷基;和
沉积包括具有以下一般结构的氨基锑烷的Sb前驱体:
R1R2N)3Sb
其中R1和R2为含有1—10个碳的直链、支链或环状形式的烷基。
11.权利要求10的方法,其中该方法进一步包括在每个沉积步骤之后引入氢或氢等离子体的步骤。
12.权利要求10的方法,其中该方法进一步包括在三个沉积步骤之后引入氢或氢等离子体的步骤。
13.权利要求10的方法,其中依次或同时实施三个沉积步骤。
14.权利要求10的方法,其中同时实施三个沉积步骤中的任何两个。
15.权利要求10的方法,其中通过选自ALD、CVD和循环CVD法的方法实施沉积。
16.在基底上沉积含Te硫属元素化物相变材料的方法,包括以下步骤:
通过使六氟化碲与氨反应沉积包括氨基碲的Te前驱体:
沉积包括具有以下一般结构的氨基锗烷的Ge前驱体:
(R1R2N)4Ge
其中R1和R2为含有1—10个碳的直链、支链或环状形式的烷基;和
沉积包括具有以下一般结构的氨基锑烷的Sb前驱体:
(R1R2N)3Sb
其中R1和R2为含有1—10个碳的直链、支链或环状形式的烷基。
17.权利要求16的方法,其中该方法进一步包括在每个沉积步骤之后引入氢或氢等离子体的步骤。
18.权利要求16的方法,其中该方法进一步包括在三个沉积步骤之后引入氢或氢等离子体的步骤。
19.权利要求16的方法,其中依次或同时实施三个沉积步骤。
20.权利要求16的方法,其中同时实施三个沉积步骤中的任何两个。
21.权利要求16的方法,其中通过选自ALD、CVD和循环CVD法的方法实施沉积。
CN2008101258763A 2007-04-24 2008-04-24 用于制造相变存储器材料的碲(Te)前驱体 Expired - Fee Related CN101367756B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US91379807P 2007-04-24 2007-04-24
US60/913798 2007-04-24
US12/100,824 US8377341B2 (en) 2007-04-24 2008-04-10 Tellurium (Te) precursors for making phase change memory materials
US12/100824 2008-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2012105682173A Division CN103132050A (zh) 2007-04-24 2008-04-24 用于制造相变存储器材料的碲前驱体

Publications (2)

Publication Number Publication Date
CN101367756A true CN101367756A (zh) 2009-02-18
CN101367756B CN101367756B (zh) 2013-02-06

Family

ID=39790835

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2008101258763A Expired - Fee Related CN101367756B (zh) 2007-04-24 2008-04-24 用于制造相变存储器材料的碲(Te)前驱体
CN2012105682173A Pending CN103132050A (zh) 2007-04-24 2008-04-24 用于制造相变存储器材料的碲前驱体

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2012105682173A Pending CN103132050A (zh) 2007-04-24 2008-04-24 用于制造相变存储器材料的碲前驱体

Country Status (6)

