CN101345307A - 电化学组合物及相关技术 - Google Patents

电化学组合物及相关技术 Download PDF

Info

Publication number
CN101345307A
CN101345307A CNA2008101286532A CN200810128653A CN101345307A CN 101345307 A CN101345307 A CN 101345307A CN A2008101286532 A CNA2008101286532 A CN A2008101286532A CN 200810128653 A CN200810128653 A CN 200810128653A CN 101345307 A CN101345307 A CN 101345307A
Authority
CN
China
Prior art keywords
oxide
composition
magnesium
aluminium
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101286532A
Other languages
English (en)
Other versions
CN101345307B (zh
Inventor
廖本杰
刘文仁
张圣时
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Lithium Electrochemistry Co Ltd
Original Assignee
Advanced Lithium Electrochemistry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/940,276 external-priority patent/US20080138710A1/en
Application filed by Advanced Lithium Electrochemistry Co Ltd filed Critical Advanced Lithium Electrochemistry Co Ltd
Publication of CN101345307A publication Critical patent/CN101345307A/zh
Application granted granted Critical
Publication of CN101345307B publication Critical patent/CN101345307B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种适用于电化学氧化还原反应的组合物。该组合物可包含一种以通式MyXO4或AxMyXO4表示的材料,其中A(若存在的话)、M与X中的每一种彼此独立地代表至少一元素,O代表氧,并且x(若存在的话)与y中的每一种代表一数目,以及一种元素的氧化物,其中该材料和该氧化物是共结晶态的,及/或其中该组合物的结晶结构单元的体积大于单独使用材料的结晶结构单元的体积。本发明还公开了含有此组合物的电极,以及含有此电极的电化学电池。本申请还公开了一种适用于电化学氧化还原反应的组合物的方法。

