CN101322719A - 一种三氧化二砷固体脂质纳米粒、其制剂及其制备方法 - Google Patents

一种三氧化二砷固体脂质纳米粒、其制剂及其制备方法 Download PDF

Info

Publication number
CN101322719A
CN101322719A CN 200710069335 CN200710069335A CN101322719A CN 101322719 A CN101322719 A CN 101322719A CN 200710069335 CN200710069335 CN 200710069335 CN 200710069335 A CN200710069335 A CN 200710069335A CN 101322719 A CN101322719 A CN 101322719A
Authority
CN
China
Prior art keywords
arsenic trioxide
solid lipid
suspension
water
nano granule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200710069335
Other languages
English (en)
Other versions
CN101322719B (zh
Inventor
李青坡
何佳奇
阮建山
杜斯文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Minsheng Pharmaceutical Co Ltd
Original Assignee
Hangzhou Minsheng Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Minsheng Pharmaceutical Co Ltd filed Critical Hangzhou Minsheng Pharmaceutical Co Ltd
Priority to CN2007100693359A priority Critical patent/CN101322719B/zh
Publication of CN101322719A publication Critical patent/CN101322719A/zh
Application granted granted Critical
Publication of CN101322719B publication Critical patent/CN101322719B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Abstract

本发明公开了一种更稳定的、更适于临床应用的三氧化二砷固体脂质纳米粒及其制剂及其制备方法。该固体脂质纳米粒含有三氧化二砷∶磷脂∶乳化剂∶助乳化剂∶固体脂质材料∶抗氧化剂=0.1~10%∶1~30%∶1~20%∶0~5%∶2~20%∶0.001~0.5%(按重量体积百分比计)。三氧化二砷固体脂质纳米粒在制备抗肿瘤用的固体或液体药物制剂中的应用,可进一步制备成适合临床应用的固体制剂或液体制剂,尤其是指口服制剂。三氧化二砷固体脂质纳米粒的制备方法,可采用冷均质法、高压乳均法、熔融超声法、微乳法等制得混悬液;或进一步在混悬液加入冻干支持剂,冷冻干燥,即得三氧化二砷固体脂质纳米粒冻干品。