Country Link
US (2) US8377341B2 (zh)
EP (1) EP1995236B1 (zh)
JP (2) JP5080345B2 (zh)
KR (1) KR100994346B1 (zh)
CN (2) CN101367756B (zh)
TW (1) TWI373463B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163555A (zh) * 2010-02-23 2011-08-24 气体产品与化学公司 制造多成分薄膜的方法
CN102395528A (zh) * 2009-04-15 2012-03-28 美光科技公司 形成碲烷氧化物的方法和形成混合的碲卤化物-烷氧化物的方法
US8697486B2 (en) 2009-04-15 2014-04-15 Micro Technology, Inc. Methods of forming phase change materials and methods of forming phase change memory circuitry
CN104341355A (zh) * 2014-10-22 2015-02-11 江南大学 用于相变存储材料的氨基嘧啶Ge(Ⅱ)前质体及其制备方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG171683A1 (en) 2006-05-12 2011-06-29 Advanced Tech Materials Low temperature deposition of phase change memory materials
KR20120118060A (ko) 2006-11-02 2012-10-25 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 금속 박막의 cvd/ald용으로 유용한 안티몬 및 게르마늄 착체
US8454928B2 (en) 2007-09-17 2013-06-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Tellurium precursors for GST deposition
KR101458953B1 (ko) 2007-10-11 2014-11-07 삼성전자주식회사 Ge(Ⅱ)소오스를 사용한 상변화 물질막 형성 방법 및상변화 메모리 소자 제조 방법
US8834968B2 (en) 2007-10-11 2014-09-16 Samsung Electronics Co., Ltd. Method of forming phase change material layer using Ge(II) source, and method of fabricating phase change memory device
SG152203A1 (en) * 2007-10-31 2009-05-29 Advanced Tech Materials Amorphous ge/te deposition process
US20090215225A1 (en) 2008-02-24 2009-08-27 Advanced Technology Materials, Inc. Tellurium compounds useful for deposition of tellurium containing materials
KR101580575B1 (ko) 2008-04-25 2015-12-28 에이에스엠 인터내셔널 엔.브이. 텔루르와 셀렌 박막의 원자층 증착을 위한 전구체의 합성과 그 용도
US8802194B2 (en) 2008-05-29 2014-08-12 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Tellurium precursors for film deposition
US8101237B2 (en) * 2008-05-29 2012-01-24 L'Air Liquide SociétéAnonyme pour I'Etude et I'Exploitation des Procédés Georges Claude Tellurium precursors for film deposition
US8636845B2 (en) 2008-06-25 2014-01-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal heterocyclic compounds for deposition of thin films
US8236381B2 (en) 2008-08-08 2012-08-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Metal piperidinate and metal pyridinate precursors for thin film deposition
US8691668B2 (en) 2009-09-02 2014-04-08 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Dihalide germanium(II) precursors for germanium-containing film depositions
WO2011056519A2 (en) 2009-10-26 2011-05-12 Asm International N.V. Synthesis and use of precursors for ald of group va element containing thin films
WO2011095849A1 (en) 2010-02-03 2011-08-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Chalcogenide-containing precursors, methods of making, and methods of using the same for thin film deposition
US8124445B2 (en) 2010-07-26 2012-02-28 Micron Technology, Inc. Confined resistance variable memory cell structures and methods
KR101335019B1 (ko) * 2012-03-14 2013-12-02 한국화학연구원 원자층 증착 기술을 이용한 안티몬을 포함하는 박막의 형성 방법
KR20140063684A (ko) * 2011-08-19 2014-05-27 도쿄엘렉트론가부시키가이샤 Ge - Sb - Te막의 성막 방법, Ge - Te막의 성막 방법, Sb - Te막의 성막 방법 및 프로그램
KR102022409B1 (ko) 2013-03-13 2019-09-18 삼성전자주식회사 박막 형성 방법 및 이를 이용한 상변화 메모리 소자의 제조 방법
US9214630B2 (en) 2013-04-11 2015-12-15 Air Products And Chemicals, Inc. Method of making a multicomponent film
KR101851722B1 (ko) * 2015-11-19 2018-06-11 세종대학교산학협력단 칼코겐-함유 막 및 이의 제조 방법
US20170213960A1 (en) * 2016-01-26 2017-07-27 Arm Ltd. Fabrication and operation of correlated electron material devices
CN106565573B (zh) * 2016-09-23 2019-01-29 南京大学 二(二甲氨基)碲的制备方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3058802A (en) 1958-06-13 1962-10-16 Monsanto Chemicals Method for the preparation of inorganic selenides and tellurides
GB982534A (en) 1962-05-31 1965-02-03 Ass Elect Ind Preparation of selenides and tellurides
EP0140625B1 (en) 1983-10-19 1988-06-08 The Marconi Company Limited Tellurides
US4828938A (en) 1986-04-11 1989-05-09 Hughes Aircraft Company Method for depositing materials containing tellurium and product
US5035874A (en) 1987-06-26 1991-07-30 The United Staes Of America As Represented By The Secretary Of The Navy Diallyl telluride and synthesis of diorgano tellurides