Description

电化学组合物及相关技术
相关申请相互引用
本申请案为2007年6月8申请的美国专利申请第11/764,629号的部分接续案。本申请案还涉及于同日申请的共同申请中的美国专利申请案第__/___/___号,其为以下申请的部分接续案:(1)2007年5月11日申请的美国专利申请案第11/747,746号,其为2006年8月25日申请的美国专利申请案第11/510,096号的部分接续案,其为2005年9月9日申请的美国专利申请第11/222,569号的部分接续案(目前已放弃,主张2005年5月10申请的台湾专利申请第094115023的优先权);(2)2006年9月11日申请的美国专利申请第11/518,805的优先权,其为主张2006年5月11日申请的中国专利申请第200610080365.5号的优先权。上述专利申请中每一个都合并于本申请以供参考。
技术领域
本发明涉及一种电化学组合物及相关技术。
背景技术
许多电化学应用及装置,例如电化学电池或电池,使用展现电化学氧化还原活性及/或可参与电化学氧化还原反应的组合物。举例来说,使用锂离子组合物的二次电池或可再充电电池已产生相当大的兴趣。举例来说,锂离子电池通常具有锂离子电解质、固态还原物作为阳极以及固态氧化物作为阴极,后者通常为电化学导电性基质,其中锂离子于放电阶段可逆地嵌入其中,并且于充电阶段可逆地从其中迁出锂离子。在阳极和阴极处出现的电化学反应实质上是可逆的,造成电池实质上是可再充电的。
已研究出许多适用于作为电化学氧化还原活性电极材料的固态组合物。此等组合物包含具有例如尖晶石结构、橄榄石结构、NASICON结构及/或类似结构的物质。一些此等组合物已展现出导电性或可操作性不足,或已连结其它负面相关性,例如太贵或不易制造或污染环境。
适用于电化学氧化还原反应的组合物、其制造方法、其用途及/或相关技术通常是必要的。
发明内容
本案公开了适用于电化学氧化还原反应的组合物。此一组合物可包含以通式AxMyXO4表示的材料,其中通式中的A代表至少一种选自碱金属元素、铍、镁、镉、硼及铝的元素;M代表至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素;X代表至少一种选自磷、砷、硅及硫的元素;O代表氧;x代表数目约0.8至约1.2(含),并且y代表数目约0.8至约1.2(含)。此一组合物还可包含至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素的氧化物。其组成使得材料和氧化物呈共结晶态。过量的氧化物(倘若存在的话)可沿着金属-氧化物共结晶态结构形成层状物。该组合物可为纳米级,由例如纳米级共结晶态颗粒构成。
适用于电化学氧化还原反应的组合物可包含以通式MyXO4表示的材料,其中材料可嵌入离子性A以形成AxMyXO4,其中A、M、X、O、x及y均如上所述。举例来说,当材料于参考电极存在下置于含有离子性A的溶液中以及受到离子插入或嵌入程序时,可形成AxMyXO4。举例来说,当以通式AxMyXO4表示的材料于参考电极存在下置于含有离子性A溶液中以及受到离子提取(ion-extraction)或嵌出(de-intercalation)程序时,可形成MyXO4。此一组合物还可含有上述的氧化物。其组成使得材料和氧化物呈共结晶态。该组合物可为纳米级,由例如纳米级共结晶态颗粒构成。
此中所述的组合物可用于许多应用、环境和装置。举例来说,电极(例如阴极)可含有此中所述的组合物。举例来说,电化学电池(例如电池)可含有此中所述的组合物。
本发明还公开一种制造适用于电化学氧化还原反应的组合物的方法。此一方法包含合并含有M的第一材料,其中M代表至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素,与含有X之第二材料的溶液,其中X代表至少一种选自磷、砷、硅及硫之元素。视所述之X的本性而定,第二材料可对应地含有至少一种选自磷酸盐、砷酸盐、硅酸盐及硫酸盐的材料。该溶液可包含足以促进该第一材料与该第二材料反应的表面活性剂。合并该第一材料与该第二材料可制造所生成的溶液。
此中所述的一种制备方法可包含在反应溶液中合并所生成的溶液与含有离子性A的第三材料,其中A代表至少一种选自碱金属元素、铍、镁、镉、硼及铝的元素。合并所生成的溶液与该第三材料的步骤可包含调整反应溶液的pH,以促进反应。可从反应溶液得到颗粒混合物。当形成的材料不含A成分时,制备方法可包含由上述所生成溶液得到颗粒混合物,而非由上述反应溶液得到。
得到颗粒混合物的步骤可包含研磨该颗粒混合物。研磨步骤可造成材料原本各自的结晶态结构破坏,使得颗粒混合物形成例如半结晶态的MyXO4或AMyXO4组合物。
此中所述的制备方法可包含将至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素的氧化物加入研磨而形成该颗粒混合物。研磨过程可生成半结晶态纳米级颗粒混合物,其可经干燥而作为提供的前驱物。此方法可包含煅烧该前驱物,以生成纳米级组合物。此煅烧步骤可包含在惰性气体存在下,或于惰性气体与悬浮于惰性气体中的碳粒存在下煅烧该前驱物。纳米级组合物可包含以通式AxMyXO4或MyXO4表示的材料以及共结晶态形式的氧化物。
体现本发明特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本发明能够在不同的态样上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及图示在本质上当作说明使用,而非用以限制本发明。
附图说明
图1A和图1B为可由表面活性剂促进的金属与含磷酸盐溶液的反应的示意图。
图2为前驱物颗粒的示意图。
图3A、图3B和图3C为可于处理前驱物颗粒过程中形成的材料的结构的示意图。
图4A、图4B、图4C、图4D和图4E为分别显示三种不同的复合材料和比较材料的颗粒的表面形态(于实施例5中说明)的图片。图4D为图4C中所示的复合材料的EDS频谱的示意图(于实施例5中说明)。
图5A和图5B为实施例7中得到的循环伏安示意图。图5A和图5B可共同称为图5。
图6为有关二种复合材料和比较材料所得到的衍射图案的示意图(于实施例9中说明)。
图7为有关二种复合材料和比较材料所得到的有关二种复合材料和比较材料所得到的X-射线吸收频谱(吸收度对能量(eV))的示意图,其中放大区域出现在插图中(于实施例10中说明)。
图8为有关二种复合材料和一种比较材料所得到的原子间距离R(A)的函数的径向结构函数(FT大小)的示意图,其包含LiFePO4的FEFF拟合分析的理论结果(仅显示第一波峰)的示意图(于实施例10中说明)。
图9为有关复合材料和比较材料所得到的原子间距离R(A)的函数的径向结构函数(FT大小)的示意图,其包含一种复合材料和一种比较材料的FEFF拟合分析的理论结果的示意图(于实施例11中说明)。
图10为有关复合材料和比较材料所得到的原子间距离R(A)的函数的径向结构函数(FT大小)的示意图,其包含一种复合材料和一种比较材料的FEFF拟合分析的理论结果的示意图(于实施例12中说明)。
图11A为在特定频率范围内有关一种复合材料所得到的傅立叶红外线频谱(穿透率(%)对频率(cm-1))的示意图,并且图11B为在特定频率范围内有关一种复合材料和一种比较材料所得到的傅立叶红外线频谱(穿透率(%)对频率(cm-1))的示意图(于实施例14中说明)。
图12为有关含有复合材料的半电池所得到的充电和放电结果(电位(V)对容量(mAh/克))的示意图(于实施例15中说明)。
图13为有关若干含有不同复合材料的半电池所得到的第一次放电容量(mAh/克)的示意图(于实施例15中说明)。
图14为有关含有原型复合材料的半电池和含有比较材料的半电池所得到的放电结果(电位(V)对常态化容量(%))的示意图,其中放大区域出现在插图中(于实施例15中说明)。
图15为有关含有原型复合材料的半电池和含有比较材料的半电池所得到的充电结果(电位(V)对常态化容量(%))的示意图,其中放大区域出现在插图中(于实施例15中说明)。
【主要组件符号说明】
10金属颗粒
12保护膜
14表面活性剂扩散层
20主体部分
22边缘或边界部分
24最内层
26最外层
30聚合物链
32八面体
34四面体
38离子
40共结晶态结构
42主体共结晶态部分
44边缘部分
46碳粒
48共结晶态结构
50复合材料
52深部分
54边缘部分
56较浅或半透明外部
具体实施方式
本发明公开了一种适用于电化学氧化还原反应的组合物。本发明亦揭示一种制造此一组合物的方法。另外,本发明亦提供许多态样、特征、具体例及实施例的说明。
除非暗示地或明确地了解或表明,应了解此中所示的单数文字涵盖其复数对应字,并且此中所示的复数文字涵盖其单数对应字。再者,除非暗示地或明确地了解或表明,应了解针对任一种此中给定的组件而言,任一种针对该组件所列的可能的候选物或替代物通常可个别地或彼此合并使用。另外,除非暗示地或明确地了解或表明,应了解任一种此等候选物或替代物仅为说明之用,而非用以限制本发明。再者,除非暗示地或明确地了解或表明,应了解此中所示的任一数字或数目或数量为近似值,并且任一数值范围包含界定该范围的最小值和最大值(无论是否使用「含」一字)。一般而言,除非暗示地或明确地了解或表明,有关数字或数目或数量的「大约(approximately)」或「约(about)」或符号「~」等用语代表落在±5%的范围内。再者,应了解所用的任一标题仅为便利之用,而非用以限制本发明。另外,除非暗示地或明确地了解或表明,应了解任一种放任的、开放的或无限制语言涵盖任一种相对放任至限制式语言、较不开放至封闭式语言、或较无限制至无限制式语言。举例来说,「包含(comprising)」一字可涵盖「包含(comprising)」、「大体上包括(consisting essentially)」及/或「包括」等类型语言。
此中所述的所有专利、专利申请、专利申请的公开文件以及其它材料(例如对象、书籍、说明书、公开案、文字、事件及/或类似物)为完整地合并于本申请以供参考,除非有关其任一个或任一审查历史纪录与本案文件不一致或互相冲突,或者可具有如申请专利范围或之后有关本案文件的最广范围的有限效果的外。举例来说,与任一种合并的材料以及与本案文件有关的用语的说明、定义及/或用途之间应有任一不一致或冲突,并且本申请文件中的用语的说明、定义及/或用途应是普遍性的。
此中通常可描述、定义及/或使用各种用语来增进了解。应了解各种用语的对应的一般说明、定义及/或用途可适用于各种用语的对应的语言或文法变体或形式。还应了解当以非通常或更特别方式使用用语时,则可能无法适用或可能无法完全地适用此中的任一用语的一般说明、定义及/或用途或对应的一般说明、定义及/或用途。还应了解用以说明特殊具体例的此中所用的术语及/或其说明及/或其定义不受限制。还应了解此中所述的具体例或此中所述的应用不受限制,可施以变化。
「碱金属元素」一词通常代表周期表第IA族中的元素的任一种,即锂、钠、钾、铷、铯及钫。「过渡金属元素」一词通常代表元素21至29(钪至铜)、39至47(钇至银)、57至79(镧至金)以及所有从周期表中标号89(锕)向前已知的元素中的任一种。一般而言,「第一列过渡金属元素」一词代表元素21至29中的任一种,即钪、钛、钒、铬、锰、铁、钴、镍及铜;「第二列过渡金属元素」一词通常代表元素39至47中的任一种,即钇、锆、铌、钼、鎝、钌、铑、钯及银;并且「第三列过渡金属元素」一词通常代表元素57至79中的任一种,即镧、铪、钽、钨、铼、锇、铱、铂及金。「氧化物」一词通常代表其中至少一元素原子(例如金属原子)键结于至少一氧原子的无机物。
一般而言,「结晶态」一词代表材料的特性,即在空间中的实质上规则的重复结构中排列或键结的材料中具有每一元素的原子的特性。一般而言,「半结晶态」一词代表材料的特性,即部分由结晶态物质和部分由非结晶态物质(例如非结晶物质)组成的材料。一般而言,「共结晶态」一词代表材料的特性,即具有晶体聚集物和实质上均匀地分布于晶体聚集物的表面或分子结构中的分子的材料。因此,共结晶态材料可包含混合的结晶相,其中分子分布于有关晶体聚集物的晶格内。可通过任一种适合的方法,例如共生、沉淀及/或自发性结晶作用,出现共结晶态特性。一般而言,「纳米级」一词代表材料的特性,亦即由颗粒组成、其个别颗粒的有效直径小于或等于约500纳米(例如约200纳米至约500纳米(含),或约300纳米至约500纳米(含))的材料。
一般而言,「研磨」一词代表碾碎材料。球磨机和砾磨机为可用于研磨的装置的实例。一般而言,「煅烧」一词代表加热材料至低于其熔点的温度,从而导致水分丧失、还原、氧化、热分解状态及/或除熔化外的相过渡现象。一般而言,「表面活性剂」一词代表表面活性剂。
一般而言,「电极」一词代表材料在其上被电性氧化或电性还原的工作电极。阳极和阴极为电极的实例。一般而言,其它特殊的电极为例如此中提到的参考电极。一般而言,「电化学电池」一词代表一种可于其上发生电化学反应的电池。电化学燃料电池、动力电池和电池为电化学电池的实例。
此刻公开一种适用于电化学氧化还原反应的组合物。此一组合物可包含以通式I:AxMyXO4表示的材料,此将进一步说明如下。
于通式I中,A代表至少一种选自碱金属元素、铍、镁、镉、硼及铝的元素。一些适合的碱金属元素的实例包含锂、钠及钾。如上所述,使用碱离子组合物(例如锂离子组合物)的电池已成为相当令人感兴趣的主题。因此,适合的碱金属元素的实例为锂,以下将进一步证实。
于通式I中,M代表至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素。一些适合的过渡金属元素的实例包含第一列过渡金属元素、第二列过渡金属元素及第三列过渡金属元素。适合的第一列过渡金属元素的实例为铁。再者,于通式I中,X代表至少一种选自磷、砷、硅及硫的元素,并且O代表氧。
于通式I中,x代表数目约0.8至约1.2(含),例如约0.9至约1.1(含)。当A代表超过一种元素时,Ax的x代表有关每一种元素的数目的总和的数目。举例来说,倘若A代表Li、Na及K,则Lix1的x1代表第一数目,Nax2的x2代表第二数目,并且Kx3的x3代表第三数目,使得Ax代表Lix1Nax2Kx3,而Ax的x代表以x1表示的第一数目、以x2表示的第二数目与以x3表示的第三数目的合计。于通式I中,y代表数目约0.8至约1.2(含),例如约0.9至约1.1(含)。举例来说,倘若M代表Fe和Co,则Fey1的y1代表第一数目,并且Coy2的y2代表第二数目,使得My代表Fey1Coy2,而My的y代表以y1表示的第一数目与以y2表示的第二数目的合计。于此中所述的通式I、II和III中,以x表示的数目和以y表示的数目可通过适合的技术测定,例如依赖感应耦合电浆(ICP)的原子发射光谱。请参照Gladstone等人,Introduction toAtomic Emission Spectrometry(原子发射光谱简介),ICP OpticalEmission Spectroscopy,Technical Note 12,其合并于本申请以供参考。仅为了便利或简化的目的,于此中所述的通式I、II和III中的x和y中的每一种都可以数目1表示,然而仍保持其较广泛的意义。
适合的组合物还可包含至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素的氧化物。一些适合的过渡金属元素的实例包含第一列过渡金属元素、第二列过渡金属元素及第三列过渡金属元素。适合的第一列过渡金属元素的实例包含钛、钒、铬及铜。
组合物可使如上述以通式I表示的材料和如上述的氧化物呈共结晶态。在此情况下,共结晶态材料可以通式II:AxMyXO4·zB表示,其中A、M、X、O、x及y与上述有关通式I所表示的材料相同,B代表上述的氧化物,z代表大于0且小于或等于约0.1的数目,并且符号「·」代表材料和氧化物的结晶性。可通过任一种适合的技术,例如上述的AES/ICP技术,测定此中所述的通式II和III中以z表示的数目。以z表示的数目代表B成分相对于组合物的摩尔百分率。仅为了便利或简化的目的,z以不特定方式表示,然而仍保有其较广泛的意义。
于此中所述的通式I、II和III代表四个氧组份的存在。其中以通式表示的材料和氧化物形成共晶体的例子中,与以通式I表示的材料有关的结晶晶格结构在形成以通式II或通式III表示的共晶体的过程中改变。举例来说,可放大共结晶态组合物的晶格结构,其中分别相对于以通式I表示的材料的晶格结构、常数和体积而言,晶格常数a、b和c中的至少一常数增加,并且晶格体积(a×b×c)或单位晶格体积增加。此中提供与晶格体积有关的数据,即不同共结晶态组合物的晶格常数a、b和c以及晶格体积。