Description

一种三氧化二砷固体脂质纳米粒、其制剂及其制备方法
技术领域
本发明涉及一种抗肿瘤药物三氧化二砷,具体涉及一种三氧化二砷固体脂质纳米粒、其制剂及其制备方法。
背景技术
三氧化二砷(As2O3)俗称砒霜,是一种有毒物质,同时也是一味古老的中药。自七十年代试验性地用于治疗急性早幼粒细胞白血病(APL)以来,已经逐渐被接受,并广泛用于临床。目前SFDA和FDA均已批准其作为治疗APL的抗肿瘤药物生产销售。对三氧化二砷治疗实体肿瘤的研究也正进一步深入,已有研究结果显示:三氧化二砷对胃癌、结肠癌、肺癌等一些实体肿瘤细胞有抑制生长和诱导凋亡的作用。SFDA已于2004年9月批准增加三氧化二砷注射液治疗原发性肝癌晚期的新适应症。
目前临床上所用的剂型为按照中国发明专利ZL95108768.1制备的三氧化二砷的注射液,静脉给药后有一些毒副作用:如消化道症状、末梢神经炎、皮肤干燥、色素沉着,甚至肝肾功能损害等。另外由于三氧化二砷在水中溶解度小,其注射液在温度低于16℃,尤其是低于5℃时易析出结晶,影响疗效。同时受剂型限制,三氧化二砷目前只能注射给药,注射液生产成本高、临床应用复杂、使用风险较大。因此,开发更适于三氧化二砷临床应用的剂型对于提高疗效、降低毒副作用有很重要的意义。
发明内容
本发明旨在提供一种更稳定的、更适于临床应用的三氧化二砷制剂。
本发明通过三氧化二砷固体脂质纳米粒的组方,及其制剂和制备方法,解决了因药物在低温状态下溶解性差而引起的稳定性问题。
本发明提供的三氧化二砷固体脂质纳米粒可进一步制备成适合临床应用的固体制剂或液体制剂,尤其是制成口服制剂,可减小用药成本和风险,提高了患者的顺应性。
有需要的话,还可通过控制粒径大小而起到一定的靶向作用,从而在治疗实体瘤的应用中发挥比注射液更好的优势。
本发明中所涉及三氧化二砷固体脂质纳米粒成分的百分比的地方,除非特别说明均指质量体积百分比。
本发明制备的三氧化二砷固体脂质纳米粒,其组成为:
三氧化二砷          0.1~10%(W/V)
磷脂                1~30%(W/V)
乳化剂                      1~20%(W/V)
助乳化剂                    0~5%(W/V)
固体脂质材料                2~20%(W/V)
抗氧化剂                    0.001~0.5%(W/V)
水                          加至100ml。
本发明制备的三氧化二砷固体脂质纳米粒,其组成为:
三氧化二砷                     0.1~10%(W/V)
磷脂                           5~20%(W/V)
乳化剂                         2~10%(W/V)
助乳化剂                       0~3%(W/V)
固体脂质材料                   5~10%(W/V)
抗氧化剂                       0.001~0.5%(W/V)
水                             加至100ml。
所述的磷脂可选为精制的豆磷脂、卵磷脂、脑磷脂以及各种合成磷脂中的一种或几种的组合。
所述的乳化剂可选为聚氧乙烯蓖麻油、聚氧乙烯氢化蓖麻油、泊洛沙姆、苄泽(聚氧乙烯脂肪醇醚)、卖泽(聚氧乙烯脂肪酸酯)、聚乙二醇硬脂酸酯、吐温中的一种或几种的组合。
所述的助乳化剂可选自乙醇、乙二醇、丙二醇、甘油、正丁醇的一种或几种的组合。
所述的固体脂质材料可选为单硬脂酸甘油酯、双硬脂酸甘油酯、三硬脂酸甘油酯、棕榈酸硬脂酸甘油酯、鲸蜡醇十六酸酯、三棕榈酸甘油酯、三肉豆蔻酸甘油酯、肉豆蔻酸肉豆蔻酯、硬酯酸、棕榈酸、油酸、胆固醇、鲸蜡、十八醇、三月桂酸甘油酯中的一种或几种的组合。
所述的抗氧化剂选为维生素E、EDTA盐中的一种或两种的组合。
所述的三氧化二砷固体脂质纳米粒,可以为液体,如通过冷均质法、高压乳均法、熔融超声法、微乳法等方法制成的混悬液;也可以为固体,如通过冷冻干燥的冻干品和通过其他方法得到的干燥品。
三氧化二砷固体脂质纳米粒的制备方法,可采用冷均质法、高压乳均法、熔融超声法、微乳法等制得三氧化二砷固体脂质纳米粒混悬液;或进一步在三氧化二砷固体脂质纳米粒混悬液加入冻干支持剂,冷冻干燥,即得三氧化二砷固体脂质纳米粒冻干品。
一种制备三氧化二砷固体脂质纳米粒的方法,其特征为:采用冷均质法,将脂质材料、磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,分散均匀;
用干冰或液氮使含药熔融体迅速冷却成固体,通过球磨或乳钵碾磨将固体含药脂质磨碎成微粒;
然后将此固体脂质微粒分散到低温的含乳化剂或乳化剂和助乳化剂的水相溶液中,形成初混悬液;
最后将此初混悬液在室温或低于室温下经过高压均质得到三氧化二砷固体脂质纳米粒混悬液;