US5043476A (en) 1987-06-26 1991-08-27 The United States Of America As Represented By The Secretary Of The Navy Diallyl telluride
US4865822A (en) 1987-07-31 1989-09-12 Advanced Technology Materials, Inc. Process for purifying hydrogen selenide and hydrogen telluride, to remove moisture and oxidant impurities therefrom
US4946994A (en) 1987-12-21 1990-08-07 The United States Of America As Represented By The Secretary Of The Navy Preparation of ditertiarybutyltelluride
US5312983A (en) 1991-02-15 1994-05-17 Advanced Technology Materials, Inc. Organometallic tellurium compounds useful in chemical vapor deposition processes
US5157136A (en) 1991-04-09 1992-10-20 Regents Of The University Of California Single-source metalloorganic precursors to produce ii/vi materials
US6607829B1 (en) 1997-11-13 2003-08-19 Massachusetts Institute Of Technology Tellurium-containing nanocrystalline materials
US6225237B1 (en) 1998-09-01 2001-05-01 Micron Technology, Inc. Method for forming metal-containing films using metal complexes with chelating O- and/or N-donor ligands
US6447576B1 (en) 1999-10-29 2002-09-10 Japan Pionics Co., Ltd. Cleaning agent and cleaning process of harmful gas
JP4689969B2 (ja) 2003-04-05 2011-06-01 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Iva族およびvia族化合物の調製
US7307870B2 (en) 2004-01-28 2007-12-11 Zettacore, Inc. Molecular memory devices and methods
US20050162895A1 (en) 2004-01-28 2005-07-28 Kuhr Werner G. Molecular memory arrays and devices
US7705036B2 (en) * 2004-04-01 2010-04-27 Cardiome Pharma Corp. Deuterated aminocyclohexyl ether compounds and processes for preparing same
DE602005026797D1 (de) 2004-04-29 2011-04-21 Zettacore Inc Erfahren dafür
KR100642634B1 (ko) 2004-06-29 2006-11-10 삼성전자주식회사 게이트 상전이막 패턴을 갖는 피이. 램들 및 그 형성방법들
US7046500B2 (en) 2004-07-20 2006-05-16 Samsung Electro-Mechanics Co., Ltd. Laminated ceramic capacitor
KR100655796B1 (ko) 2004-08-17 2006-12-11 삼성전자주식회사 상변화 메모리 장치 및 그 제조 방법
KR100566699B1 (ko) 2004-08-17 2006-04-03 삼성전자주식회사 상변화 메모리 장치 및 그 제조 방법
KR100652378B1 (ko) 2004-09-08 2006-12-01 삼성전자주식회사 안티몬 프리커서 및 이를 이용한 상변화 메모리 소자의 제조방법
US7615169B2 (en) 2004-09-20 2009-11-10 The Regents Of The University Of California Method for synthesis of colloidal nanoparticles
JP2006165553A (ja) 2004-12-02 2006-06-22 Samsung Electronics Co Ltd 相変化ナノ粒子を含む相変化物質層を備える相変化メモリ素子及びその製造方法
KR100585175B1 (ko) * 2005-01-31 2006-05-30 삼성전자주식회사 화학 기상 증착법에 의한 GeSbTe 박막의 제조방법
KR100688532B1 (ko) 2005-02-14 2007-03-02 삼성전자주식회사 텔루르 전구체, 이를 이용하여 제조된 Te-함유 칼코게나이드(chalcogenide) 박막, 상기 박막의 제조방법 및 상변화 메모리 소자
DE102006038885B4 (de) 2005-08-24 2013-10-10 Wonik Ips Co., Ltd. Verfahren zum Abscheiden einer Ge-Sb-Te-Dünnschicht
KR100695168B1 (ko) 2006-01-10 2007-03-14 삼성전자주식회사 상변화 물질 박막의 형성방법, 이를 이용한 상변화 메모리소자의 제조방법
SG171683A1 (en) 2006-05-12 2011-06-29 Advanced Tech Materials Low temperature deposition of phase change memory materials
KR100757415B1 (ko) 2006-07-13 2007-09-10 삼성전자주식회사 게르마늄 화합물 및 그 제조 방법, 상기 게르마늄 화합물을이용한 상변화 메모리 장치 및 그 형성 방법
KR20120118060A (ko) * 2006-11-02 2012-10-25 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 금속 박막의 cvd/ald용으로 유용한 안티몬 및 게르마늄 착체
KR20080063652A (ko) * 2007-01-02 2008-07-07 삼성전자주식회사 상변화 물질층 형성방법 및 이를 이용한 상변화 메모리소자 제조방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102395528A (zh) * 2009-04-15 2012-03-28 美光科技公司 形成碲烷氧化物的方法和形成混合的碲卤化物-烷氧化物的方法
US8697486B2 (en) 2009-04-15 2014-04-15 Micro Technology, Inc. Methods of forming phase change materials and methods of forming phase change memory circuitry
CN103882404A (zh) * 2009-04-15 2014-06-25 美光科技公司 形成相变材料的方法和形成相变存储器电路的方法
US8765519B2 (en) 2009-04-15 2014-07-01 Micron Technology, Inc. Methods of forming phase change materials and methods of forming phase change memory circuitry
US9269900B2 (en) 2009-04-15 2016-02-23 Micron Technology, Inc. Methods of depositing phase change materials and methods of forming memory
CN108288618A (zh) * 2009-04-15 2018-07-17 美光科技公司 形成相变材料的方法和形成相变存储器电路的方法
CN102163555A (zh) * 2010-02-23 2011-08-24 气体产品与化学公司 制造多成分薄膜的方法
CN104341355A (zh) * 2014-10-22 2015-02-11 江南大学 用于相变存储材料的氨基嘧啶Ge(Ⅱ)前质体及其制备方法