在此变化下,共结晶态组合物中的至少一部分氧组份可比通式II或通式III的X与M更紧密结合,虽然通过目前方法(例如上述的AES/ICP技术)测定此结合的确为本性是不易或不可能的。任一部分氧组份与M或X之间的任一种键结结合本质上是共价的。通式II和III的每一个在此方面而言是普遍的,并且代表共结晶态组合物(无论任一部分氧组份与M或X的确切结合为何),因而涵盖可分别以AxMyO4-wXOw·zB或AxMyO4-wXOw·zB/C表示,其中w代表数目约0至约4,例如分别为AxMyXO4·zB或AxMyXO4·zB/C,其中w代表4,例如分别为AxMyO2XO2·zB或AxMyO2XO2·zB/C,其中w代表2,或例如分别为AxMyO4X·zB或AxMyO4X·zB/C,其中w代表0。举例来说,w可代表大于0或小于约4的数目。
放大的共结晶态结构(即相对于以通式I表示的材料的结晶结构而言是放大的)对于离子插入或嵌入程序以及涉及A的离子提取或嵌出程序提供更多空间,并且依此可促进任一种此等程序。涉及共结晶态复合材料LiFe(II)PO4·ZnO/C的铁中心(M=Fe)从Fe(II)至Fe(III)的氧化反应离子提取或嵌出程序,以及涉及共结晶态复合材料Fe(II)PO4·ZnO/C的铁中心(M=Fe)从Fe(III)至Fe(II)的还原反应的离子插入程序的实例,则提供于本案实施例6中。此实施例证实LiFe(II)PO4·ZnO/C共结晶态复合材料及其Fe(II)PO4·ZnO/C互补性共结晶态复合材料的离子导电性。
此中所述的组合物可使得以通式I表示的材料和氧化物形成共结晶态材料。如以上所述,当材料和氧化物呈共结晶态形式时,此一组合物可以通式II表示。过量氧化物(若存在的话)可至少部分地沿着(例如实质上沿着)例如共结晶态材料形成实质上均匀的边缘。此一组合物可具有至少一层,例如碳粒的层体或涂层。倘若氧化物的边缘不存在,则结果将恰为一碳粒层;倘若氧化物的边缘存在,则结果将为多层结构。于任一情况下,组合物可以通式III:AxMyXO4·zB/C表示,当材料和氧化物呈共结晶态形式时,碳粒(以C表示)形成层体或涂层,符号「/」代表介于共结晶态形式与碳层之间的界面,并且过量氧化物边缘的缺乏或存在是不明确的。碳粒可用以增进组合物的导电性。
以通式II或III表示的组合物可为纳米级,由例如纳米级共结晶态颗粒构成。个别的纳米级共结晶态颗粒可具有有效直径为小于或等于约500纳米,例如约200纳米至约500纳米(含)。组合物的颗粒的纳米级态样与组合物的相当高放电容量有关。即,预期此中所述的纳米级组合物将与比在相同条件下的此中所述的非纳米级变体更高的放电容量有关。此中所述的任一种纳米级组合物可具有过量的氧化物边缘,如以上所述其具有厚度小于或等于约10纳米,例如厚度为约5或约3纳米。
如上所述,适用于电化学氧化还原反应的组合物可包含以通式MyXO4表示的材料,其中材料可嵌入离子性A以形成AxMyXO4,其中A、M、X、O、x及y如上所述。就此一组合物而言,通式I、II及II可具有对应以下通式的形式,分别为通式I:MyXO4;通式II:MyXO4·zB;以及通式III:MyXO4·zB/C,其中M、X、O、B、C、y及z如上所述。举例来说,当此一材料于参考电极存在下置于含有离子性A的溶液中以及受到离子插入或嵌入程序时,可分别形成AxMyXO4、AxMyXO4·zB或AxMyXO4·zB/C。再者,举例来说,当以通式AxMyXO4、AxMyXO4·zB或AxMyXO4·zB/C表示的材料于参考电极存在下置于含有离子性A的溶液中以及受到离子提取或嵌出程序时,可分别形成AxMyXO4、AxMyXO4·zB或AxMyXO4·zB/C。
此中所述的组合物可适用于许多应用、环境及装置。举例来说,电极(例如阴极)可含有此中所述的组合物。举例来说,电化学电池(例如电池)可含有此中所述的组合物。适合的组合物、应用、环境及装置的实例将于说明用于制备此刻所述的组合物的方法之后提出。
一种制造适用于电化学氧化还原反应的组合物的方法可包含合并含有M的第一材料,其中M代表至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素,与含有X的第二材料的溶液,其中X代表至少一种选自磷、砷、硅及硫的元素。合并方式可包含混合,例如彻底混合或搅拌。举例来说,M可代表Fe。
就溶液而言,当X代表磷时,第二材料可为磷酸盐形式;当X代表砷时,第二材料可为砷酸盐形式;当X代表硅时,第二材料可为硅酸盐形式;当X代表硫时,第二材料可为硫酸盐形式;或当X代表超过一种上述元素时,因此第二材料可为超过一种上述形式。举例来说,可通过在水性媒介(例如去离子水)中分别溶解磷酸及/或其盐类及/或砷酸及/或其盐类来制备含有磷酸盐或砷酸盐的溶液。
溶液可含有表面活性剂及/或足以促进第一材料与第二材料反应的pH调整剂。此一表面活性剂及/或调整剂可足以调整溶液的pH至适用于形成外膜(shell)的程度,此部分将于以下实施例中进一步说明的。可使用任一适量的表面活性剂及/或调整剂,例如约1毫升的表面活性剂。适合的表面活性剂的实例包含离子型、非离子型及两性表面活性剂。适合的表面活性剂的实例包含例如DNP(二硝基苯基,一种阳离子型表面活性剂)、Triton X-100(辛基酚乙氧酸酯,一种非离子型表面活性剂)以及BS-12(十二基甲基甜菜碱或cocoal kanoyl amido propyl betaine,一种两性表面活性剂)。可使用任一种适合的pH调整剂,例如NH3或NH4OH,或其适合的组合。于适合的混合条件下,例如彻底混合或搅拌下,可将任一种此等表面活性剂及/或调整剂加入溶液中。不含表面活性剂、pH调整剂及/或调整pH的情况下,溶液可能是适当的。
合并该第一材料与该溶液可产生含有反应产物的所生成的溶液。在此部分说明中,为了简便之故,M于此刻将代表单一金属元素,例如Fe,即使其可为金属元素以外的或可为超过一种上述的元素,并且X于此刻将代表仅含有磷,即使其可含有如上述的磷、砷、硅及/或硫。可合并含有金属的第一材料以及含有磷酸盐的溶液,使得金属与磷酸盐反应,并且可提供含有反应产物所生成的溶液。反应可进行一段适合的期间,例如约12小时。
于金属与磷酸盐的反应过程中,形成可称为自组装胶体单层外皮(self-assembled colloidal monolayer husk)的保护膜。再者,倘若磷酸盐溶液中的游离酸的含量太低时,则保护膜不易溶解,并且倘若溶液中的游离酸含量太高时,则保护膜更易溶解,使得外膜形成受到阻碍。(于X包含磷、砷、硅及/或硫以及含有对应的第二材料的溶液或对应的第二材料的例子中,保护膜将形成,并且将以类似方式受到游离酸含量影响。)依此,针对适合的外膜形成而言,可调整溶液的pH。适合的pH范围的实例为约1至约2.5。溶液的pH可以是适当的,使得不必或不需要进行pH调整。
可使用适合的表面活性剂及/或pH调整剂(例如任一种上述物质)或其适合的组合来调整溶液的pH,从而促进外膜形成,及/或促进金属与磷酸盐的反应。任一种此等促进作用可包含增进相对于当不使用表面活性剂或调整剂时的反应速率的速率,及/或使反应在当不使用表面活性剂或调整剂时的温度(例如约70℃至约80℃)的减温下进行,例如从约20℃至约35℃。一或多种适合的表面活性剂可依照图1A与图1B(合称图1)示意显示此刻说明的方式,促进金属与磷酸盐反应。如图1所示,于金属与磷酸盐反应的过程中,金属颗粒10可至少被保护膜12包覆。一般而言,外膜12可阻碍金属颗粒10与溶液中的磷酸盐的接触,使得涉及二者的反应受到阻碍。可使用适合的表面活性剂来促进外膜12脱离金属颗粒10,使得得以促进金属颗粒10与磷酸盐间的反应,例如容许实质上连续地进行。外膜12是以带电荷或电中性形式存在。若外膜12是带电的,则离子型或两性表面活性剂可因例如静电力作用而被电性吸引至外膜表面上,因而形成表面活性剂扩散层14。倘若外膜12是电中性的,则非离子型表面活性剂则可经由例如范德瓦耳斯力(Van der waals force)吸附于外膜表面上。于外膜12与表面活性剂间的任一种此等交互作用可促进外膜与金属颗粒10分离,使得可适当地进行金属颗粒与溶液中的磷酸盐的反应。(于X包含磷、砷、硅及/或硫以及含有对应的第二材料的溶液或对应的第二材料的例子中,保护膜将形成,并且将以类似方式受到表面活性剂交互作用的影响。)
如上所述,反应可提供含有反应产物的所生成的溶液。反应产物可以通式MyXO4表示。举例来说,当M为Fe且X为P时,反应顺序可如以下的反应I所示,其中紧接在铁元素后的括号材料代表其价态。
反应I:Fe(0)+2H3PO4→Fe(II)(H2PO4)2+H2(g)→Fe(III)PO4(s)+H3PO4+H2O
此中所述的制备方法可包含在反应溶液中合并上述所生成的溶液与含有离子性A的第三材料,其中A代表至少一种选自碱金属元素、铍、镁、镉、硼及铝的元素。在此部分说明中,为了简便之故,A于此刻将代表单一金属元素,例如Li,即使其可为金属元素以外者或可为超过一种上述的元素。于此一实施例中,第三材料可包含例如氢氧化锂及/或氯化锂。合并所生成的溶液与该第三材料的步骤可包含混合,例如彻底混合或搅拌或研磨。混合可进行一段适合的期间,例如通过球磨研磨4小时,或研磨一段足以断裂、破坏或降低前驱物结晶态结构的时间。合并所生成的溶液与该第三材料的步骤可包含调整反应溶液的pH,以促进反应。适合的pH范围的实例为约7至约11。倘若溶液的pH适当,则不需进行pH调整。合并所生成的溶液与该第三材料可生成适用于进一步处理的反应溶液,此将进一步说明如下。
当所形成的材料不含A成分时,制备方法可包含由上述所生成的溶液(而不是恰如上的反应溶液)得到颗粒混合物。可使用任一种适合的pH调整及/或混合方式。
如上述,可由反应溶液或由所生成的溶液得到颗粒混合物。得到此混合物的步骤包含过滤溶液以得到固态混合物。颗粒混合物实质上可为非结晶的。颗粒混合物可包含一些结晶态材料。可充分地研磨颗粒混合物,以断裂、破坏或降低结晶态结构,并且使颗粒混合物成为半结晶态,例如部分结晶态和部分非结晶态。可充分地研磨颗粒混合物,以使颗粒混合物中的颗粒是纳米级的。研磨期间可够长,以促进颗粒混合物的「纳米化」。于研磨过程中,颗粒混合物可呈溶液形式。举例来说,可通过球磨研磨,并且研磨时间为约4小时。所生成溶液与第三材料的合并以及研磨程序可接续地或实质上同时进行。举例来说,所生成溶液与第三材料的合并步骤可以例如以下反应II所示的反应顺序表示,其中M为Fe、X为P且A为Li,其中紧接在铁元素后的括号材料代表其价态,其中紧接在锂元素后的括号材料代表其价态,「/」符号代表介于Li(I)与Fe(III)PO4之间的界面。
反应II:Fe(III)PO4+Li(I)→Li(I)/Fe(III)PO4
第一材料、第二材料及/或第三材料可依序地合并,例如依照上述方式或任一种适合方式,或依任一种适合方式实质上同时地合并。此等材料的合并可生成颗粒混合物(如此中所述将进一步说明)。
此中所述的制备方法可包含合并颗粒混合物与至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素的氧化物。合并方式可包含研磨程序。于研磨程序中,颗粒混合物与氧化物可为溶液形式。研磨可生成半固态纳米级颗粒混合物。此一混合物的纳米级颗粒可包含MXO4、离子性A及氧化物。举例来说,当M为Fe,X为P,A为Li且B代表氧化物成分时,其中紧接在铁元素后的括号材料代表其价态,其中紧接在锂元素后的括号材料代表其价态,并且「/」符号代表介于Li(I)与Fe(III)PO4之间的界面。
反应III:Li(I)/Fe(III)PO4→B/[Li(I)/Fe(III)PO4]
此中提供适合的制备方法,例如于实施例1-3中所提供。此中所示的制备方法的修饰是可能的。举例来说,可于前驱物之前的任一适当时间提供至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素的氧化物。氧化物将不参与于如上述的时间前的反应,使得其可于提供前驱物前的任一适合的或便利的时间加入,例如于干燥颗粒混合物以提供前驱物之前或期间的任一时间点。举例来说,不采取合并所生成溶液与上述含有离子性A的第三材料,可合并所生成溶液、含有离子性A的第三材料与氧化物。
可干燥上述的半结晶态纳米级颗粒混合物,以提供前驱物。可使用任一种有效率的干燥程序,例如喷雾干燥。举例来说,可处理半结晶态纳米级颗粒混合物,以形成纳米级颗粒的微滴。此方法可包含离心混合物。此离心作用可于中温或高温环境中,例如中温或高温的空气环境中进行。此离心作用可进行一段期间,根据液滴的「飞行」时间决定。当离心混合物时,其形成「飞行」微滴,并且随着转盘进行而发展出增加的表面张力,故液滴会有形成圆球状的趋势。通过在纳米级颗粒间的空隙所造成的毛细力,可将颗粒内部的水分送至表面持续挥发。再者,当颗粒表面遭遇到环境中温或高温环境时,表面上的水分蒸发,使得颗粒被干燥。可控制某些涉及干燥或离心程序或环境的参数,例如涉及工艺或工艺有关设备的时间(例如「飞行」时间)、温度(例如舱体温度)或环境(例如空气温度),从而得到适合的结果。由此中所述的半结晶态纳米级颗粒混合物的适合干燥作用所生成的前驱物可包含实质上干的球形颗粒。此等颗粒可包含MXO4、离子性A及氧化物B。
前驱物颗粒示意地显示于图2中。颗粒可包含可具有MXO4的主体部分20以及可具有至少部分围绕(例如实质上围绕)主体部分20的边缘或边界部分22。边界部分22可包含离子性A(当A存在时)以及氧化物成分。举例来说,边界部分22可包含一界面、可含有离子性A(当A存在时)的最内层24以及可含有氧化物成分的最外层26,其中最外层可至少部分围绕(例如实质上围绕)最内层。
此中所述的制备方法可包含煅烧前驱物以制造纳米级组合物。可使用任一种适合的煅烧程序。举例来说,煅烧可包含在惰性气体(例如氩气或氮气)存在下或在惰性气体与碳粒存在下煅烧前驱物。可于引入前驱物和碳粒的炉中进行煅烧。碳粒的尺寸可小于前驱物颗粒。举例来说,个别的碳粒的有效直径可小于或等于约100纳米。可以例如循环或其它适合流体形式将惰性气体引入炉中,从而使前驱物与碳粒变为悬浮在气体中以及混合。可于至多约900℃的任一适合的温度下,例如约800℃,进行煅烧。可通过惰性气体排出任一此工艺中不想要的产物,例如水分、反应气体及/或二氧化碳。在此过程中,通过例如混合物中相邻颗粒的间隙间产生的剪力,碳粒可至少部分地填塞于前驱物的间隙中。
可于任一适当时间,依任一适当方式添加足以修饰M成分的价态的药剂。可于煅烧之前或期间加入此药剂。举例来说,可加入还原剂以降低M成分的价态,或可加入氧化剂以提高M成分的价态。适合的还原剂的实例包含任一种含碳质材料的还原剂,例如焦炭、石墨、碳粉及/或有机化合物(例如蔗糖或多醣)。含碳质材料的还原剂还可适用于作为碳源,因而可促进碳涂覆。
前驱物颗粒在煅烧中进行许多程序。举例来说,在初期煅烧阶段中(可包含温度为约25℃至约400℃的热处理以及例如约6小时的处理时间),前驱物颗粒历经颗粒扩散、体扩散、蒸发及凝结作用。材料孔隙中的气体(例如二氧化碳)在此等工艺初步阶段中可能被排出。此等程序生成颗粒,个别颗粒可包含共结晶态主体部分、可至少部分围绕(例如实质上围绕)主体部分的中间或边界部分以及可至少部分围绕(例如实质上围绕)中间部分的外围部分。主体部分可包含MyXO4或AxMyXO4,边界部分可包含氧化物成分B,并且外围部分可包含过量的氧化物成分B(当此过量存在时)及/或碳(当碳于煅烧期间存在时)。举例来说,当煅烧包含与以C表示的碳混合时,以及当M、X、A、B和括号材料如有关反应III所示时,化合物可以C/B/[Li(I)/Fe(II)PO4]表示。在本实施例中,铁元素的价态已由III还原至II。
举例来说,于中期煅烧阶段中(可包含温度为约400℃至约800℃的热处理以及例如约6小时的处理时间),前驱物颗粒历经某些重组作用。举例来说,多层性晶质材料的组份缓慢地扩散进入晶界,再进行较快速的晶界扩散而形成斜方晶系结晶结构。同时,含有过量氧化物成分B及/或碳的外围部分则扩散以致紧密地围绕结晶态材料的主体部分和边界部分。举例来说,当煅烧包含与以C表示的碳混合时,以及当M、X、A、B和括号材料如有关反应III所示时,所生成材料可以C/[Li(I)/Fe(II)PO4·B]表示。