或进一步在上述混悬液中加入冻干支持剂,冷冻干燥,即得三氧化二砷固体脂质纳米粒冻干品。
一种制备三氧化二砷固体脂质纳米粒的制备方法,其特征为:采用高压乳均法,将脂质材料、磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,混合均匀作为油相;将乳化剂或乳化剂和助乳化剂充分分散在水中,加热至与油相相同温度作为水相;在高速搅拌下将油相加入水相中,继续搅拌一定时间形成初乳;高压均质;冷却至室温,即得三氧化二砷固体纳米粒混悬液;
或进一步在上述混悬液中加入冻干支持剂,冷冻干燥,即得三氧化二砷固体脂质纳米粒冻干品。
一种制备三氧化二砷固体脂质纳米粒的方法,其特征为:采用熔融超声法,将脂质材料、磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,混合均匀作为油相;将乳化剂或乳化剂和助乳化剂充分分散在水中,加热至与油相相同温度作为水相;在高速搅拌下将油相加入水相中,超声分散,冷却至室温,即得三氧化二砷固体纳米粒混悬液;
或进一步在上述混悬液中加入冻干支持剂,冷冻干燥,即得三氧化二砷固体脂质纳米粒冻干品。
一种制备三氧化二砷固体脂质纳米粒的方法,其特征为:采用微乳法,将脂质材料、磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,混合均匀作为油相;将乳化剂、助乳化剂溶解于水中,加热至与油相相同温度作为水相;搅拌下将油相加入至水相中,轻轻搅拌,形成透明的纳米乳,再将此热的纳米乳分散于冷水中(2~3℃),即得三氧化二砷固体纳米粒混悬液;
或进一步在上述混悬液中加入冻干支持剂,冷冻干燥,即得三氧化二砷固体脂质纳米粒冻干品。
所述的冻干支持剂可选为甘露醇、葡萄糖、甘露糖、蔗糖、麦芽糖和海藻糖中的一种或几种的组合。
所述的三氧化二砷固体脂质纳米粒,其特征为:纳米粒的包封率>85%,纳米粒的平均粒径<1μm。
三氧化二砷固体脂质纳米粒在制备抗肿瘤用的固体或液体药物制剂中的应用。三氧化二砷的固体脂质纳米粒,可进一步制备适合临床应用的固体制剂或液体制剂,尤其是指口服制剂。
根据处方配比和粒径分布,确定给药途径,并加入其它常规药用辅料按常规制药技术制成适合的给药剂型,包括但不局限与以下给药方式:如添加矫味剂、助悬剂、防腐剂等口服液体制剂常规药用辅料制成口服给药混悬剂;冷冻干燥或喷雾干燥后,加入常规的固体制剂药用辅料并按常规制药技术制成片剂、胶囊等固体制剂,用于口服给药等。
这里要强调的是所述的矫味剂、助悬剂、防腐剂、固体制剂辅料药用辅料不限于下面所列的具体几种。
所述的矫味剂可选自蔗糖、甜菊糖、糖精钠、香精等中的一种或几种的组合。
所述的助悬剂可选自药学上可接受的助悬剂,如PVP、PVA、羧甲基纤维素钠、阿拉伯胶、卡波普等中的一种或几种的组合。
所述的防腐剂可选自药学上可接受的防腐剂,如尼泊金甲酯、尼伯金乙酯、尼伯金丙酯、尼伯金丁酯、苯甲酸及其盐、山梨酸及其盐等的一种或几种组合。
所述的固体制剂药用辅料可选自常规的药用辅料,如淀粉、乳糖、羧甲基淀粉钠、PVP、羧甲基纤维素钠、微晶纤维素、滑石粉、硬脂酸镁等。
本发明中纳米粒的包封率测定方法:将样品置于透析袋中,在低速搅拌的缓冲液中透析2h,按含量测定方法测定缓冲液中析出量,计算包封率。
本发明中纳米粒的粒径测定方法:将样品稀释100-500倍,用Nicomp380测定样品粒径。
本发明中纳米粒的Zeta电位测定方法:将样品稀释100倍,用Nicomp380测定样品Zeta电位值。
附图说明
图1.以实施例1制备的三氧化二砷固体脂质纳米粒的粒径分布
横坐标:粒径(nm);纵坐标:光强百分比
图2.以实施例1制备的三氧化二砷固体脂质纳米粒混悬液的Zeta电位
横坐标:测定时间(s);纵坐标:Zeta电位值(mV)
具体实施方式
下面结合具体实施例对本发明作进一步说明,所述的实施例仅为举例说明,不以任何方式限制本发明的范围。
实施例1
处方组成为:
三氧化二砷               10mg
三硬脂酸甘油酯           500mg
卵磷脂                   600mg
泊洛沙姆                 188300mg
EDTA-2Na                 0.2mg
蒸馏水     加至          10ml
制备方法:将三硬脂酸甘油酯、卵磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,分散均匀;用干冰或液氮使含药熔融体迅速冷却,通过球磨或乳钵碾磨将固体含药脂质磨碎成微粒;将泊洛沙姆188、EDTA-2Na溶于蒸馏水中,制成水相,然后将固体脂质微粒分散到低温的水相中,形成初混悬液;最后将此初混悬液在室温或低于室温下经过高压均质得到可用于制备最终产品的混悬液。
检查:纳米粒的包封率为93.4%,纳米粒的平均粒径为190nm,纳米粒的粒径见附图1,Zeta电位-29mV,见附图2。