Also Published As

Publication number Publication date
JP5529836B2 (ja) 2014-06-25
US20130129603A1 (en) 2013-05-23
TW200844084A (en) 2008-11-16
EP1995236B1 (en) 2012-12-26
KR20080095800A (ko) 2008-10-29
JP5080345B2 (ja) 2012-11-21
US20090142881A1 (en) 2009-06-04
CN103132050A (zh) 2013-06-05
EP1995236A1 (en) 2008-11-26
US8377341B2 (en) 2013-02-19
JP2008291015A (ja) 2008-12-04
JP2012057254A (ja) 2012-03-22
KR100994346B1 (ko) 2010-11-12
CN101367756B (zh) 2013-02-06
TWI373463B (en) 2012-10-01

Similar Documents

Publication Publication Date Title
CN101367756B (zh) 用于制造相变存储器材料的碲(Te)前驱体
JP5778648B2 (ja) シリルアンチモン前駆体及びそれを用いた原子層堆積(ald)方法
US8765223B2 (en) Binary and ternary metal chalcogenide materials and method of making and using same
KR101012921B1 (ko) Ald 또는 cvd 공정에서 gst 필름용 텔루륨 전구체
KR101379651B1 (ko) 2원 및 3원 금속 칼코게나이드 물질 및 이의 제조 및 사용 방법
US8507040B2 (en) Binary and ternary metal chalcogenide materials and method of making and using same
EP2444406A1 (en) Metal compounds for deposition of chalcogenide films at low temperature
EP2444405A1 (en) Metal compounds for deposition of chalcogenide films at low temperature
EP2698373B1 (en) Precursors for gst films in ald/cvd processes
KR20150097429A (ko) 게르마늄 안티몬 텔루륨 합금 형성용 전구체 조성물 및 이를 이용한 게르마늄 안티몬 텔루륨 합금막 형성 방법
EP2444404A1 (en) Metal compounds for deposition of chalcogenide films at low temperature
KR101472472B1 (ko) 게르마늄 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
EP2444407A1 (en) Metal compounds for deposition of chalcogenide films at low temperature

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130206

Termination date: 20160424

CF01 Termination of patent right due to non-payment of annual fee