此刻请参照图3A,结晶态材料的主体包含具有沿着ac-平面方向延伸的八面体32与四面体34交互组成的聚合物链30。在八面体结构32中,每一中心金属M具有由六个显示于八面体的角落上的氧原子36(未完全显示于图3A中)所形成略为扭曲的八面体配位几何形状。在每一四面体结构中,每一中心X(未显示)成分具有由四个显示于四面体的角落上的氧原子36(二个氧原子共享相邻的八面体结构,未完全显示于图3A中)形成的四面体配位几何形状。当A成分存在时,于主体内及A成分的此等不同几何结构旁者为可用以平衡与M成分有关的价态的A成分的离子38,故整体结构实质上是中性的。A成分的此等离子38可比主体30的四面体34更紧密地与八面体32结合。再者,与主体30和刚提到的许多成分紧密结合的为结晶态材料的氧化物成分(未显示)。再者,当煅烧过程中存在有碳粒时,碳成分(未显示)将相邻主体30存在,但超出刚提到的氧化物成分。
举例来说,在后期煅烧阶段中(可包含温度为约800℃的热处理以及例如约4小时的处理时间),结晶结构逐渐地致密化。所生成材料包含具有主体30和其成分的共结晶态结构(如图3A所示)以及共结晶态形式氧化物成分。当煅烧期间不存在碳粒时,所生成材料可以通式II表示。当煅烧期间存在碳粒时,所生成材料可以通式III表示,使得以通式II表示的基底共结晶态结构被以通式III的C表示的碳粒层至少部分地包覆(例如实质上包覆)。此一共结晶态结构40示意地显示于图3B中,其中上述的主体共结晶态部分42被含有过量氧化物成分(涂覆碳粒46)的边缘部分44包覆。另一种此类型共结晶态结构48则显示于图3C中,其中上述的主体共结晶态部分42被以碳粒层体或涂层至少部分地包覆(例如实质上包覆)。
举例来说,当煅烧包含与以C表示的碳混合时,当M、X、A、B和括号材料如有关反应III所示时,以及符号「·」代表共结晶态结构时,所生成材料可以C/[Li(I)/Fe(II)PO4·B]表示。在此情况下,有关初步、中间和后期煅烧阶段的顺序可显示于以下表IV中。
反应IV:B/[Li(I)/Fe(III)PO4]→C/B/[Li(I)/Fe(II)PO4]→C/[Li(I)Fe(II)PO4·B]→C/[Li(I)Fe(II)PO4·B]
由煅烧生成的材料于此亦可以C/[Li(I)xFe(II)yPO4·zB]表示。
适合的制备方法的实施例亦于此中提供,例如提供于实施例1-3。上述制备方法的改良是可能的。举例来说,可于提供前驱物前的任一适合的时间加入至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素的氧化物。氧化物将不会影响上述时间前发生的反应,故可于提供前驱物前的任一适合或方便的时间加入氧化物,例如于干燥颗粒混合物以提供前驱物之前的任一时间或期间。
此中所述的生成的纳米级组合物可包含以通式AxMyXO4表示的材料以及共结晶态形式的氧化物。可以通式II或III表示组合物。组合物的整个结构大体上是中性的。当施加电压于组合物时,中心金属M可被氧化,使得组合物的主体实质上是电中性的。可释放A的离子并产生电子,以平衡组合物的总价态。当组合物在惰性环境中时,中心金属M可被还原,并产生稳定组合物结构的电流。氧化物与碳粒的存在可用以增进组合物的电化学可逆性。组合物具有良好的结构稳定性与电化学可逆性。
举例来说,以MyXO4·zB、MyXO4·zB/C、AxMyXO4·zB或AxMyXO4·zB/C表示的纳米级共结晶态组合物可为A(当存在时)代表至少一种选自锂和钠的元素;M代表至少一种选自锰、铁、钴和镍的元素M 1以及至少一种选自钛、钒、铬、锰、铁、钴、镍、铜、锌、镁、铝、硅、金、锑和镧的元素M2,其中M1和M2不同;X代表磷;O代表氧;氧化物B为至少一种选自钛、钒、铬、锰、铁、钴、镍、铜、锌、镁、铝、硅、金、锑和镧的元素的氧化物;并且x、y和z如上所述。在该组合物中,M1与至少一种有关氧化物B的元素可相异。再者,举例来说,当My代表M1y1M2y2时,y1和y2可为使得y1代表数目相当于1减去以y2表示的数目。举例来说,y2可为0至约0.2(含)。如上所述,于共结晶态组合物中的至少一部分氧组物比X更紧密地与M结合。
在此中所述的MyXO4·zB、MyXO4·zB/C、AxMyXO4·zB或AxMyXO4·zB/C复合组合物中,氧化物成分B经共结晶于对应的MyXO4或AxMyXO4材料或颗粒之上或之中。再者,当过量氧化物成分可于MyXO4或AxMyXO4材料或颗粒的外侧形成实质上均匀的边缘时,至少一些部分(通常为大部分)氧化物成分将依此方式共结晶。X-射线精细结构分析及X-射线吸收光谱显示氧化物成分不是此中所述的复合组合物中的掺杂物或涂层。
显示与氧化物成分有关的精细结构峰的X-射线衍射研究可区别此中所述的复合组合物(例如AxMyXO4·zB或AxMyXO4·zB/C)与比较材料(例如天然的LiFePO4、LiFePO4/C或涂覆或掺杂金属氧化物的此等比较材料的任一种)。再者,相比于使用此等比较材料的电化学电池,使用此中所述的复合组合物的电化学电池通常就初充电/放电容量、充电/放电容量保留率以及有关电化学电池操作的充电/放电速率容量等方面而言通常是增强的。增强的初容量可归因于复合组合物的氧化物成分,而增强的速率容量可归因于以低和高C速率进行充放电循环过程中的降低阳离子失序的效果。
以下将提供有关此中所述的组合物及相关技术,例如相关方法。
实施例
实施例1:复合材料Li1.01Fe0.98PO4·0.012MgO/C
将2摩尔磷酸氢二铵与0.25摩尔柠檬酸混合,并且以300毫升的去离子水进行溶解,以形成酸性溶液。将10毫升Triton X-100(一种非离子型表面活性剂)加入酸性溶液中。于彻底混合所生成溶液之后,加入2摩尔氯化亚铁,从而于20℃至30℃的温度下形成磷酸铁与磷酸亚铁的混合物。伴随着彻底搅拌,加入2摩尔氯化锂。以99%醋酸滴定所生成溶液,至反应溶液的pH值为5。进行持续搅拌,以完全地分散反应溶液。于48小时持续搅拌之后,以聚丙烯过滤膜过滤分散溶液,以形成磷酸铁与磷酸亚铁的固态混合物。
以蒸馏水清洗固态混合物,以移除不纯物。将所生成的固态混合物、600毫升蒸馏水与0.02摩尔氧化镁置于球磨罐中,并且使其彻底地研磨及分散于球磨罐中,以于溶液中形成半结晶纳米化颗粒混合物。将悬浮液喷雾干燥为前驱物。
将前驱物承载于氧化铝匣钵上,并且放入高温炉中。亦将碳粉放入炉子中。使高温炉填充氩气载气。使高温炉以20℃/分钟的速率从室温升温至800℃,并且在800℃下持温24小时。在高温炉中,使碳粉粒子悬浮于氩气载气中,并且与前驱物混合,以制得含有磷酸锂铁主体并和氧化镁和外部碳层共结晶的复合材料Li1.01Fe0.98PO4·0.012MgO/C。通过AES/ICP技术测定x、y和z的数目分别为1.01、0.98和0.012。材料为可简单地以Li(I)Fe(II)PO4·MgO/C或LiFePO4·MgO/C表示且可简单地称为Li(I)Fe(II)PO4·MgO/C或LiFePO4·MgO/C的材料的实例。
实施例2:复合材料Li1.04Fe0.99PO4·0.005TiO2/C
将2摩尔磷酸氢二铵与0.25摩尔柠檬酸混合,并且以300毫升的去离子水进行溶解,以形成酸性溶液。将10毫升BS-12(Cocoal kanoylamido propyl betaine,一种两性表面活性剂)加入酸性溶液中。于彻底混合所生成溶液之后,加入2摩尔氯化亚铁,从而于20℃至30℃的温度下形成磷酸铁与磷酸亚铁的混合物。伴随着彻底搅拌,加入2摩尔氯化锂。以99%醋酸滴定所生成溶液,至反应溶液的pH值为5。进行持续搅拌,以完全地分散反应溶液。于48小时持续搅拌之后,以聚丙烯过滤膜过滤分散溶液,以形成磷酸铁与磷酸亚铁的固态混合物。
以蒸馏水清洗固态混合物,以移除不纯物。将所生成的固态混合物、600毫升蒸馏水与0.02摩尔氧化钛置于球磨罐中,并且使其彻底地研磨及分散于球磨罐中,以于溶液中形成半结晶纳米化颗粒混合物。将悬浮液喷雾干燥为前驱物。
将前驱物承载于氧化铝匣钵上,并且放入高温炉中。亦将碳粉放入高温炉中。使高温炉填充氩气载气。使高温炉以20℃/分钟的速率从室温升温至800℃,并且在800℃下持温24小时。在高温炉中,使碳粉粒子悬浮于氩气载气中,并且与前驱物混合,以制得含有磷酸锂铁主体并和氧化钛和外部碳层共结晶的复合材料Li1.04Fe0.99PO4·0.005TiO2/C。通过AES/ICP技术测定x、y和z的数目分别为1.04、0.99和0.005。材料为可简单地以Li(I)Fe(II)PO4·TiO2/C或LiFePO4·TiO2/C表示且可简单地称为Li(I)Fe(II)PO4·TiO2/C或LiFePO4·TiO2/C的材料的实例。
实施例3:复合材料Li1.03Fe0.996PO4·0.02V2O3/C
将2摩尔磷酸氢二铵与0.25摩尔柠檬酸混合,并且以300毫升的去离子水进行溶解,以形成酸性溶液。将10毫升DNP(一种阳离子型表面活性剂)加入酸性溶液中。于彻底混合所生成溶液之后,加入2摩尔氯化亚铁,从而于20℃至30℃的温度下形成磷酸铁与磷酸亚铁的混合物。伴随着彻底搅拌,加入2摩尔氯化锂。以99%醋酸滴定所生成溶液,至反应溶液的pH值为5。进行持续搅拌,以完全地分散反应溶液。于48小时持续搅拌之后,以聚丙烯过滤膜过滤分散溶液,以形成磷酸铁与磷酸亚铁的固态混合物。
以蒸馏水清洗固态混合物,以移除不纯物。将所生成的固态混合物、600毫升蒸馏水与0.02摩尔氧化钒置于球磨罐中,并且使其彻底地研磨及分散于球磨罐中,以于溶液中形成半结晶纳米化颗粒混合物。将悬浮液喷雾干燥为前驱物。
将前驱物承载于氧化铝匣钵上,并且放入高温炉中。亦将碳粉放入高温炉中。使高温炉填充氩气载气。使高温炉以20℃/分钟的速率从室温升温至800℃,并且在800℃下持温24小时。在高温炉中,使碳粉粒子悬浮于氩气载气中,并且与前驱物混合,以制得含有磷酸锂铁主体并和氧化钒和外部碳层共结晶的复合材料Li1.03Fe0.996PO4·0.02V2O3/C。通过AES/ICP技术测定x、y和z的数目分别为1.03、0.996和0.02。材料为可简单地以Li(I)Fe(II)PO4·V2O3/C或LiFePO4·V2O3/C表示且可简单地称为Li(I)Fe(II)PO4·V2O3/C或LiFePO4·V2O3/C的材料的实例。
实施例4:其它复合材料
依照类似实施例1-3中所用的方法或类似以下在本实施例中所用的方法制备其它共结晶态材料。此等材料包含以下表1所示。就以下所列的材料而言,为了便利,仅将y的数目以1表示。就以下所列的材料以及其它另外列出的材料而言,z的数目可接近百分的ㄧ。以下所列以粗体出现、标为复合材料I(为实施例1的复合材料)、复合材料II、复合材料III、复合材料IV及复合材料V等的五种材料用于此中讨论的实施例中。
  表1:共结晶态组合物
  Li1.17FePO4·0.0097ZnO/C
  Li1.01FePO4·0.005ZnO/C
  Li1.05FePO4·0.0097MnO/C
  Li0.93FePO4·0.0098MnO/C
  Li1.03FePO4·0.015MnO/C
  Li1.01FePO4·0.02MnO/C
  Li1.04FePO4·0.03MnO/C
  Li1.02FePO4·0.05MnO/C
  Li1.11FePO4·0.013MgO/C
  复合材料I:
  Li1.01FePO4·0.012MgO/C
  Li1.03FePO4·0.017MgO/C
  Li0.99FePO4·0.021MgO/C
  Li0.99FePO4·0.032MgO/C
  Li1.01FePO4·0.05MgO/C
  Li1.23FePO4·0.009Al2O3/C
  Li1.03FePO4·0.016Al2O3/C
  Li1.08FePO4·0.01NiO/C
  Li1.04FePO4·0.01NiO/C
  Li1.03FePO4·0.02V2O3/C
  Li1.07FePO4·0.021V2O3/C
  Li0.95FePO4·0.032V2O3/C
  复合材料III:
  Li0.98FePO4·0.044V2O3/C
  Li1.00FePO4·0.067V2O3/C
  Li1.06FePO4·0.098V2O3/C
  Li1.09FePO4·0.0098CuO/C
  Li0.96FePO4·0.0097CuO/C
  Li1.10FePO4·0.0156CuO/C
  Li1.03FePO4·0.02CuO/C
  Li1.04FePO4·0.03CuO/C
  复合材料IV:
  Li1.03FePO4·0.05CuO/C
  Li1.12FePO4·0.01CoO/C
  Li0.95FePO4·0.098CoO/C
  Li1.11FePO4·0.018SiO2/C
  复合材料V:
  Li0.96FePO4·0.012Cr2O3/C
  Li1.04FePO4·0.0047TiO2/C
  Li1.07FePO4·0.014TiO2/C
  Li1.04FePO4·0.013TiO2/C
  复合材料II:
  Li1.03FePO4·0.029TiO2/C
可依照类似实施例1-3中的任一个所用的方法制备此等复合材料。此刻将说明一些使用LiOH·H2O、铁粉、H3PO4及氧化物成分B作为反应物的复合材料。在此制法中,将理想配比含量的反应物溶解于加入至少一种表面活性剂作为螯合剂的去离子水中,以促进胶体形成。喷雾干燥每一种制得的溶液,直到形成细颗粒为止。在流动N2气体环境下,将颗粒加热至400℃,以释放CO2,并且进一步在800℃下烧结所生成的分解前驱物颗粒。烧结作用在还原氛围中进行,以防止Fe2+阳离子氧化。
于复合材料II和复合材料IV的工艺中,氧化物成分TiO2和CuO的理论含量分别用于个别制得的溶液中。理论含量分别为0.051摩尔%和0.030摩尔%。通过感应耦合电浆(ICP)分析测定分别存在于复合材料II和复合材料IV中的CuO和TiO2的真实含量分别为0.05摩尔%和0.029摩尔%。真实含量稍低于理论含量,这代表在处理过程中已丧失此等氧化物的一些含量。
针对制得的各种复合材料得到X-射线衍射图案(采用Cu K),以测定相纯度。使用具有场发射的高分辨率透射电子显微照相(HRTEM)以研究各种复合材料的粉末的表面形态。X光射线吸收光谱研究(于台湾的国家同步辐射中心进行)(使用容许同步辐射通过的密拉窗口(Mylarwindow))亦可用以描绘各种复合材料的特征。于此等研究中,电子储存环以束电流100-200毫安在1.5GeV的能量下进行。
X-射线不可对于侦测复合材料的许多氧化物成分(例如Cr2O3和V2O3)过于敏感。进行k3-权重的Cr、V和Ti K-边缘EXAFS测量的各种傅立叶转换(FTs),从而确认是否各种氧化物成分为各种复合材料的共结晶态型成的ㄧ部分。各种K-边缘EXAFS频谱以BL17C Wiggler光束线获得。
使用各种复合材料制备CR2032钮扣型电池,并且用以研究此等电池的电化学特性,包含恒电流充电和放电特性。一般而言,钮扣型电池的电极的形成方式通过分散85重量%活性复合材料、8重量%碳黑与7重量%聚亚乙烯氟(PVDF)于N-甲基-1-吡咯烷酮(NMP)溶剂中,以形成淤浆;将淤浆涂布于铝箔上;并且在真空烘箱中干燥涂布于铝箔上的电极,接着压制电极。在填氩的手套箱中(德国Mbraun,Unilab)(使用锂箔作为负极)组装每一钮扣型电池。在给定的钮扣型电池的电化学特性研究中,使用碳酸乙烯酯(EC)与碳酸二甲酯(DMC)的1∶1混合物中的LiPF6(1M)的电解液。在每一循环伏安法(CV)研究中,使用扫描速率为0.1毫伏特/秒的电化学工作站进行测量,并且每一电池于2.5至4.3伏特范围内以C/10速率恒电流充电和放电。
本实施例大体上说明一些所制备的复合组合物、用以制备复合组合物的各种方法、用以计算的各种技术以及用于此等技术的各种参数。此中涵盖全部的变化。在此中的其它实施例中,各种复合组合物、其制备方法、技术和用以评估的参数将更特别地描述于此等实施例中。
实施例5:复合材料的表面形态和能量分布频谱
制备各种复合材料,即Li(I)Fe(II)PO4·Cr2O3/C、Li(I)Fe(II)PO4·CuO/C和Li(I)Fe(II)PO4·TiO2/C。于此等工艺中,将各种离子(分别为锂、铁和磷酸根的离子以及铬、铜和钛)溶解于水性媒介中,并且以原子级混合。此等制法生成具有橄榄石晶格结构的组合物,其中分别为Cr2O3、CuO和TiO2的实质上均匀的共结晶作用。