实施例2
处方组成为:三氧化二砷             10mg
            三硬脂酸甘油酯         300mg
            双硬脂酸甘油酯         200mg
            卵磷脂                 500mg
            泊洛沙姆188            200mg
            EDTA-2Na               0.5mg
            蒸馏水    加至         10ml
制备方法:将三硬脂酸甘油酯、双硬脂酸甘油酯、卵磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,分散均匀;混合均匀作为油相;将泊洛沙姆188、EDTA-2Na充分分散在水中,加热至与油相相同温度作为水相;在高速搅拌下将油相加入水相中,继续搅拌一定时间形成初乳;高压均质2~10次;冷却至室温,即得可用于制备最终产品的混悬液。
检查:纳米粒的包封率为91.5%,纳米粒的平均粒径为200nm,Zeta电位-29mV。
实施例3
处方组成为:三氧化二砷              10mg
            硬脂酸                  200mg
            棕榈酸甘油酯            300mg
            卵磷脂                  700mg
            泊洛沙姆188             300mg
            吐温-80                 200mg
            甘油                    300mg
            EDTA-2Na                0.5mg
            蒸馏水    加至          10ml
制备方法:将硬脂酸、棕榈酸甘油酯、卵磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,混合均匀作为油相;将泊洛沙姆188、吐温-80、甘油、EDTA-2Na溶解于水中,加热至与油相相同温度作为水相;搅拌下将油相加入至水相中,轻轻搅拌,形成透明的纳米乳,再将此热的纳米乳分散于冷水中(2~3℃),即得可用于制备最终产品的混悬液。
检查:纳米粒的包封率为90.8%,纳米粒的平均粒径为162nm,Zeta电位-31mV。
实施例4
处方组成为:三氧化二砷         10mg
            单硬脂酸甘油酯     200mg
            十八醇             100mg
            卵磷脂             300mg
            卖泽               100mg
            EDTA-2Na           0.1mg
            蒸馏水    加至     10ml
制备方法:将单硬脂酸甘油酯、十八醇、卵磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,混合均匀作为油相;将卖泽、EDTA-2Na充分分散在水中,加热至与油相相同温度作为水相;在高速搅拌下将油相加入水相中,超声分散,冷却至室温,即得可用于制备最终产品的混悬液。
检查:纳米粒的包封率为86.4%,纳米粒的平均粒径为307nm,Zeta电位-29mV。
实施例5
处方组成为:三氧化二砷             100mg
三硬脂酸甘油酯                     600mg
大豆磷脂                           800mg
泊洛沙姆                           188400mg
EDTA-2Na                           0.5mg
维生素E                            1mg
蒸馏水       加至                  10ml
制备方法:将三硬脂酸甘油酯、大豆磷脂、维生素E在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,分散均匀;用干冰或液氮使含药熔融体迅速冷却,通过球磨或乳钵碾磨将固体含药脂质磨碎成微粒;将泊洛沙姆188、EDTA-2Na溶于蒸馏水中,制成水相,然后将固体脂质微粒分散到低温的水相中,形成初混悬液;最后将此初混悬液在室温或低于室温下经过高压均质得到可用于制备最终产品的混悬液。
检查:纳米粒的包封率为89.0%,纳米粒的平均粒径为221nm,Zeta电位-30mV。
实施例6
处方组成为:三氧化二砷              100mg
单硬脂酸甘油酯                      400mg