显示Li(I)Fe(II)PO4·Cr2O3/C复合材料的部分颗粒的表面形态的图片通过高解析透射电子显微照相术得到。图片显示于图4A中。在图4A的右边角落中出现的线代表30纳米,并且放大倍率为300K。较深部分52对应于复合材料50的Li(I)Fe(II)PO4·Cr2O3共晶体,并且较浅或半透明外部56对应于复合材料50的碳成分。复合材料的颗粒可被认为大体上呈球形。复合材料的颗粒的有效直径经发现为纳米级的。
显示Li(I)Fe(II)PO4·CuO复合材料的部分颗粒的表面形态的图片通过分析式透射电子显微照相术得到。图片显示于图4B中。在图4B的右边角落中出现的线代表15纳米,并且放大倍率为600K。较深部分52对应于复合材料50的Li(I)Fe(II)PO4·CuO共晶体,并且边缘部分54对应于过量的CuO。在三个位置的边缘的厚度为介于约3纳米与约3.5纳米之间,即分别为3.02纳米、3.35纳米和3.45纳米。复合材料的颗粒可被认为大体上呈球形。颗粒的共结晶态主体的有效直径和颗粒边缘的厚度二者经发现是纳米级的。
图片似乎显示轮廓比图4C所示的图片(将说明如下)以及材料表面上的可变特征有点清晰。图片似乎显示实质上均匀的CuO层,其形成具有厚度介于约3纳米与约3.5之间。图片显示CuO共结晶,并且亦实质上均匀地分布于复合材料的颗粒中,其中过量的CuO离析,但不是以无序方式析出于颗粒表面上。
显示Li(I)Fe(II)PO4·TiO2复合材料的部分颗粒的表面形态的图片通过高解析式穿透电子显微照相术得到。图片显示于图4C中。在图4C的右边角落中出现的线代表10纳米,并且放大倍率为600K。较深部分52对应于复合材料50的Li(I)Fe(II)PO4·TiO2共晶体,并且边缘部分54对应于过量的TiO2。复合材料的颗粒可被认为大体上呈球形。颗粒的共结晶态主体的有效直径和颗粒边缘的厚度二者经发现是纳米级的。图片显示TiO2共结晶,并且实质上均匀地分布于复合材料的颗粒中,其中过量TiO2离沉积,但不是以无序方式析出于颗粒表面上。
Li(I)Fe(II)PO4·TiO2/C复合材料受到能量色散频谱(EDS)作用。所生成的EDS频谱(强度(cts)对能量(keV))显示于图4D中。EDS频谱分析显示共结晶态材料的个别结晶的元素表面上有关氧化物成分的元素(即离子性Ti4+)的均匀分布。
倘若此中所述的复合材料的氧化物成分仅为涂层,则在TEM图片上可看到材料颗粒外侧上无序的氧化物成分分布。此外,倘若此中所述的复合材料的氧化物成分仅为掺杂物,则将不会出现于TEM图片中材料颗粒的外侧。
显示非共结晶态的比较LiFePO4材料的表面形态的图片显示于图4E中。在图4E的右边角落中出现的线代表20纳米,并且放大倍率为300K。不似图4B和图4C中所示的图片,仅可于图片上看到深色的主体。此外,图片显示相当清晰的轮廓以及相当平坦或均匀的表面。
共结晶态复合材料的图片显示氧化物成分B均匀地分布于材料的橄榄石结构相。此可显示出此等氧化物成分存在于橄榄石结构之中或之上。
实施例6:复合材料的衍射图案和结构参数
与复合材料I的粉末有关的衍射图案通过粉末X-射线衍射仪得到(使用Cu Kα辐射,扫描速率为每10秒0.1度,以及2θ轴为10至50度)。针对每一复合材料II和复合材料III分开地进行相同的程序。虽然未显示此等衍射图案,但有关Li(I)Fe(II)PO4·TiO2/C复合材料、复合材料II、另一复合材料Li(I)Fe(II)PO4·CuO/C、复合材料IV与比较材料所得到的衍射图案于实施例9说明且显示于图6中。
使用计算机软件(CellRef Lattice Refinement Routine)(请参照www.ccp13.ac.uk/software/Unsupported/cellref.html.)以改良测定复合材料I、复合材料II与复合材料III中每一个的结构参数的结果。有关此等复合材料的结构或晶格参数通过Reitveld改良法测定,并且显示于以下表2中。
表2:有关复合材料的晶格常数
Figure A20081012865300331
通过比较,与LiFePO4有关的各种晶格参数报告如下:a=10.334
Figure A20081012865300332
b=6.008
Figure A20081012865300333
c=4.693
Figure A20081012865300334
及V=291.392
Figure A20081012865300335
(A.K.Padhi et al.,J.Electrochem.Soc.144,1188(1997)),以及a=10.328b=6.009
Figure A20081012865300337
c=4.694
Figure A20081012865300338
及V=291.31(于Electrochimica Acta.50,2955-2958(2005))。
此等结构分别证实复合材料I的Li(I)Fe(II)PO4部分和MgO部分、复合材料II的TiO2部分以及复合材料III的V2O3部分的共结晶态结构。每一种此等共结晶态结构包含表明为斜方晶系Pmna空间群的有规则的橄榄石结构。再者,当使用低浓度的此中的每一氧化物成分(分别为复合材料I、II和III中的MgO、TiO2和V2O3)时,则不会破坏有关材料的LiFePO4部分的晶格结构。再者,由于此中的氧化物的每一非氧元素(分别为复合材料I、II和III中的Mg、Ti和V)的离子半径和材料的LiFePO4部分的亚铁离子有些类似,故有关材料的LiFePO4部分的晶格结构的变形是微小的或可忽略的。然而,共结晶态材料的晶格结构与如上所示的LiFePO4的晶格结构不同。此中所述的共结晶态材料具有晶格结构为比如上所示的LiFePO4的晶格结构大体上更大的晶格常数和更大的晶格体积。倘若此中所述的复合材料的氧化物成分仅适用于作为替代共结晶态成分的涂层及/或掺杂物,则此种放大将不会发生。
实施例7:复合材料的循环伏安图
此刻说明使用循环电压电位扫瞄评估各种材料的离子导电率。使用适当的氧化物材料(ZnO)制造起始材料,一种LiFe(II)PO4·ZnO/C复合材料。于室温下,于Ag/AgCl参考电极存在下,将起始材料置于LiNO3水溶液(3M)中。涉及离子性锂的离子提取或嵌出程序造成铁中心从Fe(II)氧化为Fe(III),此涉及电位3.0伏特。涉及离子性锂的离子插入或嵌入程序造成铁中心从Fe(III)还原为Fe(II),此涉及电位3.6伏特。对应于上述的循环伏安示意图(电流(A)对Ag/AgCl参考电极)显示于图5A中,并且对应于上述的反应架构示意图则显示如下。
Figure A20081012865300341
使用适当的氧化物材料(TiO2),并且省略含A成分(例如含锂成分或氯化锂或LiOH·H2O),以制造起始材料,一种LiFe(II)PO4·TiO2/C复合材料。于室温下,于Ag/AgCl参考电极存在下,将起始材料置于LiNO3水溶液(3M)中。涉及离子性锂的离子插入或嵌入程序造成铁中心从Fe(III)还原为Fe(II),此涉及电位3.02伏特。涉及离子性锂的离子提取或嵌出程序造成铁中心从Fe(II)氧化为Fe(III),此涉及电位3.5伏特。对应于上述的循环伏安示意图(电流(A)对Ag/AgCl参考电极)显示于图5B中,并且对应于上述的反应架构示意图则显示如下。
Figure A20081012865300342
在此特殊实施例中,反应涉及Fe(III)PO4·0.03TiO2/C作为起始材料,并且产生Li(I)1.03Fe(II)PO4·0.029TiO2/C(复合物II)作为离子插入程序的最终材料。(请参见实施例4有关制备方法中所用的氧化物成分(在此为0.03TiO2)的理论含量与通过工艺产物中的ICP分析测定的真实含量(在此为0.029TiO2)之间的差异)。
以上证实LiFePO4·ZnO/C共结晶态复合材料与对应的FePO4·ZnO/C共结晶态复合材料以及LiFePO4·TiO2/C共结晶态复合材料与对应的FePO4·TiO2/C共结晶态复合材料的离子导电率。材料的LiFe(II)PO4部分的氧化还原中心(在此等实施例中为铁)涉及还原和氧化程序,而材料的剩余的ZnO或TiO2部分的氧化物(在此等实施例中分别为锌或钛)不涉及此等程序。还原和氧化程序引起相对于锂的费米能阶(Fermi level)的Fe2+/Fe3+氧化还原的高开路电压(OCV)。在共结晶态材料中的少量的氧化物成分(例如ZnO或TiO2)不会影响或明显地影响与此中所述的共结晶态复合材料有关的OCV,其主要由共结晶态材料的聚阴离子决定(例如PO4 3-)。
如上有关实施例6的说明,有关[Li(I)Fe(II)PO4·TiO2]/C复合材料的晶格参数与有关LiFePO4组合物的晶格参数不同,后者通常较大。有关此中所述的复合材料的此一相对放大的结构可提供相对上较大的空间予离子插入或嵌入程序。
实施例8:含有复合材料的电化学可逆性半电池及其效能
将得自实施例1的复合材料(即复合材料I)与碳黑及聚偏二氟乙烯(polyvinylidene difluoride,PVDF)以80∶10∶10的比例混合于1毫升N-甲基-1-吡咯烷酮(NMP)溶剂中。将所生成的混合物涂布于铝箔上,经120℃烘干后制成厚度150毫米的正极试片。使正极试片结合锂金属负极材料组成钮扣型电化学可逆式半电池。除了分别以实施例2的复合材料和实施例3的复合材料取代实施例1的复合材料外,针对来自实施例2和实施例3的每一复合材料分开地进行相同程序。
测试上述的每一钮扣型电化学可逆式半电池,以决定在室温下经过若干充电/放电循环的相关的充电和放电特性。使用以下参数:施加的充电电压和施加的放电电压每一个在2.5伏特至4.3伏特的范围内;充电速率和放电速率,每一个设定为C/10;以及室温条件。测定以下特性:分别有关第一次充电-放电循环和第十次充电-放电循环的充电容量(mAh/克)。有关每一钮扣型电化学可逆式半电池的结果显示于以下表3中。
表3:有关使用复合材料的半电池的充电容量
  半电池的复合材料   第一次充电容量(mAh/克)   第一次放电容量(mAh/克)   第十次充电容量(mAh/克)   第十次放电容量(mAh/克)
  实施例1的复合材料   131   131   133   132
  实施例2的复合材料   168   144   147   146
  实施例3的复合材料   165   141   145   143
如所示,针对半电池之一而言,有关初放电的比容量达到约144mAh/克,而有关第十次放电的比容量达到约146mAh/克。结果证实使用此中所述的复合材料的电化学可逆式半电池展现良好的充电-放电效能以及良好的充电-放电循环稳定性。
实施例9:复合材料的衍射图案和结构参数
如上有关实施例4的说明,制备Li(I)Fe(II)PO4·TiO2/C复合材料(即复合材料II)以及Li(I)Fe(II)PO4·CuO/C复合材料(即复合材料IV)。针对每一复合材料,通过粉末X-射线衍射仪(使用Cu Kα辐射,扫描速率为每10秒0.1度,2θ轴为10至50度,以及温度为300K)得到有关复合材料的粉末的衍射图案。每一复合材料的衍射线显示斜方晶系晶体结构。使用计算机软件以改良测定复合材料的结构参数的结果。
有关此等复合材料的结构或晶格参数通过Reitveld改良法测定,并且显示于以下表2中。有关每一此种复合材料所得到的衍射图案(强度(cts)对2θ(度))连同有关比较材料(未经修饰的(未掺杂的)LiFePO4/C)的衍射图案显示于图6中。图6中所示的三个圆形区域显示有关复合材料II和IV(在图6中分别以「II」和「IV」显示)的图案相对于比较材料的图案(在图6中以「CM」显示)的差异性。
与Li(I)Fe(II)PO4·TiO2/C和Li(I)Fe(II)PO4·CuO/C有关的个别图案的每一个具有陡峭、轮廓明显的Bragg波峰,这代表纯结晶相的存在。每一此等图案无法显示有关每一材料的碳成分的波峰,以及可能有关不纯物的波峰。每一此等图案证实形成具有出现于10至50度的2θ范围内的微变化的共结晶态结构。在前者的例子中,图案证实共结晶相中的磷铁锂矿Li(I)Fe(II)PO4和金属氧化物TiO2,其中具有良好结构的金红石TiO2位于2θ为约27度和约41度。在后一例中,图案证实共结晶相中的磷铁锂矿Li(I)Fe(II)PO4和金属氧化物CuO,其中具有良好结构的CuO位于2θ为约43度。每一此等图案与有关LiFePO4/C的不同。如上有关实施例6中所述,有关Li(I)Fe(II)PO4·TiO2/C复合材料的晶格参数与有关LiFePO4组合物的晶格参数不同。
在涂覆金属氧化物的LiCoO2中,有关金属氧化物的波峰已被报告为显示金属氧化物分布于LiCoO2材料中。Electrochemical andSolid-State Letters,6,A221-A224(2003);Angew.Chem.Int.Ed.40,3367(2001)。涂氧化锆的LiCoO2的XRD图案已显示有关位于2θ为约30度的LiCoO2的主峰以及小的宽峰。Electrochemical and Solid-StateLetters.6,A221-A224(2003)。此种小的宽峰代表存在为LiCoO2材料周围的涂层的氧化物成分(在此为氧化锆)。此种小的宽峰可与以上有关二种复合材料所讨论到的窄衍射峰相区别。有关二种复合材料的窄衍射峰代表分别含有纳米结晶态金属氧化物成分(分别为TiO2或CuO)的共结晶态复合材料。
有关二种复合材料和比较材料的结构或晶格参数通过使用一般结构分析系统(GSAS)的Reitveld改良法(请参照ncnr.nist.gov/programs/crystallography/software/gsas.html)测定,并且分别显示于以下的表4-6中。在三个表中,x、y和z参数代表三维笛卡尔坐标。
表4:有关复合材料II的结构参数
表5:有关复合材料IV的结构参数
Figure A20081012865300382
表6:有关未经修饰的LiFePO4/C的比较材料的结构参数
Figure A20081012865300383
Figure A20081012865300391
如表4和5所示,在二种复合材料的每一个中的铁位置占有率经测定为1,其接近共结晶态材料配方中的铁的理想配比指数。尝试分别含括Ti和Cu于计算法中是不成功的,因为所得到的数值远比材料样品中的Ti和Cu的真实含量为高。倘若复合材料掺杂金属氧化物,则预期铁位置的占有率将小于1。二种复合材料的占有率数据代表其中不存在金属氧化物TiO2或CuO为掺杂物的复合材料。
如表4-6中所示,与复合材料有关的晶格参数大于与比较材料有关的。此等差异可归因于氧化物成分B存在于共结晶态材料中。此种材料不存在于非共结晶态的比较材料中。
与二种复合材料和比较材料有关的Fe-O距离亦显示于表4-6中。在二种复合材料中,每一M中心(在此为Fe中心)的八面体结构与四个其它M中心的八面体结构和四个X中心的四面体结构(在此为X中心)相连,其中一些八面体-四面体共享氧原子如图3A所示。因此,中心M和中心P原子沿着M-O-X(在此为Fe-O-P)键结共享共有的最近O原子。由于M-O-X键结的感应效果以及M与X间的静电排斥,相对于有关M-O键结的共价键,介于M-O-X键结中的M与O之间的共价键较弱。此引起有关M基底还原氧化对(在此为Fe2+/Fe3+)相对于A成分(在此为锂)的费米能阶的高开路电压(OCV)。氧化物成分B存在于复合材料的共晶体中时,此OCV并不改变。
实施例10:复合材料和比较材料的结构分析
使用Fe K-边缘延伸式X射线吸收精细结构(EXAFS)频谱分析复合材料II、复合材料IV以及比较材料(天然LiFePO4/C)。所生成的频谱(强度(a.u.)对能量(eV))显示于图7D中(其中复合材料II和IV以及比较材料分别以「II」、「IV」和「CM」表示),其中显示插入的频谱的放大区域。Fe K-边缘EXAFS频谱包含二各主要部分,前边缘区和主边缘区。就此中所分析的每一材料而言,前边缘区的波峰被认为是用于决定Fe氧化态和配位环境的最有用的特性。此波峰位于对应于1s至3d电子跃迁的突升的吸收边缘的低能量侧,并且代表1s至3d四级电子跃迁。此跃迁通常为偶极禁止程序,虽然就此中的复合材料而言,部分地容许通过混合Fe的d-状态与周围氧原子的p-状态以及使离子性Fe配位几何形状脱离理想的八面体几何形状。与前边缘区有关的能量对Fe氧化态而言是敏感的。有关前边缘区的强度对于中心对称而言是敏感的,并且最具中心对称性的Fe配位几何形状与最低强度有关。前边缘区的强度最小值与八面体对称性有关,并且前边缘区的强度最大值与四面体配位有关。