棕榈酸                              300mg
卵磷脂                              1000mg
聚氧乙烯蓖麻油                      500mg
甘油                                100mg
EDTA-2Na                            0.5mg
维生素E                             1mg
蒸馏水     加至                     10ml
制备方法:将单硬脂酸甘油酯、棕榈酸、卵磷脂、维生素E在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,分散均匀;用干冰或液氮使含药熔融体迅速冷却,通过球磨或乳钵碾磨将固体含药脂质磨碎成微粒;将聚氧乙烯蓖麻油、甘油、EDTA-2Na溶于蒸馏水中,制成水相,然后将固体脂质微粒分散到低温的水相中,形成初混悬液;最后将此初混悬液在室温或低于室温下经过高压均质得到可用于制备最终产品的混悬液。
检查:纳米粒的包封率为89.6%,纳米粒的平均粒径为210nm,Zeta电位-36mV。
实施例7
处方组成为:三氧化二砷             1000mg
            单硬脂酸甘油酯         500mg
            双硬脂酸甘油酯         500mg
            卵磷脂                 2000mg
            聚氧乙烯蓖麻油         800mg
            EDTA-2Na               5mg
            维生素E                10mg
            蒸馏水加至             10ml
制备方法:将单硬脂酸甘油酯、双硬脂酸甘油酯、卵磷脂、维生素E在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,分散均匀;用干冰或液氮使含药熔融体迅速冷却,通过球磨或乳钵碾磨将固体含药脂质磨碎成微粒;将聚氧乙烯蓖麻油、EDTA-2Na溶于蒸馏水中,制成水相,然后将固体脂质微粒分散到低温的水相中,形成初混悬液;最后将此初混悬液在室温或低于室温下经过高压均质得到可用于制备最终产品的混悬液。
检查:纳米粒的包封率为86.9%,纳米粒的平均粒径为387nm,Zeta电位-38mV。
实施例8
处方组成为:三氧化二砷               1000mg
三硬脂酸甘油酯                       800mg
双硬脂酸甘油酯                       800mg
卵磷脂                               3000mg
聚氧乙烯蓖麻油                       8000mg
泊洛沙姆188                          500mg
EDTA-2Na                             10mg
维生素E                              40mg
蒸馏水         加至                  10ml
制备方法:将三硬脂酸甘油酯、双硬脂酸甘油酯、卵磷脂、维生素E在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,分散均匀;用干冰或液氮使含药熔融体迅速冷却,通过球磨或乳钵碾磨将固体含药脂质磨碎成微粒;将聚氧乙烯蓖麻油、EDTA-2Na溶于蒸馏水中,制成水相,然后将固体脂质微粒分散到低温的水相中,形成初混悬液;最后将此初混悬液在室温或低于室温下经过高压均质得到可用于制备最终产品的混悬液。
检查:纳米粒的包封率为87.5%,纳米粒的平均粒径为394nm,Zeta电位-37mV。
实施例9
处方组成为:三氧化二砷               100mg
单硬脂酸甘油酯                       400mg
棕榈酸                               300mg
卵磷脂                               800mg
聚氧乙烯蓖麻油                       500mg
EDTA-2Na                             1mg
甜菊糖                               500mg
PVP                                  100mg
水溶性香精                           适量
尼泊金甲酯                           适量
蒸馏水   加至                        10ml