如图7所示,二种复合材料和比较材料的前边缘区强度峰与超过7110eV的能量有关。由于针对Fe2+可观察到相同的能量,故大部分此等材料中的Fe的价态为+2。在此等前边缘区波峰的能量或吸收峰中没有涉及二种复合材料中的氧化物成分B存在的变化。微量的此等成分造成二种复合材料中的少许或相当不明显的Fe价态扰动。
亦如图7所示,对应于约7125eV的吸收峰的强度,就二种复合材料而言,比对于比较材料为高。当相对比较二种复合材料与比较材料时如此。与二种复合材料有关的较高强度反映出二种复合材料的LiFePO4颗粒的表面层中的离子性Fe的未占据的d-状态。再者,二种共结晶的复合材料的氧化物成分B可更易地吸引从Fe2+吸引3d电子,藉以在此等离子的3d状态中产生电洞并且在二种复合材料中引起增加的p型导电性。
使用标准校正程序,包含背景减除、能量校正、常态化以及不同状态的k3数据权重来处理Fe K-边缘EXAFS频谱,并且,从而产生k3 x(k)函数。为了比较目的,使用标准散射路径使三个频谱分别拟合针对二种复合材料与比较材料所产生的EXAFS频谱。针对二种复合材料与比较材料的每一个,在0与15
Figure A20081012865300411
之间的有限k-空间范围内进行k3 x(k)的傅立叶转换,以提供对应的径向结构函数(FT大小),如图8所示为原子间距离R的函数(其中复合材料II和IV以及比较材料分别以「II」、「IV」和「CM」表示)。使用所有可能的散射路径的Fe-O环境的FEFF拟合分析的理论结构的示意图(仅显示第一波峰)亦显示于图8中。就三种材料的每一个而言,径向结构函数显示随着原子间距离提高,二个强波峰之后为二个较弱波峰。与波峰有关的原子间距离接近反向散射边缘的半径。针对三种材料的每一个,使用所有可能的LiFePO4散射路径的FEFF拟合分析的理论结构定量地分析对应于原子间距离为至多约4.1A的最初三个讯号峰。第一讯号峰、第二讯号峰及第三讯号峰的配位原子经测定分别为氧、磷及铁。
针对二种复合材料与比较材料中的每一个进行FEFF拟合分析,以生成如以下表7中所示的结构参数,其中Za-Zb代表中间吸收物和散射原子(或路径)相关性,CN为配位数,R为原子间距离,σ2代表Debye-Waller无序参数,并且折减系数为6/5.0315。
表7:复合材料和比较材料的FEFF拟合分析数据
Figure A20081012865300413
通过假设表7中所示的原子间Fe-O距离得到第一讯号峰的最佳拟合结果。根据文献,通过假设三种不同的Fe-O距离分别为1.9912
Figure A20081012865300414
2.1223
Figure A20081012865300415
和2.2645可得到LiFePO4的最佳拟合数据。请参见Electrochimica Acta.50,5200-5207(2005)。二种复合材料与比较材料的数据比较显示相当微细的改变,例如微小的结构重组以及Fe-O配位和原子内Fe-O距离的最小变化(如表7所示)。
本实施例的结果证实二种复合材料的每一氧化物成分B与LiFePO4共结晶,而非涂覆及/或掺杂LiFePO4成分。一般而言,当掺杂未经修饰的LiFePO4材料时,一些有关Fe2+以及氧化物中M的特性以及与径向结构函数的第一波峰有关的原子间距离与未经修饰的材料相比将不同或有明显改变。EXAFS频谱的结果显示二种复合材料和比较材料的有关Fe2+的前边缘区波峰实质上是相同的。此等结果显示二种复合材料和比较材料的有关Fe2+的前边缘区波峰的吸收强度仅稍微不同,并且充分地表示Fe氧化态中无明显的扰动。径向结构函数测定的结果显示与二种复合材料和比较材料的第一波峰有关的原子间距离实质上是相同的。二种复合材料与比较材料的数据比较显示相当微细的改变,例如微小的结构重组以及Fe-O配位和原子内Fe-O距离的最小变化。
实施例11:复合材料和比较材料的结构分析
通过使用Cr K-边缘延伸式X射线吸收精细结构(EXAFS)频谱分析复合材料V以及比较材料(具有氧化态3+的Cr2O3)。每一Cr K-边缘EXAFS频谱使用IFEFFIT基础软件包(参照B.Ravel,et al.,J.Synchrotron Radiat.12,537(2005))和FEFF6码(参照Rehr et al.,Phys.Rev.Lett.69,3397)处理,其中光电散射路径从假设的原子分布计算ab开端。可得到所生成的频谱(强度(a.u.)对能量(eV),未显示),其中能阶相对于金属的Cr K-边缘能量(5989.0eV)。二种材料的前边缘区的波峰几乎相同,代表复合物中的铬的平均氧化态主要为3+。
以类似上述有关实施例10所述的方式处理每一Cr K-边缘EXAFS频谱。针对复合材料与比较材料的每一个,在3.6
Figure A20081012865300421
与13.5A-1之间的有限k-空间范围内进行k3 x(k)的傅立叶转换,以提供对应的径向结构函数(FT大小),如图9所示为原子间距离R
Figure A20081012865300422
的函数(其中复合材料V以及比较材料分别以「V」和「CM」表示)。复合材料和比较材料的FEFF拟合分析的理论结果的示意图亦显示于图9中(其中复合材料V的拟合和比较材料的拟合分别显示为「V fit」和「CM fit」)。
就复合材料而言,频谱显示出三个主峰,代表Cr原子附近的最接近配位原子的贡献。就具有六方晶系晶体结构的比较材料而言,频谱显示出三个主峰,代表半径低于4A的Cr原子附近的最接近配位原子的贡献(请参照C.Engemann,et al.,Chemical Phys.237,471(1998))。此等频谱的第一波峰(代表最接近Cr原子的配位原子的贡献)相当类似。在两频谱中缺少更远的原子的强波峰特征。结果证实复合材料的Cr主要呈结晶态Cr2O3形式。
在Cr2O3晶体构造中,Cr原子为八面体配位于第一配位外壳的六个氧原子(三个在1.96A及三个在2.01A)以及四个在第二配位外壳中的Cr原子(一个在2.65A及三个在2.88A),并且具有交替的氧和Cr邻接外壳。使用至多4.0A的单一和显著多重散射路径复合材料和比较材料进行FEFF拟合分析,以产生如以下表8中所示的结构参数,其中Za-Zb代表中间吸收物和散射原子(或路径)相关性,CN为配位数,R为原子间距离,σ2代表Debye-Waller无序参数,并且折减系数为6/5.0315。
表8:复合材料和比较材料的FEFF拟合分析数据
Figure A20081012865300431
如图9中所示,在3.6A-1与13.5A-1间的有限k-空间范围内(R为在至多2A的范围内,尤其约1.98A),可得到复合材料与比较材料的EXAFS频谱间的良好的拟合效果。针对复合材料与比较材料间的FEFF拟合分析间可得到良好的拟合效果,如表8所示,前者显示六个氧原子在距离1.9857A处。
本实施例的结果符合结论为,复合材料的中心Cr比比较材料的中心Cr更接近理想的八面体CrO6结构。
实施例12:复合材料和比较材料的结构分析
通过使用V K-边缘延伸式X射线吸收精细结构(EXAFS)频谱分析复合材料III以及比较材料V2O3、VO2和V2O5,以描绘共结晶态结构的特征。可得到所生成的频谱(强度(a.u.)对能量(eV),未显示),其中能阶相对于金属的Cr K-边缘能量(5465.0eV)。二种材料的前边缘区的波峰几乎相同,代表复合物中的铬的平均氧化态主要为3+。
就复合材料而言,频谱显示出三个主峰,代表V原子附近的最接近配位外壳的贡献。就具有三角形晶体结构的V2O3复合材料而言,频谱显示出三个主峰,代表V附近的最接近配位原子的贡献。复合材料的频谱比其它比较材料的任一频谱更类似V2O3比较材料的频谱。就复合材料的频谱和V2O3比较材料的频谱而言,缺乏更远的原子的强波峰特性。结果证实复合材料的V主要呈结晶态V2O3形式。
以类似上述有关实施例11所述的方式处理有关复合材料和V2O3比较材料的每一V K-边缘EXAFS频谱。针对复合材料与V2O3比较材料的每一个,在3.95A-1与12.55A-1之间的有限k-空间范围内进行k3 x(k)的傅立叶转换,以提供对应的径向结构函数(FT大小),如图10所示为原子间距离R
Figure A20081012865300441
的函数(其中复合材料III以及V2O3比较材料分别以「III」和「CM」表示)。复合材料和V2O3比较材料的FEFF拟合分析的理论结果的示意图亦显示于图10中(其中复合材料V的拟合)和比较材料的拟合分别显示为「III fit」和「CM fit」。
针对复合材料与V2O3比较材料中的每一个进行FEFF拟合分析,以生成如以下表9中所示的结构参数,其中Za-Zb代表中间吸收物和散射原子(或路径)相关性,CN为配位数,R为原子间距离,σ2代表Debye-Waller无序参数,并且折减系数为6/5.0315。
表9:复合材料和比较材料的FEFF拟合分析数据
如图10中所示,在3.95A-1与12.55A-1之间的有限k-空间范围内(R为在至多2A的范围内,尤其约1.99A),可得到复合材料与比较材料的EXAFS频谱间的良好的拟合效果。针对复合材料与比较材料间的FEFF拟合分析间可得到良好的拟合效果,如表9所示,前者显示六个氧原子在距离钒原子1.9996处。
本实施例的结果符合结论为,复合材料的中心V比比较材料的中心Vr更接近理想的八面体VO6结构。
实施例13:复合材料和比较材料的结构分析
通过使用Ti K-边缘延伸式X射线吸收精细结构(EXAFS)频谱分析复合材料II以及二种比较材料金红石TiO2和锐钛矿TiO2。针对复合材料II所生成的频谱(强度(a.u.)对能量(eV),未显示)显示在约4950Ev至约5100eV范围内(与有关金红石TiO2的范围内相似)的波峰。
实施例14:复合材料和比较材料的结构分析
一般而言,归因于阳离子相对于相邻氧原子运动的振动模式对于氧主体中的阳离子的点群对称性是敏感的。可使用傅利叶红外线(FTIR)频谱研究密集堆积的氧原子的晶格中的阳离子。
使用室温下的FTIR频谱分析复合材料和比较材料LiFePO4/C。在400cm-1至4000cm-1频率范围内的复合材料的频谱(T(%)对频率(cm-1))显示于图11A中。在400cm-1至1500cm-1频率范围内的复合材料和比较材料的频谱(T(%)对频率(cm-1))显示于图11B中(其中复合材料II以及比较材料分别以「II」和「CM」表示)。
针对无机氧化物,八面体空隙(例如LiO6中的碱金属阳离子)中的阳离子的共振频率位于200cm-1至400cm-1频率范围内。针对原磷酸盐,阳离子的共振频率位于520cm-1至580cm-1和1000cm-1至1060cm-1二个主要频率范围内。复合材料的频谱显示在800cm-1至1200cm-1频率范围内的五个波峰,可确认PO4阴离子的存在。此频谱显示在2500cm-1至3500cm-1频率范围内没有明显的吸收峰,可确认Fe(OH)2不存在于复合材料中。在约547cm-1的波峰和在约638cm-1的波峰可归因于具有不同链长的P-O-P基团的拉伸振动,并且在约966cm-1的波峰可归因于P-O-P弯曲模式。在约463cm-1的波峰可归因于O-P-O和O=P-O基团的弯曲谐波,并且在约1043cm-1的波峰可归因于金属-(PO4)3-键结振动。图11B中所示的频谱显示复合材料的信号峰位置相对于比较材料的明显位移,这代表不同材料的结构中的差异。
实施例15:含有复合材料的电化学可逆性半电池及其效能
依照有关实施例8所述的方式,使用不同的复合材料(即LiFePO4·TiO2/C、LiFePO4·V2O3/C、LiFePO4·MnO/C,LiFePO4·CoO/C、LiFePO4·NiO/C、LiFePO4·CuO/C,LiFePO4·ZnO/C、LiFePO4·MgO/C、LiFePO4·Al2O3/C及LiFePO4·SiO2/C)和使用比较材料(未经修饰的LiFePO4/C)制备钮扣型电化学可逆式半电池。测试上述的每一钮扣型电化学可逆式半电池,以决定在室温下经过若干充电/放电循环的相关的充电和放电特性。使用以下参数:施加的充电电压和施加的放电电压每一个在2.5伏特至4.3伏特的范围内;充电速率和放电速率,每一个设定为C/10;以及室温条件。以电流密度0.1C测定第一次充电-放电循环的充电容量(mAh/克)和放电容量(mAh/克)。
针对含有复合材料的电化学可逆性半电池所得到的结果(电位(V)对容量(mAh/克)显示于图12中,第一次充电容量为约70mAh/克,并且第一次充电容量为约55mAh/克。针对含有每一种复合材料的电化学可逆性半电池所得到的第一次充电容量为约70mAh/克显示于图13中,其中每一复合材料简单地由其氧化物成分鉴定,第一次充电容量为从约100mAh/克(针对LiFePO4·Al2O3/C)至约145mAh/克(针对LiFePO4·TiO2/C)或约155mAh/克(LiFePO4·MnO/C)。每一种复合材料的特征在于导电率大于比较材料的晶体单元以及大于比较材料的导电率,故有关每一复合材料的锂离子移动和电子转移程序比有关复合材料更快。此种差异造成与每一复合材料有关的放电容量大于与复合材料有关的。当使用高充电和放电速率时,此种差异将提供类似的结果。
每一种含有复合材料的半电池(有时称为复合材料半电池)以及含有比较电池的半电池(有时称为比较材料半电池)历经C/10速率的恒电流充电和放电。虽然半电池的极化作用是低的(暗示观察到的电压接近平衡值),但在恒电流测量中的低和高充电速率下的倾斜电压曲线经常归因于动力限制。此中的恒电流测量用以提供有关平衡非理想配比程度的限定的信息。
「原型」复合材料半电池和比较材料半电池的恒电流充电和放电结果(电位(V)对常态化的容量(%))显示于图14(放电)和图15(充电)中(其中「原型」复合材料和比较材料分别以「原型」和「CM」显示)。在此,原型复合材料半电池的结果以以上所列的每一比较材料半电池的结果平均值为基础。与放电曲线平坦区有关的平均值,就原型复合材料半电池而言,比比较材料半电池稍高,并且与充电曲线平坦区有关的平均值,就原型复合材料半电池而言,比比较材料半电池稍低。
如图14中所示,原型复合材料半电池的放电曲线平坦区显示增加现象,而比较复合材料半电池的放电曲线平坦区则不是如此。如图15中所示,原型复合材料半电池的充电曲线平坦区显示降低现象,而比较复合材料半电池的充电曲线平坦区则不是如此。此等相对差异性不归因于两种电池间的极化差异,而是两种电池间的热力学差异,受到与原型复合材料半电池有关的开路电压(OCV)所反映的后者差异性比有关比较复合材料半电池的OCV高约0.01伏特。
与原型复合材料半电池有关的放电和充电曲线的更固定或更不固定的电压平坦区比比较复合材料半电池为广。原型复合材料半电池的平坦区的较大的相对宽度代表半电池中所用的材料的共结晶作用。此等平坦区的宽度暗示与此种共结晶作用有关的组成范围的宽度。这意味着就原型复合材料半电池而言,在半电池的复合材料中有涉及共结晶作用的宽组成范围。
本实施例的结果符合结论为,复合材料半电池的放电比比较复合材料半电池的放电更可使用较高的C速率,由复合材料半电池比由比较复合材料半电池更可放出展现增加现象的较高电压或功率,并且复合材料半电池的充电比比较复合材料半电池的充电更可使用展现降低现象的较低电压或功率。此等差异可归因于用于半电池中所用的共结晶态单元的电化学行为。
此中所述的复合材料与比较材料(例如LiFePO4)不同的重要方式在于其仅掺杂及/或涂覆金属氧化物成分。举例来说,此等复合材料具有例如相对于比较材料的增强的性质,例如离子扩散性、电子导电性及放电特性及/或晶格稳定性。此中所述的复合材料特别适用于电化学应用。举例来说,含有此一复合材料制成的电极的电化学电池、传感器或电池(例如可再充电锂电池)可提供良好的充电/放电容量、良好的充电/放电容量保留率及/或良好的充电/放电速率容量。
本领域技术人员应当可明白,许多修饰、方法及各种结构是可行的。关于了解、信任、理论、基本假设及/或操作或预示例,可解释或说明各种态样、特征或具体例,虽然应了解任一种特殊的了解、信任、理论、基本假设及/或操作或预示例不受限制。但是,以上所述仅为本发明的优选实施例,本领域技术人员根据本发明的创作精神所作的等效修饰或变化,皆应涵盖在本申请的范围内。