制备方法:将单硬脂酸甘油酯、棕榈酸、卵磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,分散均匀;用干冰或液氮使含药熔融体迅速冷却,通过球磨或乳钵碾磨将固体含药脂质磨碎成微粒;将聚氧乙烯蓖麻油、EDTA-2Na溶于蒸馏水中,制成水相,然后将固体脂质微粒分散到低温的水相中,形成初混悬液;将此初混悬液在室温或低于室温下高压均质,最后与溶有PVP、甜菊糖、水溶性香精、尼泊金甲酯的水溶液混合均匀即得最终产品(混悬液),可用于口服给药。
检查:纳米粒的包封率为90.1%,纳米粒的平均粒径为196nm,Zeta电位-34mV。
实施例10
处方组成为:三氧化二砷             10mg
            三硬脂酸甘油酯         500mg
            卵磷脂                 700mg
            泊洛沙姆188            400mg
            EDTA-2Na               0.5mg
            甘露醇                 500mg
葡萄糖             300mg
蒸馏水   加至      10ml
制备方法:将三硬脂酸甘油酯、卵磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,分散均匀;用干冰或液氮使含药熔融体迅速冷却,通过球磨或乳钵碾磨将固体含药脂质磨碎成微粒;将泊洛沙姆188、EDTA-2Na溶于蒸馏水中,制成水相,然后将固体脂质微粒分散到低温的水相中,形成初混悬液;最后将此初混悬液在室温或低于室温下高压均质,将甘露醇、葡萄糖溶于适量水中,与所得的SLN混悬液混合,加水至处方量,分装,冷冻干燥,得到最终产品(三氧化二砷的固体脂质纳米粒冻干制品),可用于口服给药;或经无菌过滤后用于注射给药。
检查:纳米粒的包封率为90.7%,纳米粒的平均粒径为210nm,Zeta电位-31mV。
稳定性考察
以实施例9制备的三氧化二砷固体脂质纳米粒的口服混悬液,置光照(4500lX)、高温(40℃)、低温(2-8℃)下进行稳定性考察,实验结果见表1。
表1实施例9三氧化二砷固体脂质纳米粒混悬液稳定性考察结果
  项目   时间(天)   性状   粒径(nm)   包封率(%)
  光照      04500lX    510   白色均一混悬液体白色均一混悬液体白色均一混悬液体   196208201   90.191.090.4
  高温      0(40℃)    510   白色均一混悬液体白色均一混悬液体白色均一混悬液体   196207216   90.189.289.5
  低温      0(2-8℃)   515   白色均一混悬液体白色均一混悬液体白色均一混悬液体   196198200   90.190.789.4
以实施例10制备的三氧化二砷固体脂质纳米粒的冻干品,置光照(4500lX)、高温(40℃)、低温(2-8℃)进行稳定性考察,实验结果见表2。
表2实施例10三氧化二砷固体脂质纳米粒冻干品稳定性考察结果
项目  时间(天) 性状   粒径(nm)   包封率(%)
  光照      04500lX    510   白色干燥粉末,以溶剂分散后为白色均匀混悬液白色干燥粉末,以溶剂分散后为白色均匀混悬液白色干燥粉末,以溶剂分散后为白色均匀混悬液   210208217   90.790.890.1
  高温      0(40℃)    510   白色干燥粉末,以溶剂分散后为白色均匀混悬液白色干燥粉末,以溶剂分散后为白色均匀混悬液白色干燥粉末,以溶剂分散后为白色均匀混悬液   210212216   90.789.490.5
  低温      0(2-8℃)   510   白色干燥粉末,以溶剂分散后为白色均匀混悬液白色干燥粉末,以溶剂分散后为白色均匀混悬液白色干燥粉末,以溶剂分散后为白色均匀混悬液   210198200   90.790.491.0
按中国发明专利ZL95108768.1制备三氧化二砷的溶液剂,置光照(4500lX)、高温(40℃)、低温(2-8℃)进行稳定性考察,实验结果见表3。
表3按ZL95108768.1制备的三氧化二砷溶液稳定性考察结果
  项目      时间(天)   性状
  光照4500lX 0510   无色澄明液体无色澄明液体无色澄明液体
  高温(40℃) 0510   无色澄明液体无色澄明液体无色澄明液体
  低温(2-8℃)0510   无色澄明液体析出结晶析出结晶
由以上试验结果可见,按中国发明专利ZL95108768.1制备的三氧化二砷溶液剂在低温(2-8℃)条件下储存出现了析出结晶的不稳定现象,而按本发明制备的三氧化二砷固体脂质纳米粒的两种制剂,口服混悬液和冻干品,在相同条件下保持稳定。

Claims (10)

1、一种三氧化二砷固体脂质纳米粒,其组成为:
三氧化二砷        0.1~10%(W/V)
磷脂              1~30%(W/V)
乳化剂            1~20%(W/V)
助乳化剂          0~5%(W/V)
固体脂质材料      2~20%(W/V)
抗氧化剂          0.001~0.5%(W/V)
水                加至100ml。
2、权利要求1所述的三氧化二砷固体脂质纳米粒,其组成为:
三氧化二砷        0.1~10%(W/V)
磷脂              5~20%(W/V)
乳化剂            2~10%(W/V)
助乳化剂          0~3%(W/V)
固体脂质材料      5~10%(W/V)
抗氧化剂          0.001~0.5%(W/V)
水                加至100ml。
3、权利要求1或2所述的磷脂可选为豆磷脂、卵磷脂、脑磷脂以及合成磷脂中的一种或几种的组合;
乳化剂可选为聚氧乙烯蓖麻油、聚氧乙烯氢化蓖麻油、泊洛沙姆、苄泽、卖泽、聚乙二醇硬脂酸酯、吐温中的一种或几种的组合;
助乳化剂可选自乙醇、乙二醇、丙二醇、甘油、正丁醇的一种或几种的组合;
固体脂质材料可选为单硬脂酸甘油酯、双硬脂酸甘油酯、三硬脂酸甘油酯、棕榈酸硬脂酸甘油酯、鲸蜡醇十六酸酯、三棕榈酸甘油酯、三肉豆蔻酸甘油酯、肉豆蔻酸肉豆蔻酯、硬酯酸、棕榈酸、油酸、胆固醇、鲸蜡、十八醇、三月桂酸甘油酯中的一种或几种的组合;
抗氧化剂可选自于维生素E、EDTA盐中的一种或两种的组合。
4、根据权利要求1所述的三氧化二砷固体脂质纳米粒,其特征为:所述的固体脂质纳米粒为混悬液或混悬液经冷冻干燥得到的冻干品。
5、一种制备如权利要求4所述的三氧化二砷固体脂质纳米粒的方法,其特征为:采用冷均质法,将脂质材料、磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,分散均匀;
用干冰或液氮使含药熔融体迅速冷却成固体,通过球磨或乳钵碾磨将固体含药脂质磨碎成微粒;
然后将此固体脂质微粒分散到低温的含乳化剂或乳化剂和助乳化剂的水相溶液中,形成初混悬液;
最后将此初混悬液在室温或低于室温下经过高压均质得到三氧化二砷固体脂质纳米粒混悬液;
或进一步在上述混悬液中加入冻干支持剂,冷冻干燥,即得三氧化二砷固体脂质纳米粒冻干品。
6、一种制备如权利要求4所述的三氧化二砷固体脂质纳米粒的方法,其特征为:采用高压乳均法,将脂质材料、磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,混合均匀作为油相;
将乳化剂或乳化剂和助乳化剂充分分散在水中,加热至与油相相同温度作为水相;
在高速搅拌下将油相加入水相中,继续搅拌一定时间形成初乳;
高压均质;冷却至室温,即得三氧化二砷固体纳米粒混悬液;
或进一步在上述混悬液中加入冻干支持剂,冷冻干燥,即得三氧化二砷固体脂质纳米粒冻干品。
7、一种制备如权利要求4所述的三氧化二砷固体脂质纳米粒的方法,其特征为:采用熔融超声法,将脂质材料、磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,混合均匀作为油相;
将乳化剂或乳化剂和助乳化剂充分分散在水中,加热至与油相相同温度作为水相;
在高速搅拌下将油相加入水相中,超声分散,冷却至室温,即得三氧化二砷固体纳米粒混悬液;
或进一步在上述混悬液中加入冻干支持剂,冷冻干燥,即得三氧化二砷固体脂质纳米粒冻干品。
8、一种制备如权利要求4所述的三氧化二砷固体脂质纳米粒的方法,其特征为:采用微乳法,将脂质材料、磷脂在40~100℃水浴下加热至熔融,加入球磨粉碎的三氧化二砷,混合均匀作为油相;
将乳化剂、助乳化剂溶解于水中,加热至与油相相同温度作为水相;
搅拌下将油相加入至水相中,轻轻搅拌,形成透明的纳米乳,再将此热的纳米乳分散于冷水中,即得三氧化二砷固体纳米粒混悬液;
或进一步在上述混悬液中加入冻干支持剂,冷冻干燥,即得三氧化二砷固体脂质纳米粒冻干品。
9、根据权利要求5-8所述的任一制备方法,其特征为:所述的冻干支持剂可选为甘露醇、葡萄糖、甘露糖、蔗糖、麦芽糖和海藻糖中的一种或几种的组合。
10、根据权利要求1所述的三氧化二砷固体脂质纳米粒在制备抗肿瘤的固体制剂或液体制剂药物中的应用。
CN2007100693359A 2007-06-15 2007-06-15 一种三氧化二砷固体脂质纳米粒及其制剂 Expired - Fee Related CN101322719B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007100693359A CN101322719B (zh) 2007-06-15 2007-06-15 一种三氧化二砷固体脂质纳米粒及其制剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100693359A CN101322719B (zh) 2007-06-15 2007-06-15 一种三氧化二砷固体脂质纳米粒及其制剂