Claims (31)

1.一种适用于电化学氧化还原反应的组合物,其包含:
一种以通式MyXO4表示的材料,其中M代表至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素;X代表至少一种选自磷、砷、硅及硫的元素;O代表氧;x代表数目0.8至1.2,并且y代表数目0.8至1.2;
其中该材料可嵌入离子性A以形成AxMyXO4,其中A代表至少一种选自碱金属元素、铍、镁、镉、硼及铝的元素;并且x代表数目0.8至1.2;以及
至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素的氧化物;
其中该材料和该氧化物是共结晶态的。
2.一种适用于电化学氧化还原反应的组合物,其包含:
一种以通式AxMyXO4表示的材料,其中A代表至少一种选自碱金属元素、铍、镁、镉、硼及铝的元素;M代表至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素;X代表至少一种选自磷、砷、硅及硫的元素;O代表氧;x代表数目0.8至1.2,并且y代表数目0.8至1.2;以及
至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素的氧化物;
其中该材料和该氧化物是共结晶态的。
3.如权利要求1或2所述的组合物,其中A代表至少一种选自锂、钠及钾的元素。
4.如权利要求1或2所述的组合物,其中M代表至少一种选自第一列过渡金属元素的元素。
5.如权利要求1或2所述的组合物,其中X代表至少一种选自磷及砷的元素。
6.如权利要求1或2所述的组合物,其中该氧化物为至少一种选自第一列过渡金属元素、锌、镁、铝及硅的元素的氧化物。
7.如权利要求1或2所述的组合物,其中相对于该组合物,该氧化物的存在量为小于或等于0.1摩尔比。
8.如权利要求1或2所述的组合物,其中在通式中,A代表至少一种选自碱金属元素的元素;M代表至少一种选自过渡金属元素的元素;并且X代表至少一种选自磷及砷的元素。
9.如权利要求1或2所述的组合物,进一步含有碳。
10.如权利要求1或2所述的组合物,其中适量的氧化物和该材料形成共结晶态部分,并且额外用量的氧化物形成至少部分地包覆该共结晶态部分的外部。
11.如权利要求1或2所述的组合物,进一步包含碳,其中适量的氧化物和该材料形成共结晶态部分、并且额外用量的氧化物形成至少部分地包覆该共结晶态部分的外部,并且该碳至少部分地包覆该外部。
12.如权利要求1或2所述的组合物,其中该组合物是纳米级的。
13.如权利要求1或2所述的组合物,其中A代表至少一种选自锂及钠的元素;M代表至少一种选自锰、铁、钴和镍的元素M1以及至少一种选自钛、钒、铬、锰、铁、钴、镍、铜、锌、镁、铝、硅、金、锑和镧的元素M2,其中M1和M2不同;X代表磷;O代表氧;氧化物为至少一种选自钛、钒、铬、锰、铁、钴、镍、铜、锌、镁、铝、硅、金、锑和镧的元素的氧化物。
14.如权利要求1所述的组合物,其中呈共结晶态的该材料和该氧化物以通式MyXO4·zB表示,其中B代表氧化物,并且z为小于或等于0.1。
15.如权利要求2所述的组合物,其中呈共结晶态的该材料和该氧化物以通式AxMyXO4·zB表示,其中B代表氧化物,并且z为小于或等于0.1。
16.一种电极,其包含如权利要求1或2所述的组合物。
17.一种电化学电池,其包含如权利要求16所述的电极。
18.一种适用于电化学氧化还原反应的组合物,其包含:
一种以通式MyXO4表示的材料,其中M代表至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素;X代表至少一种选自磷、砷、硅及硫的元素;O代表氧;
并且y代表数目0.8至1.2;
其中该材料可嵌入离子性A以形成AxMyXO4,其中A代表至少一种选自碱金属元素、铍、镁、镉、硼及铝的元素;并且x代表数目0.8至1.2,并且y代表数目0.8至1.2;以及
至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素的氧化物;
其中一体积的该组合物的结晶态结构单元大于一体积的单独该材料的结晶态结构单元。
19.一种适用于电化学氧化还原反应的组合物,其包含:
一种以通式AxMyXO4表示的材料,其中A代表至少一种选自碱金属元素、铍、镁、镉、硼及铝的元素;M代表至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素;X代表至少一种选自磷、砷、硅及硫的元素;O代表氧;x代表数目0.8至1.2,并且y代表数目0.8至1.2;以及
至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素的氧化物;
其中一体积的该组合物的结晶态结构单元大于一体积的单独该材料的结晶态结构单元。
20.一种制备适用于电化学氧化还原反应的组合物的方法,其包含:
合并含有M的第一材料,其中M代表至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素,与含有X的第二材料的溶液,其中X代表至少一种选自磷、砷、硅及硫的元素,并且该第二材料对应地含有至少一种选自磷酸盐、砷酸盐、硅酸盐及硫酸盐的材料,从而制造所生成溶液;
由该所生成溶液得到颗粒混合物;
以至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素的氧化物研磨该颗粒混合物,从而制造半结晶态颗粒混合物;
干燥该半结晶态颗粒混合物以提供前驱物;以及
煅烧该前驱物,以生成含有氧化物与以通式MyXO4表示的材料,其中O代表氧,并且y代表数目0.8至1.2,该组合物可嵌入离子性A以形成AxMyXO4,其中A代表至少一种选自碱金属元素、铍、镁、镉、硼及铝的元素;并且x代表数目0.8至1.2。
21.一种制备适用于电化学氧化还原反应的组合物的方法,其包含:
合并含有M的第一材料,其中M代表至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素;含有X的第二材料的溶液,其中X代表至少一种选自磷、砷、硅及硫的元素,并且该第二材料对应地含有至少一种选自磷酸盐、砷酸盐、硅酸盐及硫酸盐的材料;A代表至少一种选自碱金属元素、铍、镁、镉、硼及铝的元素,从而制造所生成溶液;
由该所生成溶液得到颗粒混合物;
以至少一种选自过渡金属元素、锌、镉、铍、镁、钙、锶、硼、铝、硅、镓、锗、铟、锡、锑及铋的元素的氧化物研磨该颗粒混合物,从而制造半结晶态颗粒混合物;和含有离子性A的第三材料,其中
干燥该半结晶态颗粒混合物以提供前驱物;以及
煅烧该前驱物,以生成含有氧化物与以通式AxMyXO4表示的材料,其中O代表氧,x代表数目0.8至1.2,并且y代表数目0.8至1.2。
22.如权利要求20或21所述的方法,其中该合并步骤与得到颗粒混合物的步骤的至少一个进一步包含调整pH。
23.如权利要求21所述的方法,其中该合并步骤包含首先合并该第一材料和该溶液以生成第一溶液,接着合并该第一溶液和该第三材料。
24.如权利要求20或21所述的方法,其中该研磨步骤足以制造半结晶态纳米级颗粒混合物。
25.如权利要求20或21所述的方法,其中煅烧该前驱物的步骤包含在惰性气体与悬浮于惰性气体中的碳粒存在下煅烧该前驱物。
26.如权利要求20或21所述的方法,进一步包含加入还原剂。
27.如权利要求20或21所述的方法,其中A代表至少一种选自锂、钠及钾的元素。
28.如权利要求20或21所述的方法,其中M代表至少一种选自第一列过渡金属元素的元素。
29.如权利要求20或21所述的方法,其中该氧化物为至少一种选自第一列过渡金属元素及镁的元素的氧化物。
30.如权利要求20或21所述的方法,其中该材料和该氧化物是共结晶态的。
31.如权利要求20或21所述的方法,其中该组合物是纳米级的。
CN2008101286532A 2007-06-18 2008-06-18 电化学组合物及相关技术 Active CN101345307B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/764,629 2007-06-18
US11/764,629 US7824581B2 (en) 2007-06-18 2007-06-18 Cocrystalline metallic compounds and electrochemical redox active material employing the same
US11/940,276 US20080138710A1 (en) 2005-05-10 2007-11-14 Electrochemical Composition and Associated Technology
US11/940,276 2007-11-14

Publications (2)

Publication Number Publication Date
CN101345307A true CN101345307A (zh) 2009-01-14
CN101345307B CN101345307B (zh) 2011-06-08

Family

ID=39790426

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2008101256607A Active CN101345099B (zh) 2007-06-18 2008-06-17 共晶态复合材料及使用该化合物之电化学氧化还原活性材料
CN2008101286532A Active CN101345307B (zh) 2007-06-18 2008-06-18 电化学组合物及相关技术

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2008101256607A Active CN101345099B (zh) 2007-06-18 2008-06-17 共晶态复合材料及使用该化合物之电化学氧化还原活性材料

Country Status (7)

Country Link
US (2) US7824581B2 (zh)
EP (1) EP2006939A1 (zh)
JP (1) JP5186268B2 (zh)
KR (1) KR100950130B1 (zh)
CN (2) CN101345099B (zh)
CA (1) CA2633284C (zh)
TW (1) TWI370571B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901898B (zh) * 2009-12-07 2013-02-06 耿世达 一种内部含有三维导电结构的锂电池磷酸铁锂正极材料及其制备方法
CN113769695A (zh) * 2021-09-15 2021-12-10 苏州西姆提纳米科技有限公司 一种用碳素铬铁清洁节能绿色环保制造铬化合物的装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168329B2 (en) * 2007-06-18 2012-05-01 Advanced Lithium Electrochemistry Co., Ltd. Electrochemical composition and associated technology
DE102011003125A1 (de) 2011-01-25 2012-07-26 Chemische Fabrik Budenheim Kg Eisen(III)orthophosphat-Kohlenstoff-Komposit
EP2842186B1 (en) * 2012-04-24 2018-10-17 National University of Singapore Electrode material and method of synthesizing
KR101775541B1 (ko) 2012-05-23 2017-09-06 삼성에스디아이 주식회사 양극 활물질 및 이를 포함하는 리튬 이차 전지
FR3096178B1 (fr) * 2019-05-15 2021-06-04 Commissariat Energie Atomique Procede de neutralisation d’un generateur electrochimique
CN115810744A (zh) * 2022-12-19 2023-03-17 广东邦普循环科技有限公司 一种双包覆型正极材料及其制备方法和应用

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910382A (en) 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
US6514640B1 (en) 1996-04-23 2003-02-04 Board Of Regents, The University Of Texas System Cathode materials for secondary (rechargeable) lithium batteries
CA2270771A1 (fr) * 1999-04-30 2000-10-30 Hydro-Quebec Nouveaux materiaux d'electrode presentant une conductivite de surface elevee
CA2271354C (en) * 1999-05-10 2013-07-16 Hydro-Quebec Lithium insertion electrode materials based on orthosilicate derivatives
US7001690B2 (en) 2000-01-18 2006-02-21 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6528033B1 (en) 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
JP3631202B2 (ja) * 2001-12-21 2005-03-23 三洋電機株式会社 非水電解質電池
JP4712302B2 (ja) 2001-12-21 2011-06-29 マサチューセッツ インスティテュート オブ テクノロジー 伝導性リチウム貯蔵電極
JP4187524B2 (ja) * 2002-01-31 2008-11-26 日本化学工業株式会社 リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
US6815122B2 (en) 2002-03-06 2004-11-09 Valence Technology, Inc. Alkali transition metal phosphates and related electrode active materials
CN100359726C (zh) * 2002-10-18 2008-01-02 国立九州大学 二次电池用阴极材料的制备方法和二次电池
US7390472B1 (en) * 2002-10-29 2008-06-24 Nei Corp. Method of making nanostructured lithium iron phosphate—based powders with an olivine type structure
JP2006511038A (ja) 2002-12-19 2006-03-30 ヴァレンス テクノロジー インコーポレーテッド 電極活物質およびその製造方法
JP2005078800A (ja) * 2003-08-29 2005-03-24 Mitsubishi Materials Corp 非水二次電池の正極活物質粉末及びその製造方法並びにこれを用いた非水二次電池
JP4794866B2 (ja) * 2004-04-08 2011-10-19 パナソニック株式会社 非水電解質二次電池用正極活物質およびその製造方法ならびにそれを用いた非水電解質二次電池
US9012096B2 (en) * 2004-05-28 2015-04-21 Uchicago Argonne, Llc Long life lithium batteries with stabilized electrodes
JP4794833B2 (ja) * 2004-07-21 2011-10-19 日本コークス工業株式会社 リチウムイオン二次電池用正極材料、その製造方法、及びリチウムイオン二次電池
JP4779323B2 (ja) * 2004-08-24 2011-09-28 日産自動車株式会社 非水電解質リチウムイオン二次電池用正極材料およびその製造方法
US7781100B2 (en) * 2005-05-10 2010-08-24 Advanced Lithium Electrochemistry Co., Ltd Cathode material for manufacturing rechargeable battery
US7892676B2 (en) * 2006-05-11 2011-02-22 Advanced Lithium Electrochemistry Co., Ltd. Cathode material for manufacturing a rechargeable battery
US7799457B2 (en) * 2005-05-10 2010-09-21 Advanced Lithium Electrochemistry Co., Ltd Ion storage compound of cathode material and method for preparing the same
JP2008547157A (ja) 2005-06-01 2008-12-25 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 再充電できるリチウムイオン電池用のカソード
KR101264459B1 (ko) 2005-06-29 2013-05-14 썽뜨르 나쇼날르 드 라 르쉐르쉐 씨엉띠삐끄 결정성 나노메트릭 LiFePO₄
US7939201B2 (en) 2005-08-08 2011-05-10 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
JP5223166B2 (ja) * 2006-02-07 2013-06-26 日産自動車株式会社 電池活物質および二次電池
JP4337875B2 (ja) * 2006-12-29 2009-09-30 ソニー株式会社 正極合剤、ならびに非水電解質二次電池およびその製造方法
US8168329B2 (en) * 2007-06-18 2012-05-01 Advanced Lithium Electrochemistry Co., Ltd. Electrochemical composition and associated technology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901898B (zh) * 2009-12-07 2013-02-06 耿世达 一种内部含有三维导电结构的锂电池磷酸铁锂正极材料及其制备方法
CN113769695A (zh) * 2021-09-15 2021-12-10 苏州西姆提纳米科技有限公司 一种用碳素铬铁清洁节能绿色环保制造铬化合物的装置

Also Published As

Publication number Publication date
TW200901535A (en) 2009-01-01
KR20080111387A (ko) 2008-12-23
TWI370571B (en) 2012-08-11
JP2009026741A (ja) 2009-02-05
US7824581B2 (en) 2010-11-02
CN101345099A (zh) 2009-01-14
JP5186268B2 (ja) 2013-04-17
US20090152512A1 (en) 2009-06-18
CN101345307B (zh) 2011-06-08
CN101345099B (zh) 2012-06-13
CA2633284C (en) 2011-09-13
US20080308773A1 (en) 2008-12-18
US7964117B2 (en) 2011-06-21
EP2006939A1 (en) 2008-12-24
CA2633284A1 (en) 2008-12-18
KR100950130B1 (ko) 2010-03-30

Similar Documents

Publication Publication Date Title
CN101436664B (zh) 电化学组合物及其制备方法
CN101345307B (zh) 电化学组合物及相关技术
Li et al. Graphene-supported NaTi2 (PO4) 3 as a high rate anode material for aqueous sodium ion batteries
Padhi et al. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries
Martin et al. Air exposure effect on LiFePO4
KR101185707B1 (ko) 전기화학적 조성물 및 관련 기술
Wang et al. Characterization of LiM x Fe1− x PO 4 (M= Mg, Zr, Ti) Cathode Materials Prepared by the Sol-Gel Method
Kim et al. Si–SiC nanocomposite anodes synthesized using high-energy mechanical milling
Nakamura et al. Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties
Liang et al. Co-doped Li4Ti5O12 nanosheets with enhanced rate performance for lithium-ion batteries
Lakshmi et al. Antimony oxychloride embedded graphene nanocomposite as efficient cathode material for chloride ion batteries
CN108431994A (zh) 金属氟化物涂覆的嵌锂材料和其制备方法及其用途
Cambaz et al. Design of nickel-based cation-disordered rock-salt oxides: the effect of transition metal (M= V, Ti, Zr) substitution in LiNi0. 5M0. 5O2 binary systems
CN104900872A (zh) 橄榄石型正极活性材料前体、正极活性材料和制备方法
JP2005514304A (ja) 伝導性リチウム貯蔵電極
CN101682029A (zh) 锂氧化物颗粒上的氧化物涂层
Zaghib et al. Olivine-based cathode materials
KR101169495B1 (ko) 전기화학적 조성물 및 그 제조방법
Shreenivasa et al. An introduction of new nanostructured Zn0. 29V2O5 cathode material for lithium ion battery: a detailed studies on synthesis, characterization and lithium uptake
KR101106269B1 (ko) 고상합성법에 따른 리튬이차전지용 양극 활물질 LiFePO4 분말의 제조방법
CN106575767A (zh) 正极材料、二次电池、正极材料的制造方法及二次电池的制造方法
Mukai A series of zero-strain lithium insertion materials that undergo a non-topotactic reaction
Choi et al. Scalable LiCoO2 nanoparticle fibers for high power lithium battery cathodes
Kim et al. Activation of oxygen redox by inhibited dynamic phase transition for High-Energy Li-Rich layered oxide cathode
CN117895061A (zh) 具有优异湿度稳定性的固体电解质及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20161031

Address after: Grand Cayman British Cayman Islands

Patentee after: British Gayman Islands Shanglikai Power Technology Co.,Ltd.

Address before: China Taiwan Taoyuan County

Patentee before: ADVANCED LITHIUM ELECTROCHEMISTRY Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220819

Address after: Taoyuan City, Taiwan, China

Patentee after: ADVANCED LITHIUM ELECTROCHEMISTRY Co.,Ltd.

Address before: Cayman Islands, Grand Cayman, UK

Patentee before: British Gayman Islands Shanglikai Power Technology Co.,Ltd.