Publications (2)

Publication Number Publication Date
CN101322719A true CN101322719A (zh) 2008-12-17
CN101322719B CN101322719B (zh) 2012-03-07

Family

ID=40186520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100693359A Expired - Fee Related CN101322719B (zh) 2007-06-15 2007-06-15 一种三氧化二砷固体脂质纳米粒及其制剂

Country Status (1)

Country Link
CN (1) CN101322719B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103483353A (zh) * 2012-06-13 2014-01-01 上海现代药物制剂工程研究中心有限公司 二硫杂环戊烯并吡咯酮化合物的纳米粒及制备方法
US10653628B2 (en) 2015-02-01 2020-05-19 Orsenix Holdings Bv High surface-area lyophilized compositions comprising arsenic for oral administration in patients
CN114711288A (zh) * 2022-03-01 2022-07-08 珠海科技学院 一种稳定性高的肉桂醛固体脂质纳米粒及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1345597E (pt) * 2000-12-27 2007-10-29 Ares Trading Sa Nanopartículas lipídicas anfifílicas para incorporação de péptidos e/ou proteínas
CN1241550C (zh) * 2004-03-12 2006-02-15 东南大学 纳米砒霜磁性脂质体的制备方法
CN1269472C (zh) * 2004-10-14 2006-08-16 东南大学 十纳米级固体脂质纳米粒的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103483353A (zh) * 2012-06-13 2014-01-01 上海现代药物制剂工程研究中心有限公司 二硫杂环戊烯并吡咯酮化合物的纳米粒及制备方法
CN103483353B (zh) * 2012-06-13 2016-02-24 上海现代药物制剂工程研究中心有限公司 二硫杂环戊烯并吡咯酮化合物的纳米粒及制备方法
US10653628B2 (en) 2015-02-01 2020-05-19 Orsenix Holdings Bv High surface-area lyophilized compositions comprising arsenic for oral administration in patients
JP2021152059A (ja) * 2015-02-01 2021-09-30 サイロス・ファーマシューティカルズ・インコーポレイテッドSyros Pharmaceuticals, Inc. 患者の経口投与のためのヒ素を含む高表面積の凍結乾燥組成物
TWI790191B (zh) * 2015-02-01 2023-01-21 美商錫羅斯製藥公司 用於病患口服之含砷高表面積冷凍乾燥組合物
AU2021203752B2 (en) * 2015-02-01 2023-08-31 Syros Pharmaceuticals, Inc. High surface-area lyophilized compositions comprising arsenic for oral administration in patients
CN114711288A (zh) * 2022-03-01 2022-07-08 珠海科技学院 一种稳定性高的肉桂醛固体脂质纳米粒及其制备方法

Also Published As

Publication number Publication date
CN101322719B (zh) 2012-03-07

Similar Documents

Publication Publication Date Title
US7438903B2 (en) Methods and compositions that enhance bioavailability of coenzyme-Q10
EP2254600B1 (en) Novel compositions and uses thereof
TWI267383B (en) Composition and method of preparing microparticles of water-insoluble substances
CZ142697A3 (en) Pharmaceutical nano-suspensions for applying medicaments as systems with increased solubility by saturation and solubility rate
CN104000783B (zh) 头孢喹肟脂质体
KR20220164506A (ko) 건강관리 제품을 위한 계면활성제
Urimi et al. Formulation development and upscaling of lipid nanocapsules as a drug delivery system for a novel cyclic GMP analogue intended for retinal drug delivery
TW201711677A (zh) 磷脂-膽固醇酯奈米調配物及其相關方法
Youngren et al. Freeze-dried targeted mannosylated selenium-loaded nanoliposomes: development and evaluation
CN101322719B (zh) 一种三氧化二砷固体脂质纳米粒及其制剂
CN105919949B (zh) 一种稳定的氟比洛芬酯冻干乳及其制备方法
KR20020012215A (ko) 지질 매트릭스-약물 컨쥬게이트로부터 조제된 활성성분의투여 제어를 위한 약물 운반체
Cui et al. Lecithin-based cationic nanoparticles as a potential DNA delivery system
US7803366B2 (en) Methods and compositions that enhance bioavailability of coenzyme-Q10
CN102626390A (zh) 一种天麻素多相脂质体注射液
CN101810570B (zh) 蒽环类抗肿瘤抗生素脂肪酸复合物脂质纳米粒制剂及其制备方法
Cao et al. Combretastatin A4-loaded Poly (Lactic-co-glycolic Acid)/Soybean Lecithin Nanoparticles with Enhanced Drug Dissolution Rate and Antiproliferation Activity
JPH10147534A (ja) 腫瘍新生血管阻害物質及び医薬組成物
Yuan et al. pH‐Triggered Transformable Peptide Nanocarriers Extend Drug Retention for Breast Cancer Combination Therapy
Amalia et al. Preparation and molecular interaction of organic solvent-free piperine pro-liposome from soy lecithin
US11642420B2 (en) Nanoparticle pharmaceutical delivery system
US20240108685A1 (en) Oral liposomal compositions
Binita Development and Characterization of Imatinib Mesylate Loaded Pluronic Lecithin Organogel
Sharma et al. Pharmacosomes as Unique and Potential Drug Delivery System
Mohamed Preparation and Evaluation of Methotrexate Proniosomes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120307

Termination date: 20160615